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Analytic Representation for Parallel Flow of Hot Ions Produced by
Tangential Neutral Beam Injection
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Tangential neutral beam injection deposits momentum in a fusion plasma, which produces macroscopic flow
of bulk particles. Concurrently, equilibrium distribution of hot ions produced by the injection is determined by
collisions with the bulk particles. Through these processes, macroscopic flow of hot ions can be produced. Effects
of the flow of hot ions have not been focused on since their inertial force is thought to be much smaller than the
bulk one due to smallness of density of hot ions. In this study, we derive an analytic representation for parallel
flow of hot ions. From the analytic representation, we find that amplitude of the parallel flow is determined by
three parameters, injection speed, injection pitch angle, and electron temperature. Also we find that the inertial
force of hot ions is not negligible even if the density of hot ions is much smaller than that of bulk ions.
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1. Introduction
A neutral beam injection (NBI) system is key equip-

ment for a fusion device. One of the most important roles
for the system is to heat plasma to a high temperature
enough for fusion. Another important role is to deposit
momentum in the plasma, which produces macroscopic
plasma flow. The resultant plasma flow improves plasma
performance. The flow can stabilize some magnetohy-
drodynamic (MHD) modes, such as resistive wall mode
(RWM) that limits the achievable β value. Also, sheared
flow can suppress microscopic turbulence through sheared
radial electric field, which reduces anomalous transport.
Therefore, control of the plasma flow is essential to realize
confinement of a stable high-β plasma. For the control of
flow profile, the NBI system can be an “actuator.”

In this paper, we consider a situation such that the NB
is injected in a plasma steadily. The NB injection produces
hot ions through collisions with bulk particles. This gives
the source term for dynamics of hot ions. These hot ions
achieve the steady state through collisions with the bulk
particles. Through these processes, the bulk plasma flow is
produced, and we assume that it is prescribed in this paper.
The distribution function of hot ions for the steady state
has been discussed in [1], which solves the steady state
Fokker-Planck equation with the source term. The source
term is given by delta functions of injection speed (or en-
ergy) and injection pitch angle. The solution represents the
slowing-down distribution in the energy (speed) and scat-
tering in the pitch angle. In this paper, we investigate the
macroscopic flow of “hot” ions (not “bulk” ions). The flow
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of hot ions has not been focused on because it is not ex-
pected to affect the overall plasma dynamics. The inertial
force of hot ions is thought to be small due to the small-
ness of the number density. Based on this assumption,
the hybrid kinetic-MHD model, which can analyze the in-
teraction between MHD modes and hot particles, neglects
the inertial force of hot ions [2–4]. However, recently, we
show that the flow of hot ions can affect the MHD stabil-
ity (such as RWM) through energy exchange term between
bulk plasma and hot ions [5]. In this paper, we derive an
analytic representation for parallel flow of hot ions. The
present representation can be applied to the situation that
the NB is tangentially injected in a tokamak.

The remainder of this paper is organized as follows.
In Sec. 2, we derive an analytic solution of the equilibrium
distribution function for hot ions which collide with bulk
particles with flow. In Sec. 3, based on the analytic so-
lution of the distribution function described in Sec. 2, we
derive an analytic representation for parallel flow of hot
ions. In Sec. 4, we investigate the parallel flow based on
the analytic solution derived in Sec. 3. Also we study the
importance of the inertial force of hot ions. Section 5 sum-
marizes the results.

2. Analytic Solution of Equilibrium
Distribution Function for Hot Ions
Interacting with Flowing Bulk
Plasma

In this section, we derive an analytic solution of an
equilibrium distribution function for hot ions which collide

c© 2018 The Japan Society of Plasma
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with bulk particles with flow. We start from the steady-
state Fokker-Planck equation that governs the dynamics of
hot ions,

�vh · ∇ fh +
Qh

Mh

(
�E +�vh × �B

)
· ∇�vh fh

=
∑
j=i,e

F ( fh, f j), (1)

where f is the equilibrium distribution function (the sub-
scripts h, i, and e represent for hot ions, bulk ions, and bulk
electrons, respectively), Q is the charge, M is the mass, �E
is the equilibrium electric field, �B is the equilibrium mag-
netic field, and F is the collision operator. We note that �v
is the particle velocity in the laboratory frame. We assume
that collisions between hot ions can be neglected. The col-
lision operator of the Landau form reads

