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A general uid moment in the particle coordinates is represented in terms of uid moments in modied
guiding-centre coordinates with strong E × B ow derived by the phase space Lagrangian Lie-transform method
[N. Miyato et al., J. Phys. Soc. Jpn. 78, 104501 (2009)]. It is called the push-forward representation of the
particle uid moment associated with the guiding-centre transformation. The representation derived is similar to
that in terms of gyro-uid moments in the standard gyrokinetic theory in the long wavelength limit. Since the
particle coordinates are transformed to gyro-centre coordinates by the two-step transformation in the standard
gyrokinetic formulation, two exact push-forward representations are possible. Although the exact representation
usually used in the standard gyrokinetic theory has a different form from that in the modied guiding-centre
case, the correspondence between the two cases is shown more clearly by considering the alternative form of the
push-forward representation for the standard gyrokinetic case.
Keywords: phase space transformation, push-forward representation, ow

1. Introduction
It is well known that guiding-centre or gyro-centre

density is different from particle density due to nite-
Larmor-radius (FLR) effects [1–8]. Generally guiding-
centre or gyro-centre uid moments are different from cor-
responding particle uid moments. Any particle uid mo-
ment can be represented in terms of the guiding-centre or
gyro-centre uid moments. It is called the push-forward
representation of the particle uid moment associated with
the transformation from the particle phase space to the
guiding-centre or gyro-centre phase space [5, 6]. The in-
verse of the representation was used to derive nonlinear re-
duced uid equations with FLR corrections from nonlinear
gyrouid equations [1]. Since the gyromotion of a charged
particle is removed at the kinetic level, this procedure al-
lows one to bypass the issue of gyroviscous cancellations
and corrections in traditional derivations where an explicit
representation of the stress tensor is needed [9, 10]. An
expression for the gyroviscous force is obtained by com-
paring the reduced equations with the FLR corrections ob-
tained from the gyrouid equations with the particle uid
momentum equation [3]. The correspondence between the
gyrouid and low-frequency uid equations is also shown
by using the relation between the gyrouid moments and
the particle uid moments [4]. Recently we derived a mod-
ied guiding-centre fundamental 1-form with strong E×B
ow from which a guiding-centre Vlasov-Poisson system
was also constructed through the eld theory [11]. It is of
interest to investigate a relation between uid moments in
the modied guiding-centre coordinates and the particle-
uid moments. In contrast to conventional formulations
with strong E × B ow [12–16], the symplectic part of the
guiding-centre 1-form in our formulation does not include
the E × B drift velocity term and is the same as that in
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the standard gyrokinetic model formally [5]. The guiding-
centre Hamiltonian also agrees with the standard gyroki-
netic Hamiltonian in the long wavelength limit. Therefore
it is expected that the relation between the uid moments
in the modied guiding-centre coordinates and the parti-
cle uid moments be similar to the one obtained from the
standard gyrokinetic model in the long wavelength limit.
In this paper, we represent the particle uid moments in
terms of the uid moments in the modied guiding-centre
coordinates. The representation is compared with that ob-
tained from the standard gyrokinetic model in the long
wavelength limit.

2. Guiding-centre theory
We consider a transformation from particle coordi-

nates (x, u,w, θ) to guiding-centre coordinates (X,U, μ, ξ)
given by [7, 11]

X = x − �ρ − �ρE + O(�2), (1)
U = v� + O(�), (2)

μ =
mw2

2B0
+ O(�), (3)

ξ = θ + O(�), (4)

where x is the position of a particle with mass m and elec-
tric charge q, v� is the parallel velocity, w is the perpendicu-
lar velocity in the frame moving with D which is the E×B
drift velocity, θ is the gyrophase, ρ is the Larmor radius
evaluated by w, ρE = b̂ × D/Ω, Ω = qB0/m and � ∼ ρ/L
is the small parameter with the background gradient scale
length L. Here it is assumed that the E × B drift velocity
is comparable to the ion thermal velocity vti. Therefore,
ρE ∼ ρ for ions. The guiding-centre transformation for X
is different from conventional ones in which the guiding
centre position X� is dened by X� ≡ x − �ρ [12–16]. X is
mainly shifted by ρE from X�. The guiding-centre funda-
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mental 1-form is given by

