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A general uid moment in the particle coordinates is represented in terms of uid moments in modied
guiding-centre coordinates with strong E × B ow derived by the phase space Lagrangian Lie-transform method
[N. Miyato et al., J. Phys. Soc. Jpn. 78, 104501 (2009)]. It is called the push-forward representation of the
particle uid moment associated with the guiding-centre transformation. The representation derived is similar to
that in terms of gyro-uid moments in the standard gyrokinetic theory in the long wavelength limit. Since the
particle coordinates are transformed to gyro-centre coordinates by the two-step transformation in the standard
gyrokinetic formulation, two exact push-forward representations are possible. Although the exact representation
usually used in the standard gyrokinetic theory has a different form from that in the modied guiding-centre
case, the correspondence between the two cases is shown more clearly by considering the alternative form of the
push-forward representation for the standard gyrokinetic case.
Keywords: phase space transformation, push-forward representation, ow

1. Introduction
It is well known that guiding-centre or gyro-centre

density is different from particle density due to nite-
Larmor-radius (FLR) effects [1–8]. Generally guiding-
centre or gyro-centre uid moments are different from cor-
responding particle uid moments. Any particle uid mo-
ment can be represented in terms of the guiding-centre or
gyro-centre uid moments. It is called the push-forward
representation of the particle uid moment associated with
the transformation from the particle phase space to the
guiding-centre or gyro-centre phase space [5, 6]. The in-
verse of the representation was used to derive nonlinear re-
duced uid equations with FLR corrections from nonlinear
gyrouid equations [1]. Since the gyromotion of a charged
particle is removed at the kinetic level, this procedure al-
lows one to bypass the issue of gyroviscous cancellations
and corrections in traditional derivations where an explicit
representation of the stress tensor is needed [9, 10]. An
expression for the gyroviscous force is obtained by com-
paring the reduced equations with the FLR corrections ob-
tained from the gyrouid equations with the particle uid
momentum equation [3]. The correspondence between the
gyrouid and low-frequency uid equations is also shown
by using the relation between the gyrouid moments and
the particle uid moments [4]. Recently we derived a mod-
ied guiding-centre fundamental 1-form with strong E×B
ow from which a guiding-centre Vlasov-Poisson system
was also constructed through the eld theory [11]. It is of
interest to investigate a relation between uid moments in
the modied guiding-centre coordinates and the particle-
uid moments. In contrast to conventional formulations
with strong E × B ow [12–16], the symplectic part of the
guiding-centre 1-form in our formulation does not include
the E × B drift velocity term and is the same as that in

author’s e-mail: miyato.naoaki@jaea.go.jp

the standard gyrokinetic model formally [5]. The guiding-
centre Hamiltonian also agrees with the standard gyroki-
netic Hamiltonian in the long wavelength limit. Therefore
it is expected that the relation between the uid moments
in the modied guiding-centre coordinates and the parti-
cle uid moments be similar to the one obtained from the
standard gyrokinetic model in the long wavelength limit.
In this paper, we represent the particle uid moments in
terms of the uid moments in the modied guiding-centre
coordinates. The representation is compared with that ob-
tained from the standard gyrokinetic model in the long
wavelength limit.

2. Guiding-centre theory
We consider a transformation from particle coordi-

nates (x, u,w, θ) to guiding-centre coordinates (X,U, μ, ξ)
given by [7, 11]

X = x − �ρ − �ρE + O(�2), (1)
U = v� + O(�), (2)

μ =
mw2

2B0
+ O(�), (3)

ξ = θ + O(�), (4)

where x is the position of a particle with mass m and elec-
tric charge q, v� is the parallel velocity, w is the perpendicu-
lar velocity in the frame moving with D which is the E×B
drift velocity, θ is the gyrophase, ρ is the Larmor radius
evaluated by w, ρE = b̂ × D/Ω, Ω = qB0/m and � ∼ ρ/L
is the small parameter with the background gradient scale
length L. Here it is assumed that the E × B drift velocity
is comparable to the ion thermal velocity vti. Therefore,
ρE ∼ ρ for ions. The guiding-centre transformation for X
is different from conventional ones in which the guiding
centre position X� is dened by X� ≡ x − �ρ [12–16]. X is
mainly shifted by ρE from X�. The guiding-centre funda-
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mental 1-form is given by