F ( fh, f j) =
Q2

hQ2
j

8πε2
0Mh

lnΛ

× ∂
∂�vh
·
∫

dv3j ωh j ·
(

1
Mh

∂

∂�vh
− 1

Mj

∂

∂�v j

)
fh f j, (2)

where ε0 is the vacuum permittivity, lnΛ is the Coulomb
cut-off factor, and ∂/∂�vh and ∂/∂�v j operate on fh and f j,
respectively. We note that the tensor

ωh j =
∂2gh j

∂�vh∂�vh
=

1

g3
h j

(
g2

h jI − �gh j�gh j

)
, (3)

depends on the relative velocity �gh j = �vh − �v j, where I
is a unit tensor. In what follows, we assume that equilib-
rium flow of bulk ions is prescribed by �Vi. In addition, we
assume that the equilibrium electric field is determined by
the ideal Ohm’s law as �E+ �Vi× �B = 0. After variable trans-
formation �uh = �vh − �Vi and �u j = �v j − �Vi, we observe �gh j

is invariant, which indicates that Eqs. (2) and (3) are also
invariant for putting �vh → �uh and �v j → �u j. This fact is due
to the Galilei invariance of the collision operator [6]. Then,
assuming fh is spatially uniform, Eq. (1) reduces to

Qh

Mh

(
�uh × �B

)
· ∇�uh

fh =
∑
j=i,e

F ( fh, f j), (4)

which is formally equivalent to the equation in [1]. Then
following the derivation in [1] with assuming that the equi-
librium distribution function is axisymmetric about the
magnetic field, we can obtain the analytic form of equi-
librium distribution function for hot ions as

fh(uh, ξ) =
S 0τs

u3
h + u3

c

∞∑
l=0

2l + 1
2

Pl(ξ0)Pl(ξ)

×
⎛⎜⎜⎜⎜⎝u3

h

u3
0

u3
0 + u3

c

u3
h + u3

c

⎞⎟⎟⎟⎟⎠
1
6 l(l+1)Z2

U(u0 − u), (5)

where ξ = (�uh/uh) · b̂ = cos θ is the pitch (b̂ = �B/B is the
unit vector along the equilibrium magnetic field and θ is
the pitch angle), ξ0 is the injection pitch of the hot ions, and

S 0 is the source term defined by N0h = (2πS 0τs/3) ln[(u3
0+

u3
c)/u3

c]. Here N0h is the uniform number density of hot
ions, τs = u3

c/(2ΓheZ1) is the Spitzer slowing down time,
u0 is the injection speed of hot ions by neutral beam injec-
tion, and uc is the crossover speed. The crossover speed is
expressed as uc = [3

√
πMeZ1/(4Mh)]1/3vthe, where

Z1 =
∑

i

N0iZ2
i Mh

N0eMi
, (6)

is a parameter depending on the mass ratio [N0i(e) is the
number density of ions (electrons) and Z is the charge num-
ber] and vthe =

√
2Te/Me is the electron thermal speed (Te

is the electron temperature). The coefficient Γhe is defined
by Γhe = Z2

he4N0e lnΛ/(8πε2
0M2

h), where e is the elemen-
tary charge. In Eq. (5), Pl is the Legendre polynomials,

Z2 =

∑
i Z2

i N0i

N0e

1
Z1
, (7)

is a parameter depending on the mass ratio, and U is the
step function.

3. Analytic Representation for Paral-
lel Flow of Hot Ions Produced by
Tangential Neutral Beam Injection

Using the analytic solution of the distribution func-
tion for hot ions interacting with bulk particles with flow
[Eq. (5)], we compute the parallel flow of hot ions. Let
us start from the definition of the macroscopic flow of hot
ions,

N0h�Vh =

∫
�vh fhdv3h =

∫
�uh fhdu3

h + N0h�Vi. (8)

When we substitute Eq. (5) into Eq. (8), it is difficult to
compute a general form of flow. Hence in this study, we
focus on the “parallel” flow, which would be observed
when neutral beam is injected tangentially into a tokamak
plasma. From Eq. (8), we obtain

N0hVh‖ =
∫

uhξ fhdu3
h + N0hVi‖. (9)

The second term in the right hand side of Eq. (9) represents
the flow of bulk ions and is assumed to be prescribed. Sub-
stituting Eq. (5) into the first term of the right hand side of
Eq. (9), we obtain

∫
uhξ fhdu3

h

= 2πS 0τs

∞∑
l=0

2l + 1
2

Pl(ξ0)

⎛⎜⎜⎜⎜⎝u3
0 + u3

c

u3
0

⎞⎟⎟⎟⎟⎠
1
6 l(l+1)Z2

(10)

×
∫ 1

−1
dξ ξPl(ξ)

∫ u0

0
duh

⎛⎜⎜⎜⎜⎝ u3
h

u3
h + u3

c

⎞⎟⎟⎟⎟⎠
1
6 l(l+1)Z2+1

.