Γ =

�
qA0 + �mUb̂ − �2

m
q
μW
�
· dX

+�2
m
q
μdξ − Hdt, (5)

whereW = R + (b̂ · ∇ × b̂)b̂/2, b̂ ≡ B0/B0, R ≡ (∇e1) · e2,
e1 and e2 are unit vectors spanning the plane perpendicular
to b̂, and the guiding-centre Hamiltonian is

H = qφ + �
�m
2

U2
+ μB0 −

m
2

D2
�

+�2
�

m
2q

�
μ +

mD2

2B0

�
b̂ · ∇ × D

�
. (6)

The guiding-centre Hamilton equations, Zi
= {Zi,H}, are

written as

X = �−1
B∗

mB∗
�

∂H
∂U
+

b̂
qB∗
�

× ∇H, (7)

U = −�−1
B∗

mB∗
�

· ∇H, (8)

μ ≡ 0, (9)

ξ = �−2
q
m
∂H
∂μ
+W · X, (10)

where A∗ = A0 + (m/q)Ub̂, B∗ = ∇ × A∗ and B∗
�
= b̂ · B∗.

These are the same as those in the standard gyrokinetic
model formally.

3. Push-forward representation of uid mo-
ments

3.1 Standard gyrokinetic case
Following Belova [3], we brief the relation between

the gyro-centre uid moments and the particle uid mo-
ments rst. A general particle uid moment is dened by

mkl(r) ≡
� �mv2⊥

2B0

�k
vl
� f δ

3(x − r)d3xd3v. (11)

This particle uid moment can be written in terms of the
gyro-centre distribution function F̄ in the electrostatic limit
as

mkl(r) =
�

d6Z̄J(Z̄)

×

⎡⎢⎢⎢⎢⎢⎣T−1∗GC
⎧⎪⎪⎨⎪⎪⎩
�

mv2⊥
2B0

�k
vl
�

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z̄)

×[T∗GyF̄](Z̄)δ
3(T−1GCX̄ − r)

�

�
d6Z̄J(Z̄)μ̄kŪl

�
F̄ + �δ

qφ̃
B0
∂F̄
∂μ̄

�

×δ3(X̄ + ρ̄ − r) (12)

where Z̄ = (X̄, Ū, μ̄, ξ̄) are the gyro-centre coordinates,
d6Z̄ = dX̄dŪdμ̄dξ̄, J = B∗

�
/m is the Jacobian, T−1GC is the

inverse of the transformation from the particle phase space
to the guiding-centre phase space, T−1∗GC is the pull-back
transformation associated with T−1GC or the push-forward

),( vxz
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L
~

T
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Fig. 1 Phase space transformations in the standard gyrokinetic
formulation.

transformation associated with TGC, TGy is the transfor-
mation from the guiding-centre phase space to the gyro-
centre phase space, T∗Gy is the pull-back transformation as-
sociated with TGy, φ̃ = φ(X̄ + ρ̄) − �φ(X̄ + ρ̄)� is the gy-
rophase dependent part of the electrostatic potential, �·�
denotes the gyrophase average, �δ is the small parameter
for the amplitude of φ and ρ̄ = ρ(Z̄). It is noted that
generally T∗GyF̄ is expressed as F̄ + �δ{S 1, F̄} + O(�2