Γ =

�
qA0 + �mUb̂ − �2

m
q
μW
�
· dX

+�2
m
q
μdξ − Hdt, (5)

whereW = R + (b̂ · ∇ × b̂)b̂/2, b̂ ≡ B0/B0, R ≡ (∇e1) · e2,
e1 and e2 are unit vectors spanning the plane perpendicular
to b̂, and the guiding-centre Hamiltonian is

H = qφ + �
�m
2

U2
+ μB0 −

m
2

D2
�

+�2
�

m
2q

�
μ +

mD2

2B0

�
b̂ · ∇ × D

�
. (6)

The guiding-centre Hamilton equations, Zi
= {Zi,H}, are

written as

X = �−1
B∗

mB∗
�

∂H
∂U
+

b̂
qB∗
�

× ∇H, (7)

U = −�−1
B∗

mB∗
�

· ∇H, (8)

μ ≡ 0, (9)

ξ = �−2
q
m
∂H
∂μ
+W · X, (10)

where A∗ = A0 + (m/q)Ub̂, B∗ = ∇ × A∗ and B∗
�
= b̂ · B∗.

These are the same as those in the standard gyrokinetic
model formally.

3. Push-forward representation of uid mo-
ments

3.1 Standard gyrokinetic case
Following Belova [3], we brief the relation between

the gyro-centre uid moments and the particle uid mo-
ments rst. A general particle uid moment is dened by

mkl(r) ≡
� �mv2⊥

2B0

�k
vl
� f δ

3(x − r)d3xd3v. (11)

This particle uid moment can be written in terms of the
gyro-centre distribution function F̄ in the electrostatic limit
as

mkl(r) =
�

d6Z̄J(Z̄)

×

⎡⎢⎢⎢⎢⎢⎣T−1∗GC
⎧⎪⎪⎨⎪⎪⎩
�

mv2⊥
2B0

�k
vl
�

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z̄)

×[T∗GyF̄](Z̄)δ
3(T−1GCX̄ − r)

�

�
d6Z̄J(Z̄)μ̄kŪl

�
F̄ + �δ

qφ̃
B0
∂F̄
∂μ̄

�

×δ3(X̄ + ρ̄ − r) (12)

where Z̄ = (X̄, Ū, μ̄, ξ̄) are the gyro-centre coordinates,
d6Z̄ = dX̄dŪdμ̄dξ̄, J = B∗

�
/m is the Jacobian, T−1GC is the

inverse of the transformation from the particle phase space
to the guiding-centre phase space, T−1∗GC is the pull-back
transformation associated with T−1GC or the push-forward
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Fig. 1 Phase space transformations in the standard gyrokinetic
formulation.

transformation associated with TGC, TGy is the transfor-
mation from the guiding-centre phase space to the gyro-
centre phase space, T∗Gy is the pull-back transformation as-
sociated with TGy, φ̃ = φ(X̄ + ρ̄) − �φ(X̄ + ρ̄)� is the gy-
rophase dependent part of the electrostatic potential, �·�
denotes the gyrophase average, �δ is the small parameter
for the amplitude of φ and ρ̄ = ρ(Z̄). It is noted that
generally T∗GyF̄ is expressed as F̄ + �δ{S 1, F̄} + O(�2