In Eq. (10), we observe that the integration by ξ becomes

rather simple because
∫ 1

−1
ξPl(ξ)dξ = 0 for l > 1 [7]. Since
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∫ 1

−1
ξP0(ξ)dξ = 0 for l = 0, only l = 1 component survives,

i.e.,
∫ 1

−1
ξP1(ξ)dξ = 2/3. Then Eq. (10) reduces to

∫
uhξ fhdu3

h = 2πS 0τsξ0

⎛⎜⎜⎜⎜⎝u3
0 + u3

c

u3
0

⎞⎟⎟⎟⎟⎠
1
3 Z2

×
∫ u0

0
duh

⎛⎜⎜⎜⎜⎝ u3
h

u3
h + u3

c

⎞⎟⎟⎟⎟⎠
1
3 Z2+1

.

The last term, which represents the integration by uh, can
be solved analytically as [8]

∫ u0

0
duh

⎛⎜⎜⎜⎜⎝ u3
h

u3
h + u3

c

⎞⎟⎟⎟⎟⎠
1
3 Z2+1

=
uc

3
vμ

μ
2F1(μ − 1/3, μ; 1 + μ;−v), (11)

where μ = (Z2+4)/3, v = u3
0/u

3
c , and 2F1 is the Gauss’s hy-

pergeometric function. Using these expressions, we obtain
an analytic form of the parallel flow of hot ions as

N0hVh‖

=
2π
3

S 0τsucξ0

(
v + 1
v

) 1
3 Z2 vμ

μ
2F1 + N0hVi‖, (12)

where the arguments of 2F1 are same with ones in Eq. (11).
Equation (12) is the analytic representation for the parallel
flow of hot ions. Here, we compare the present analysis
with the previous ones on NB current drive [9,10]. The pre-
vious studies tried to obtain the current density of hot ions
with tangential neutral beam injection by assuming that the
distribution function is characterized by only l = 1 Legen-
dre polynomial. In these literatures, the current density
(or flow multiplied by the density) is expressed in an in-
tegral form. Therefore, the difference between the present
and previous analyses is only the use of the hypergeometric
function instead of integral in Eq. (11). The present anal-
ysis clearly shows the validity of the assumption and that
the expression has an analytic solution.

In what follows, we make some assumptions to reduce
Eq. (12). We consider a single bulk ion specie, and the bulk
and hot ions have the same charge number Zi = Zh = 1. In
addition, we assume that the bulk ions and electrons have
the same density N0i = N0e. Then from Eqs. (6) and (7),
Eq. (12) reduces to

Vh‖ =
ucξ0

ln (1 + ν)

(
ν + 1
ν

)μ− 4
3 νμ

μ
2F1 + Vi‖. (13)

From Eq. (13), we observe that the parallel flow of hot
ions is characterized by the crossover velocity uc, injection
pitch ξ0, mass ratio μ = (Mi/Mh + 4)/3, and a parameter
ν = u3

0/u
3
c that depends on injection speed, mass ratio, and

electron temperature.

4. Analysis of Inertial Force of Hot
Ions
In the previous section, we have succeeded to ob-

tain an analytic representation for the the parallel flow of

hot ions produced by tangential neutral beam injection as
shown in Eq. (13). First we observe that the first term in the
right hand side of Eq. (13) is spatially uniform, hence the
spatial profile is characterized by the parallel flow of bulk
ions. This is because we assume that fh is uniform. Since
the profile of Vh‖ is totally determined by the bulk ion flow
profile, in this paper we assume a uniform bulk ion flow
to exclude the complexity arising from non-uniformity.
Equation (13) indicates that the amplitude of parallel flow
of hot ions is characterized by the injection parameters
(speed v = u3

0/u
3
c and pitch ξ0), the electron temperature

(through the crossover speed uc), and the mass ratio μ. In
what follows, we investigate how these parameters affect
the amplitude of parallel flow of hot ions, Vh‖.