δ
) with

S 1 = (q/Ω)
�
φ̃dξ̄. The phase space transformations in the

standard gyrokinetic formulation [5, 17] are summarised
in Fig. 1. The particle phase space is transformed to the
gyro-centre phase space through two steps. First, the trans-
formation from the particle phase space to the guiding-
centre phase space is performed with � ∼ ρ/L to remove
gyrophase dependence from the single particle motion in
an equilibrium magnetic eld. After that, a small pertur-
bation of electrostatic potential, φ, is introduced and the
transformation from the guiding-centre phase space to the
gyro-centre phase space is performed with �δ ∼ qφ/T to re-
move the gyrophase dependence reintroduced by φ. Thus
smallness of φ is necessary for the gyro-centre transforma-
tion. Push-forward of a scalar function is shown in Fig.
2 schematically. Here we consider a scalar function on
z denoted by f and a transformation from the particle z
space to the guiding-centre Z space denoted by TGC. Then
we can represent f (z) in terms of Z through z = T−1GCZ as
f (z) = f (T−1GCZ) = T−1∗GC f (Z). Thus we obtain a function
F ≡ T−1∗GC f on Z. Since T−1∗GC “pushes forward” f on z to F
on Z, it is called the push-forward transformation associ-
ated with TGC. Note that the function of the transformation
is opposite to appearance of the symbol. Conversely, we
can obtain a function on z, T∗GCG, from a function on Z
denoted by G. Then T∗GC is called the pull-back transfor-
mation associated with TGC. Some explanation would be
needed for T−1GCX̄. Originally [T

−1
GCx](Z) = X + ρ(Z) + · · ·
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Fig. 2 Push-forward of a scalar function. F(Z) = T−1∗GC f (Z) =
f (T−1GCZ) = f (z).

denotes the particle position in the guiding-centre phase
space. T−1GCX̄ denotes [T

−1
GCx] whose argument is replaced

by the gyro-centre coordinates Z̄, that is, T−1GCX̄ � X̄+ρ(Z̄)
and does not agree with the particle position in the gyro-
centre phase space T−1GyT

−1
GCx. Expanding the delta function

and φ in powers of ρ̄ and integrating by parts lead to the
representation of the particle uid moment mkl in terms of
gyrouid moments up to O(�2) (see appendix A),

mkl(r) = Mkl(r) +
1
2
∇ ·

�
1

qΩ
∇⊥Mk+1l(r)

�

+(k + 1)∇ ·
�

Mkl(r)
B0Ω

∇⊥φ(r)
�
, (13)

where Mkl is the general gyrouid moment dened by

Mkl(X̄) ≡
�
μ̄kŪlJ(Z̄)F̄(Z̄)dŪdμ̄dξ̄, (14)

and we have assumed that (k⊥ρ)2 ∼ �⊥ for a small O(�δ)
perturbation, (k⊥ρ) ∼ �⊥ for a O(1) moment and � ∼ �δ ∼
�⊥. For k = l = 0, we have the well known push-forward
representation of the particle density n,

n = N + ∇ ·
�

N
ΩB0
∇⊥φ

�
+
1
2
∇ ·

�
∇⊥P⊥
qΩB0

�
, (15)

where N and P⊥ are the gyro-centre density and the gyro-
centre perpendicular pressure dened by

N ≡
�

F̄JdŪdμ̄dξ̄, (16)

P⊥ ≡
�
μ̄B0F̄JdŪdμ̄dξ̄, (17)

respectively. Although spatial derivatives are reduced to
the perpendicular Laplacian in ref. [3], we keep the diver-
gence form to manifest the polarisation effects here [5, 8].
It is easily shown by the volume integration of eq. (15)
over the domain including the whole plasma that the num-
ber of particles included in the whole plasma agrees with
that of gyro-centres.

3.2 Modied guiding-centre case
In this subsection we consider a particle uid moment

dened by

m̄kl(r) ≡
� �

mw2

2B0

�k
vl
� f δ

3(x − r)d3xd3v. (18)

Note that w = |v⊥ − D| is used for the denition of m̄kl,
while v⊥ is used for mkl. Therefore, m̄kl with k � 0 is
different from mkl. For example, the relation between p⊥ ≡
B0m̄10 and p�⊥ ≡ B0m10 is given by

p⊥ = p�⊥ − mnV⊥ · D + mnD2/2, (19)

where

nV⊥ ≡
�
v⊥ f d3v. (20)

Since V⊥ = D +O(�) in the strong E ×B case, the relation
between p⊥ and p�⊥ is written as

p⊥ = p�⊥ − mnD2/2 + O(�). (21)