δ
) with

S 1 = (q/Ω)
�
φ̃dξ̄. The phase space transformations in the

standard gyrokinetic formulation [5, 17] are summarised
in Fig. 1. The particle phase space is transformed to the
gyro-centre phase space through two steps. First, the trans-
formation from the particle phase space to the guiding-
centre phase space is performed with � ∼ ρ/L to remove
gyrophase dependence from the single particle motion in
an equilibrium magnetic eld. After that, a small pertur-
bation of electrostatic potential, φ, is introduced and the
transformation from the guiding-centre phase space to the
gyro-centre phase space is performed with �δ ∼ qφ/T to re-
move the gyrophase dependence reintroduced by φ. Thus
smallness of φ is necessary for the gyro-centre transforma-
tion. Push-forward of a scalar function is shown in Fig.
2 schematically. Here we consider a scalar function on
z denoted by f and a transformation from the particle z
space to the guiding-centre Z space denoted by TGC. Then
we can represent f (z) in terms of Z through z = T−1GCZ as
f (z) = f (T−1GCZ) = T−1∗GC f (Z). Thus we obtain a function
F ≡ T−1∗GC f on Z. Since T−1∗GC “pushes forward” f on z to F
on Z, it is called the push-forward transformation associ-
ated with TGC. Note that the function of the transformation
is opposite to appearance of the symbol. Conversely, we
can obtain a function on z, T∗GCG, from a function on Z
denoted by G. Then T∗GC is called the pull-back transfor-
mation associated with TGC. Some explanation would be
needed for T−1GCX̄. Originally [T

−1
GCx](Z) = X + ρ(Z) + · · ·
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Fig. 2 Push-forward of a scalar function. F(Z) = T−1∗GC f (Z) =
f (T−1GCZ) = f (z).

denotes the particle position in the guiding-centre phase
space. T−1GCX̄ denotes [T

−1
GCx] whose argument is replaced

by the gyro-centre coordinates Z̄, that is, T−1GCX̄ � X̄+ρ(Z̄)
and does not agree with the particle position in the gyro-
centre phase space T−1GyT

−1
GCx. Expanding the delta function

and φ in powers of ρ̄ and integrating by parts lead to the
representation of the particle uid moment mkl in terms of
gyrouid moments up to O(�2) (see appendix A),

mkl(r) = Mkl(r) +
1
2
∇ ·

�
1

qΩ
∇⊥Mk+1l(r)

�

+(k + 1)∇ ·
�

Mkl(r)
B0Ω

∇⊥φ(r)
�
, (13)

where Mkl is the general gyrouid moment dened by

Mkl(X̄) ≡
�
μ̄kŪlJ(Z̄)F̄(Z̄)dŪdμ̄dξ̄, (14)

and we have assumed that (k⊥ρ)2 ∼ �⊥ for a small O(�δ)
perturbation, (k⊥ρ) ∼ �⊥ for a O(1) moment and � ∼ �δ ∼
�⊥. For k = l = 0, we have the well known push-forward
representation of the particle density n,

n = N + ∇ ·
�

N
ΩB0
∇⊥φ

�
+
1
2
∇ ·

�
∇⊥P⊥
qΩB0

�
, (15)

where N and P⊥ are the gyro-centre density and the gyro-
centre perpendicular pressure dened by

N ≡
�

F̄JdŪdμ̄dξ̄, (16)

P⊥ ≡
�
μ̄B0F̄JdŪdμ̄dξ̄, (17)

respectively. Although spatial derivatives are reduced to
the perpendicular Laplacian in ref. [3], we keep the diver-
gence form to manifest the polarisation effects here [5, 8].
It is easily shown by the volume integration of eq. (15)
over the domain including the whole plasma that the num-
ber of particles included in the whole plasma agrees with
that of gyro-centres.

3.2 Modied guiding-centre case
In this subsection we consider a particle uid moment

dened by

m̄kl(r) ≡
� �

mw2

2B0

�k
vl
� f δ

3(x − r)d3xd3v. (18)

Note that w = |v⊥ − D| is used for the denition of m̄kl,
while v⊥ is used for mkl. Therefore, m̄kl with k � 0 is
different from mkl. For example, the relation between p⊥ ≡
B0m̄10 and p�⊥ ≡ B0m10 is given by

p⊥ = p�⊥ − mnV⊥ · D + mnD2/2, (19)

where

nV⊥ ≡
�
v⊥ f d3v. (20)

Since V⊥ = D +O(�) in the strong E ×B case, the relation
between p⊥ and p�⊥ is written as

p⊥ = p�⊥ − mnD2/2 + O(�). (21)