4.1 Dependence of parallel flow of hot ions
on injection parameters

We first investigate how the amplitude of parallel flow
of hot ions, Vh‖, depends on the injection parameters (in-
jection speed u0 and pitch ξ0). To this end, we fix the
following parameters as Mh/Mi = 1, Nh/N0i = 2 × 10−2,
N0i = N0e = 0.5 × 1020m−3, T0e = 3keV, and lnΛ = 17.
These are JT-60SA-like parameters. When these param-
eters are fixed, the first term of Eq. (13) reads Vh‖ =
(3ucξ0/5)(1 + 1/v)1/3v5/3/ ln(1 + v)2F1(4/3, 5/3; 8/3;−v)
where v = u3

0/u
3
c . This shows that |Vh‖| is large when |ξ0|

is large and that Vh‖ is symmetric with respect to ξ0. Nat-
urally, large injection pitch, which is almost tangential to
the magnetic field, can drive large parallel flow and the di-
rection depends on its sign. These properties are clearly
shown in the analytic representation. The factor related to
v can be divided in two parts, an elementary function part
(1 + 1/v)1/3v5/3/ ln(1 + v) and a hypergeometric function
part 2F1(4/3, 5/3; 8/3;−v). Figure 1 shows the behavior
of two parts when we varied the injection speed from 0 to
1.6VA (VA is the Alfvén speed), where u0 = 1.6VA cor-
responds to the energy E0 = Mhu2

0/2 ∼ 500keV similar
to the JT-60SA N-NB injection. Clearly shown in Fig. 1
(a) , for fixed electron temperature and mass ratio, the de-
pendence of Vh‖ on u0 is almost linear. The near-linear
dependence for small u0 can be shown as follows. For
small ν = u3

0/u
3
c , the elementary part is approximated as

(1+1/ν)1/3ν5/3/ ln(1+ν) = ν1/3[1+O(ν)], while the hyper-
geometric part is approximated as 2F1(4/3, 5/3; 8/3;−ν) =
1 + O(ν). These are clearly shown in Fig. 1 (b). Therefore,
the “product” in Fig. 1 (a) in small u0/VA becomes linear.
From Fig. 1, we obtain Vh‖ ∼ 1.2(uc/VA)ξ0u0 ∼ 0.57ξ0u0

for the present parameters. Therefore, when u0 = 1.6VA

and ξ0 = 1, we obtain Vh‖/VA ∼ 0.9 = O(1), which indi-
cates the flow can be Alfvénic.

4.2 Dependence of Vh‖ on electron tempera-
ture

The other important parameter to determine the am-
plitude of Vh‖ is the electron temperature, Te, i.e., elec-
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Fig. 1 (a) Plots of the elementary part (1+ 1/v)1/3v5/3/ ln(1+ v),
the hypergeometric part 2F1(4/3, 5/3; 8/3;−v), and their
product as functions of u0/VA. The first one is multiplied
by 0.02. (b) Plots of elementary and hypergeometric parts
multiplied by 0.02 in the range 0 < u0/VA ≤ 0.4.

tron thermal speed. The electron thermal speed affects the
crossover speed uc, which affects the amplitude of Vh‖. We
fix the injection parameters ξ0 = 0.8 and u0/VA = 1.6,
which corresponds to the tangential neutral beam injec-
tion in JT-60SA. Other parameters are fixed as same with
the previous subsection except for the electron tempera-
ture. In this case, the analytic representation (13) reads
Vh‖ = 0.8uc(1+ 1/v)1/3v5/3/ ln(1+ v)2F1(4/3, 5/3; 8/3;−v)
where v = u3

0u−3
c . The factor related to v can be divided into

two parts as in the previous subsection. Figure 2 (a) shows
the behavior of elementary and hypergeometric parts when
we varied the electron temperature, and Fig. 2 (b) indicates
their product. Figure 2 (b) indicates that the product is ap-
proximately scales by T 1/6

e ∝ u1/3
c . Therefore, the flow

amplitude depends on the crossover speed as Vh‖ ∝ u4/3
c in

total.