Obviously, m̄kl → mkl asD→ 0. The E×B drift velocityD
is sub-thermal in most cases of interest. Therefore, we as-
sume D ∼ �1/2vti in the following. In terms of the modied
guiding-centre distribution function F, m̄kl can be written
as

m̄kl(r) =
�

d6ZJ(Z)

×

⎡⎢⎢⎢⎢⎢⎣T−1∗GC
⎧⎪⎪⎨⎪⎪⎩
�

mw2

2B0

�k
(u)l
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z)

×F(Z)δ3(T−1GCx − r)

�

�
d6ZJ(Z)(μ −Gμ1)

kUlF(Z)

δ3(X + ρ + ρE − r). (22)

Here the μ component of the vector eld generating the
guiding-centre transformation, Gμ1, is kept because it has
the nonvanishing gyroaveraged part due to the E × B ow.
The delta function expanded in powers of ρ and ρE , the
above equation is rewritten as

m̄kl(r) �
�

d6ZJ(μk − kμk−1Gμ1)U
lF(Z)

×
�
δ3(X − r) + ρE · ∇δ

3(X − r)

+
1
2
(ρ · ∇)2δ3(X − r)

�

�

�
d6Zδ3(X − r)μkUlFJ

−k
�

d6Zδ3(X − r)μk−1�Gμ1�U
lFJ

+

�
d6ZμkUlFJρE · ∇δ

3(X − r)

+

�
d6ZμkUlFJ

1
2
(ρ · ∇)2δ3(X − r).

(23)
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Since the main part of �Gμ1� is given by [11]

�Gμ1� � −
μ

Ω
b̂ · ∇ × (D + Ub̂)

� −∇ ·

�
D ×

μ

Ω
b̂
�

= −∇ ·

�
μ

ΩB0
∇⊥φ

�
, (24)

the second term on the right hand side of eq. (23) becomes

−k
�

d6Zμk−1�Gμ1�U
lFJδ3(X − r)

� k
�

d6Zδ3(X − r)μkUl

×

�
∇ ·

�
D ×

FJ
Ω

b̂
�
− D ×

b̂
Ω
· ∇FJ

�

� k
�

d6Zδ3(X − r)
�
∇ ·

�
μkUl

ΩB0
FJ∇⊥φ

�

−D ·
b̂ × ∇FJμkUl

Ω

�

= k∇ ·
�

Mkl

ΩB0
∇⊥φ

�
− kD ·

b̂ × ∇Mkl

Ω
, (25)

where the guiding-centre uid moment Mkl is dened by

Mkl(X) ≡
�
μkUlJ(Z)F(Z)dUdμdξ. (26)

Integrating by parts the third term on the right hand side of
eq. (23), we have�

d6ZμkUlFJρE · ∇δ
3(X − r)

= −

�
d6Zδ3(X − r)∇ ·

�
μkUlFJ

b̂ × D
Ω

�

=

�
d6Zδ3(X − r)∇ ·

�
μkUlFJ

∇⊥φ

ΩB0

�

= ∇ ·

�
Mkl

ΩB0
∇⊥φ

�
. (27)

The rst and last terms on the right hand side of eq. (23)
are the same as those in the standard gyrokinetic model.
As a consequence, the push-forward representation of m̄kl
in terms of the modied guiding-centre uid moments is
given by

m̄kl(r) = Mkl(r) +
1
2
∇ ·

�
1

qΩ
∇⊥Mk+1l(r)

�

+(k + 1)∇ ·
�

Mkl(r)
B0Ω

∇⊥φ(r)
�

−kD(r) ·
b̂ × ∇Mkl(r)

Ω
. (28)

This representation is the same as eq. (13) except the last
term formally. The last term goes to the higher order than
O(�2) in the same ordering used in deriving eq. (13). Then
eq. (28) agrees with eq. (13) up to O(�2). The last term has
no effect for k = 0. For k = l = 0, therefore, we have

n = N + ∇ ·
�

N
ΩB0
∇⊥φ

�
+
1
2
∇ ·

�
∇⊥P⊥
qΩB0

�
, (29)

where N and P⊥ are the guiding-centre density and the
guiding-centre perpendicular pressure dened by

N ≡
�

FJdUdμdξ, (30)

P⊥ ≡
�
μB0FJdUdμdξ, (31)

respectively. Equation (29) is the same as the standard gy-
rokinetic case (15) formally.