Obviously, m̄kl → mkl asD→ 0. The E×B drift velocityD
is sub-thermal in most cases of interest. Therefore, we as-
sume D ∼ �1/2vti in the following. In terms of the modied
guiding-centre distribution function F, m̄kl can be written
as

m̄kl(r) =
�

d6ZJ(Z)

×

⎡⎢⎢⎢⎢⎢⎣T−1∗GC
⎧⎪⎪⎨⎪⎪⎩
�

mw2

2B0

�k
(u)l
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ (Z)

×F(Z)δ3(T−1GCx − r)

�

�
d6ZJ(Z)(μ −Gμ1)

kUlF(Z)

δ3(X + ρ + ρE − r). (22)

Here the μ component of the vector eld generating the
guiding-centre transformation, Gμ1, is kept because it has
the nonvanishing gyroaveraged part due to the E × B ow.
The delta function expanded in powers of ρ and ρE , the
above equation is rewritten as

m̄kl(r) �
�

d6ZJ(μk − kμk−1Gμ1)U
lF(Z)

×
�
δ3(X − r) + ρE · ∇δ

3(X − r)

+
1
2
(ρ · ∇)2δ3(X − r)

�

�

�
d6Zδ3(X − r)μkUlFJ

−k
�

d6Zδ3(X − r)μk−1�Gμ1�U
lFJ

+

�
d6ZμkUlFJρE · ∇δ

3(X − r)

+

�
d6ZμkUlFJ

1
2
(ρ · ∇)2δ3(X − r).

(23)
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Since the main part of �Gμ1� is given by [11]

�Gμ1� � −
μ

Ω
b̂ · ∇ × (D + Ub̂)

� −∇ ·

�
D ×

μ

Ω
b̂
�

= −∇ ·

�
μ

ΩB0
∇⊥φ

�
, (24)

the second term on the right hand side of eq. (23) becomes

−k
�

d6Zμk−1�Gμ1�U
lFJδ3(X − r)

� k
�

d6Zδ3(X − r)μkUl

×

�
∇ ·

�
D ×

FJ
Ω

b̂
�
− D ×

b̂
Ω
· ∇FJ

�

� k
�

d6Zδ3(X − r)
�
∇ ·

�
μkUl

ΩB0
FJ∇⊥φ

�

−D ·
b̂ × ∇FJμkUl

Ω

�

= k∇ ·
�

Mkl

ΩB0
∇⊥φ

�
− kD ·

b̂ × ∇Mkl

Ω
, (25)

where the guiding-centre uid moment Mkl is dened by

Mkl(X) ≡
�
μkUlJ(Z)F(Z)dUdμdξ. (26)

Integrating by parts the third term on the right hand side of
eq. (23), we have�

d6ZμkUlFJρE · ∇δ
3(X − r)

= −

�
d6Zδ3(X − r)∇ ·

�
μkUlFJ

b̂ × D
Ω

�

=

�
d6Zδ3(X − r)∇ ·

�
μkUlFJ

∇⊥φ

ΩB0

�

= ∇ ·

�
Mkl

ΩB0
∇⊥φ

�
. (27)

The rst and last terms on the right hand side of eq. (23)
are the same as those in the standard gyrokinetic model.
As a consequence, the push-forward representation of m̄kl
in terms of the modied guiding-centre uid moments is
given by

m̄kl(r) = Mkl(r) +
1
2
∇ ·

�
1

qΩ
∇⊥Mk+1l(r)

�

+(k + 1)∇ ·
�

Mkl(r)
B0Ω

∇⊥φ(r)
�

−kD(r) ·
b̂ × ∇Mkl(r)

Ω
. (28)

This representation is the same as eq. (13) except the last
term formally. The last term goes to the higher order than
O(�2) in the same ordering used in deriving eq. (13). Then
eq. (28) agrees with eq. (13) up to O(�2). The last term has
no effect for k = 0. For k = l = 0, therefore, we have

n = N + ∇ ·
�

N
ΩB0
∇⊥φ

�
+
1
2
∇ ·

�
∇⊥P⊥
qΩB0

�
, (29)

where N and P⊥ are the guiding-centre density and the
guiding-centre perpendicular pressure dened by

N ≡
�

FJdUdμdξ, (30)

P⊥ ≡
�
μB0FJdUdμdξ, (31)

respectively. Equation (29) is the same as the standard gy-
rokinetic case (15) formally.