4.3 Dependence of Vh‖ on mass ratio
The last parameter to determine the amplitude of Vh‖

is the mass ratio. Here we define the mass ratio parameter
Mh/Mi and study the mass ratio effect on Vh‖. To this end,
we fix the following parameters as follows, Nh/N0i = 2 ×

Fig. 2 (a) Plots of the elementary part (1+ 1/v)1/3v5/3/ ln(1+ v),
the hypergeometric part 2F1(4/3, 5/3; 8/3;−v) as func-
tions of Te. The first and second lines multiplied by 10−8

and 102 respectively. (b) Plot of the product as a function
of Te.

10−2, N0i = N0e = 0.5 × 1020m−3, T0e = 3keV, ξ0 = 0.8,
and u0/VA = 1.6. We consider a situation such that the
bulk and hot ions can be hydrogen or deuterium. These
can be realized in the “initial research phase” in JT-60SA.
In this case, the mass ratio can be 0.5, 1, and 2. When the
mass ratio is changed, we obtain Vh‖/VA = 0.614, 0.646,
and 0.664 for Mh/Mi = 0.5, 1, and 2, respectively. The
dependence of Vh‖ on the mass ratio is weak. Since u0

is fixed, increasing Mh/Mi means the injection energy is
increased.

4.4 Estimate of inertial force of hot ions
In the previous subsections, we observe that the am-

plitude of parallel flow of hot ions is determined mainly by
the injection parameters, and that the electron temperature
can affect the amplitude while the mass ratio has little ef-
fects. The inertial force of hot ions can be approximated
by Ih = MhNhV2

h‖/LVh‖ where LVh‖ is the scale length for
Vh‖. Here, we assume LVh‖ ∼ LVi‖ ∼ R where R is the
major radius. The ratio of inertial force of hot and bulk
ions reads Ih/Ii = (Mh/Mi)(Nh/Ni)(Vh‖/Vi‖)2. In previous
calculations, Nh/Ni and Vi‖ are arbitrary. As shown in the
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previous subsection, Vh‖/VA ∼ 1. Hence, even for fast bulk
plasma rotation Vi‖/VA = 10−2, the term (Vh‖/Vi‖)2 can be
large. Then even if the density of hot ions is small, e.g.,
Nh/Ni = 10−3, the inertial force of hot ions can be compat-
ible with that of bulk ions.

Next we consider the inertial force of hot ions in the
momentum equation of the hybrid kinetic-MHD model [2],
MhNh�Vh · ∇�Vh = �J × �B − ∇p − ∇ · Ph, where �J, p, and Ph

are equilibrium current density, bulk pressure, and pressure
tensor of hot ions. The right hand side can be approximated
as L = | �J × �B| ∼ |∇p| ∼ [B2

0/(μ0a)]β, where a is the mi-
nor radius and β is the total pressure normalized by B2

0/μ0.
Then we observe

Ih

L
=

a
LVh‖

Mh

Mi

Nh

Ni

(
Vh‖
VA

)2

β−1.

When we approximate a/LVh‖ ∼ 0.3, Mh/Mi ∼ 1, Nh/Ni =

10−2, Vh‖/VA = 1, and β = 10−2, we obtain Ih/L ∼ 0.3.
Therefore, the inertial force of hot ions can be prominent in
the momentum equation. This tendency is enhanced when
we increase the parameters u0, ξ0, and Te since Vh‖ gets
large.

5. Summary
In this paper, we focus on the inertial force of hot ions

produced by the neutral beam injection. We point out that
hot ions interacting with bulk ions and electrons with flow
can be described by the Fokker-Planck equation that is for-
mally same with the static case. Hence, if we assume uni-
form equilibrium distribution function, we can obtain an
analytic form of slowing-down distribution function. From
this analytic distribution function, we have succeeded to
compute the parallel flow of hot ions analytically. This
representation is derived for the first time. From this rep-
resentation, we observe that the parallel flow of hot ions is
characterized by the injection parameters, electron temper-
ature and mass ratio. Further analysis shows that injection

parameters determine the parallel flow, and that electron
temperature can affect the amplitude while the mass ratio
has a minor effect on the parallel flow. Finally, we discuss
the inertial force of hot ions in the framework of hybrid
kinetic-MHD theory. The order estimate indicates that the
inertial force of hot ions can be compatible with the pres-
sure gradient term, hence in these cases, the framework of
hybrid kinetic-MHD theory should be extended. This ex-
tension will be studied in future.
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