3.3 Variational derivation of the push-
forward representation for the particle
density

The push-forward representation for the particle den-
sity is also derived from the functional derivative of the
action functional I =

� t2
t1

Ldt with the Lagrangian for the
Vlasov-Poisson system,

L =
�

s

�
d6Z�Js(Z�)Fs(Z�, t�)

×Ls[Zs(Z�, t�; t), Zs(Z�, t�; t), t]

−

�
d3x

1
4μ0

F : F, (32)

where Ls is the single particle Lagrangian of species s ob-
tained from the 1-form eq. (5),

Ls = qsA∗s · Xs +
ms

qs
μs ξs − Hs, (33)

Z� ≡ (X�,U�, μ�, ξ�) and Zs(Z�, t�; t) denotes the guiding-
centre coordinates of the particle at t with the initial con-
dition, Zs(Z�, t�; t�) = Z�. The guiding-centre Hamiltonian
Hs is given by eq. (6). The last part of L is the Lagrangian
for the electromagnetic elds in which μ0 is permeabil-
ity of vacuum, the electromagnetic eld tensor F is de-
ned by Fμν ≡ ∂μAν − ∂νAμ and F : F ≡ FμνFμν. When
ημν = η

μν
= diag(−1,+1,+1,+1) is taken as a metric tensor

of Minkowski spacetime, the covariant four vector poten-
tial and the four gradient operator are Aμ = (−φ/c,A0) and
∂μ = ((1/c)∂t,∇), respectively [8,18]. From δI/δφ = 0, we
obtatin the guiding-centre Poisson equation [11],

�0∇
2φ(x, t) = −

�
s

�
qsNs + qs∇ ·

�
Ns
∇⊥φ

B0Ωs

�

−∇ ·

��
∇ × P⊥s

b̂
B0

�
×

b̂
2Ωs

��

= −
�

s
qsns, (34)

where �0 is permittivity of vacuum. It is noted that we
have assumed D ∼ �1/2vti and (m2D2/4qB0)b̂ · ∇ ×D in the
Hamiltonian (6) has been neglected. The right hand side of
the above equation is the sum of charge density of species
s. Noting
�
∇ × P⊥

b̂
B0

�
×

b̂
2Ω
�

�
∇P⊥ ×

b̂
B0

�
×

b̂
2Ω

� −
∇⊥P⊥
2B0Ω

, (35)
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we have the same relation between the particle density ns
and the guiding-centre uid moments as eq. (29).

4. Summary and discussion
In the previous section it was shown that the push-

forward representation of the particle uid moment in
terms of the modied guiding-centre uid moments is very
similar to that in terms of the standard gyrouid moments
in the appropriate limit. However, there is an apparent dif-
ference between the exact representations (12) and (22).
Equation (22) has the standard form of the push-forward
representation associated with the guiding-centre trnasfor-
mation, while eq. (12) is the mixed representation of the
push-forward transformation associated with TGC and the
pull-back transformation assciated with TGy. The repre-
sentation (12) is derived by considering Z in the integral
on the right hand side of eq. (22) a dummy variable, re-
placing Z by Z̄ and using F = T∗GyF̄ [17]. Since the pertur-
bation of the electrostatic potential is introduced after the
guiding-centre transformation in the standard gyrokinetic
formulation, its effect is not included in TGC, but in TGy.
Therefore the effect of φ is included only in T∗GyF̄ in eq.
(12). On the other hand, it is included in TGC in the modi-
ed guiding-centre case. The correspondence between the
standard gyrokinetic case and the modied guiding-centre
case becomes more transparent by considering the alterna-
tive form similar to eq. (22) given by [19]

mkl(r) =
�

d6Z̄J(Z̄)