3.3 Variational derivation of the push-
forward representation for the particle
density

The push-forward representation for the particle den-
sity is also derived from the functional derivative of the
action functional I =

� t2
t1

Ldt with the Lagrangian for the
Vlasov-Poisson system,

L =
�

s

�
d6Z�Js(Z�)Fs(Z�, t�)

×Ls[Zs(Z�, t�; t), Zs(Z�, t�; t), t]

−

�
d3x

1
4μ0

F : F, (32)

where Ls is the single particle Lagrangian of species s ob-
tained from the 1-form eq. (5),

Ls = qsA∗s · Xs +
ms

qs
μs ξs − Hs, (33)

Z� ≡ (X�,U�, μ�, ξ�) and Zs(Z�, t�; t) denotes the guiding-
centre coordinates of the particle at t with the initial con-
dition, Zs(Z�, t�; t�) = Z�. The guiding-centre Hamiltonian
Hs is given by eq. (6). The last part of L is the Lagrangian
for the electromagnetic elds in which μ0 is permeabil-
ity of vacuum, the electromagnetic eld tensor F is de-
ned by Fμν ≡ ∂μAν − ∂νAμ and F : F ≡ FμνFμν. When
ημν = η

μν
= diag(−1,+1,+1,+1) is taken as a metric tensor

of Minkowski spacetime, the covariant four vector poten-
tial and the four gradient operator are Aμ = (−φ/c,A0) and
∂μ = ((1/c)∂t,∇), respectively [8,18]. From δI/δφ = 0, we
obtatin the guiding-centre Poisson equation [11],

�0∇
2φ(x, t) = −

�
s

�
qsNs + qs∇ ·

�
Ns
∇⊥φ

B0Ωs

�

−∇ ·

��
∇ × P⊥s

b̂
B0

�
×

b̂
2Ωs

��

= −
�

s
qsns, (34)

where �0 is permittivity of vacuum. It is noted that we
have assumed D ∼ �1/2vti and (m2D2/4qB0)b̂ · ∇ ×D in the
Hamiltonian (6) has been neglected. The right hand side of
the above equation is the sum of charge density of species
s. Noting
�
∇ × P⊥

b̂
B0

�
×

b̂
2Ω
�

�
∇P⊥ ×

b̂
B0

�
×

b̂
2Ω

� −
∇⊥P⊥
2B0Ω

, (35)

549

N. Miyato et al.,  Fluid Moments in Modified Guiding-Centre Coordinates



we have the same relation between the particle density ns
and the guiding-centre uid moments as eq. (29).

4. Summary and discussion
In the previous section it was shown that the push-

forward representation of the particle uid moment in
terms of the modied guiding-centre uid moments is very
similar to that in terms of the standard gyrouid moments
in the appropriate limit. However, there is an apparent dif-
ference between the exact representations (12) and (22).
Equation (22) has the standard form of the push-forward
representation associated with the guiding-centre trnasfor-
mation, while eq. (12) is the mixed representation of the
push-forward transformation associated with TGC and the
pull-back transformation assciated with TGy. The repre-
sentation (12) is derived by considering Z in the integral
on the right hand side of eq. (22) a dummy variable, re-
placing Z by Z̄ and using F = T∗GyF̄ [17]. Since the pertur-
bation of the electrostatic potential is introduced after the
guiding-centre transformation in the standard gyrokinetic
formulation, its effect is not included in TGC, but in TGy.
Therefore the effect of φ is included only in T∗GyF̄ in eq.
(12). On the other hand, it is included in TGC in the modi-
ed guiding-centre case. The correspondence between the
standard gyrokinetic case and the modied guiding-centre
case becomes more transparent by considering the alterna-
tive form similar to eq. (22) given by [19]

mkl(r) =
�

d6Z̄J(Z̄)

×

⎡⎢⎢⎢⎢⎢⎣T−1∗Gy T−1∗GC
⎧⎪⎪⎨⎪⎪⎩
�

mv2⊥
2B0

�k
vl
�

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦

×F̄(Z̄)δ3(T−1GyT
−1
GCx − r). (36)

This is more straightforward representation than eq. (12).
The particle position in the gyro-centre phase space
T−1GyT

−1
GCx is given by

T−1GyT
−1
GCx = X̄ + ρ̄ + ρ̄1 + · · · , (37)

where ρ̄1 = −{S 1, X̄ + ρ̄} is the gyro-centre displace-
ment vector [5, 6]. The gyroangle average of ρ̄1 corre-
sponds to ρE in the small amplitude limit. Since the stan-
dard guiding-centre magnetic moment μ is related with the
gyro-centre coordinates as

μ � μ̄ − {S 1, μ̄}

� μ̄ −
∂S 1
∂ξ̄
{ξ̄, μ̄}

� μ̄ −
q
Ω
φ̃(X̄ + ρ̄)

q
m
, (38)

we have

T−1∗Gy T
−1∗
GC

�
mv2⊥
2B0

�
� μ(Z̄) −Gμ1(Z̄)

� μ̄ −
q
B0
φ̃(X̄ + ρ̄) −Gμ1(Z̄).

(39)

Using the above result and expanding the delta function
and φ, we have

mkl(r) �
�

d6Z̄J
�
μ̄k − kμ̄k−1 q

B0
φ̃(X̄ + ρ̄)

�

×ŪlF̄δ3(X̄ + ρ̄ + ρ̄1 − r)

�

�
d6Z̄J F̄μ̄kŪl

�
δ3(X̄ − r)

+�ρ̄1� · ∇δ
3(X̄ − r) +

1
2
(ρ̄ · ∇)2δ3(X̄ − r)

�

−k
�

d6Z̄J F̄μ̄k−1Ūl q
B0
φ(X̄ + ρ̄)

×ρ̄ · ∇δ3(X̄ − r)

� Mkl + ∇ ·

�
Mkl

ΩB0
∇⊥φ

�
+
1
2
∇ ·

�
∇⊥Mk+1l

qΩ

�

+k∇ ·
�

Mkl

ΩB0
∇⊥φ

�
, (40)

where the contribution from Gμ1 has been dropped because
in the standard guiding-centre theory �Gμ1� = −μUb̂ · ∇ ×
b̂/Ω and variation of the magnetic eld has been assumed
to be very mild, and the gyroiud moment is dened by
eq. (14). Thus the alternative form of the push-forward
representation yields the same representation as eq. (13)
and gives the direct correspondence to the representation
in the modied guiding-centre case.
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A. Derivation of the push-forward represen-
tation in the standard gyrokinetic model
The rst term on the right hand side of eq. (12) yields�

d6Z̄μ̄kŪlF̄(Z̄)δ3(X̄ + ρ̄ − r)

=

�
d6Z̄μ̄kŪlF̄(Z̄)

�
δ3(X̄ − r)

+
1
2
(ρ̄ · ∇̄)2δ3(X̄ − r) + · · ·

�

� Mkl(r) +
1
2
∇ ·

�
1

qΩ
∇⊥Mk+1l(r)

�
. (41)

The second term of eq. (12) becomes
�

d6Z̄μ̄kŪl qφ̃
B0
∂F̄
∂μ̄
δ3(X̄ + ρ̄ − r)

�

�
d6Z̄μ̄kŪl q

B0
ρ̄ · ∇̄φ(X̄)

∂F̄
∂μ̄
ρ̄ · ∇̄δ3(X̄ − r)

=

�
d6Z̄δ3(X̄ − r)

×∇̄ ·

�
(k + 1)μ̄kŪl F̄

B0Ω
∇̄⊥φ(X̄)

�

= (k + 1)∇ ·
�

Mkl(r)
B0Ω

∇⊥φ(r)
�
. (42)
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