×

⎡⎢⎢⎢⎢⎢⎣T−1∗Gy T−1∗GC
⎧⎪⎪⎨⎪⎪⎩
�

mv2⊥
2B0

�k
vl
�

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦

×F̄(Z̄)δ3(T−1GyT
−1
GCx − r). (36)

This is more straightforward representation than eq. (12).
The particle position in the gyro-centre phase space
T−1GyT

−1
GCx is given by

T−1GyT
−1
GCx = X̄ + ρ̄ + ρ̄1 + · · · , (37)

where ρ̄1 = −{S 1, X̄ + ρ̄} is the gyro-centre displace-
ment vector [5, 6]. The gyroangle average of ρ̄1 corre-
sponds to ρE in the small amplitude limit. Since the stan-
dard guiding-centre magnetic moment μ is related with the
gyro-centre coordinates as

μ � μ̄ − {S 1, μ̄}

� μ̄ −
∂S 1
∂ξ̄
{ξ̄, μ̄}

� μ̄ −
q
Ω
φ̃(X̄ + ρ̄)

q
m
, (38)

we have

T−1∗Gy T
−1∗
GC

�
mv2⊥
2B0

�
� μ(Z̄) −Gμ1(Z̄)

� μ̄ −
q
B0
φ̃(X̄ + ρ̄) −Gμ1(Z̄).

(39)

Using the above result and expanding the delta function
and φ, we have

mkl(r) �
�

d6Z̄J
�
μ̄k − kμ̄k−1 q

B0
φ̃(X̄ + ρ̄)

�

×ŪlF̄δ3(X̄ + ρ̄ + ρ̄1 − r)

�

�
d6Z̄J F̄μ̄kŪl

�
δ3(X̄ − r)

+�ρ̄1� · ∇δ
3(X̄ − r) +

1
2
(ρ̄ · ∇)2δ3(X̄ − r)

�

−k
�

d6Z̄J F̄μ̄k−1Ūl q
B0
φ(X̄ + ρ̄)

×ρ̄ · ∇δ3(X̄ − r)

� Mkl + ∇ ·

�
Mkl

ΩB0
∇⊥φ

�
+
1
2
∇ ·

�
∇⊥Mk+1l

qΩ

�

+k∇ ·
�

Mkl

ΩB0
∇⊥φ

�
, (40)

where the contribution from Gμ1 has been dropped because
in the standard guiding-centre theory �Gμ1� = −μUb̂ · ∇ ×
b̂/Ω and variation of the magnetic eld has been assumed
to be very mild, and the gyroiud moment is dened by
eq. (14). Thus the alternative form of the push-forward
representation yields the same representation as eq. (13)
and gives the direct correspondence to the representation
in the modied guiding-centre case.
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A. Derivation of the push-forward represen-
tation in the standard gyrokinetic model
The rst term on the right hand side of eq. (12) yields�

d6Z̄μ̄kŪlF̄(Z̄)δ3(X̄ + ρ̄ − r)

=

�
d6Z̄μ̄kŪlF̄(Z̄)

�
δ3(X̄ − r)

+
1
2
(ρ̄ · ∇̄)2δ3(X̄ − r) + · · ·

�

� Mkl(r) +
1
2
∇ ·

�
1

qΩ
∇⊥Mk+1l(r)

�
. (41)

The second term of eq. (12) becomes
�

d6Z̄μ̄kŪl qφ̃
B0
∂F̄
∂μ̄
δ3(X̄ + ρ̄ − r)

�

�
d6Z̄μ̄kŪl q

B0
ρ̄ · ∇̄φ(X̄)

∂F̄
∂μ̄
ρ̄ · ∇̄δ3(X̄ − r)

=

�
d6Z̄δ3(X̄ − r)

×∇̄ ·

�
(k + 1)μ̄kŪl F̄

B0Ω
∇̄⊥φ(X̄)

�

= (k + 1)∇ ·
�

Mkl(r)
B0Ω

∇⊥φ(r)
�
. (42)
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