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Fluid moments in modified guiding-centre coordinates
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A general fluid moment in the particle coordinates is represented in terms of fluid moments in modified
guiding-centre coordinates with strong E X B flow derived by the phase space Lagrangian Lie-transform method
[N. Miyato et al., J. Phys. Soc. Jpn. 78, 104501 (2009)]. It is called the push-forward representation of the
particle fluid moment associated with the guiding-centre transformation. The representation derived is similar to
that in terms of gyro-fluid moments in the standard gyrokinetic theory in the long wavelength limit. Since the
particle coordinates are transformed to gyro-centre coordinates by the two-step transformation in the standard
gyrokinetic formulation, two exact push-forward representations are possible. Although the exact representation
usually used in the standard gyrokinetic theory has a different form from that in the modified guiding-centre
case, the correspondence between the two cases is shown more clearly by considering the alternative form of the
push-forward representation for the standard gyrokinetic case.
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1. Introduction

It is well known that guiding-centre or gyro-centre
density is different from particle density due to finite-
Larmor-radius (FLR) effects [1-8]. Generally guiding-
centre or gyro-centre fluid moments are different from cor-
responding particle fluid moments. Any particle fluid mo-
ment can be represented in terms of the guiding-centre or
gyro-centre fluid moments. It is called the push-forward
representation of the particle fluid moment associated with
the transformation from the particle phase space to the
guiding-centre or gyro-centre phase space [5, 6]. The in-
verse of the representation was used to derive nonlinear re-
duced fluid equations with FLR corrections from nonlinear
gyrofluid equations [1]. Since the gyromotion of a charged
particle is removed at the kinetic level, this procedure al-
lows one to bypass the issue of gyroviscous cancellations
and corrections in traditional derivations where an explicit
representation of the stress tensor is needed [9, 10]. An
expression for the gyroviscous force is obtained by com-
paring the reduced equations with the FLR corrections ob-
tained from the gyrofluid equations with the particle fluid
momentum equation [3]. The correspondence between the
gyrofluid and low-frequency fluid equations is also shown
by using the relation between the gyrofluid moments and
the particle fluid moments [4]. Recently we derived a mod-
ified guiding-centre fundamental 1-form with strong E X B
flow from which a guiding-centre Vlasov-Poisson system
was also constructed through the field theory [11]. It is of
interest to investigate a relation between fluid moments in
the modified guiding-centre coordinates and the particle-
fluid moments. In contrast to conventional formulations
with strong E x B flow [12-16], the symplectic part of the
guiding-centre 1-form in our formulation does not include
the E x B drift velocity term and is the same as that in
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the standard gyrokinetic model formally [5]. The guiding-
centre Hamiltonian also agrees with the standard gyroki-
netic Hamiltonian in the long wavelength limit. Therefore
it is expected that the relation between the fluid moments
in the modified guiding-centre coordinates and the parti-
cle fluid moments be similar to the one obtained from the
standard gyrokinetic model in the long wavelength limit.
In this paper, we represent the particle fluid moments in
terms of the fluid moments in the modified guiding-centre
coordinates. The representation is compared with that ob-
tained from the standard gyrokinetic model in the long
wavelength limit.

2. Guiding-centre theory

We consider a transformation from particle coordi-
nates (x, u, w,6) to guiding-centre coordinates (X, U, u, &)
given by [7,11]

X=x—-€p—e€pg +0(é), (1

U =+ O(e), )
mw?

K= 2By +0(e), (3)

&=0+0(e), “)

where x is the position of a particle with mass m and elec-
tric charge ¢, v is the parallel velocity, w is the perpendicu-
lar velocity in the frame moving with D which is the E x B
drift velocity, 6 is the gyrophase, p is the Larmor radius
evaluated by w, p; = bxD/Q, Q = qBy/mand € ~ p/L
is the small parameter with the background gradient scale
length L. Here it is assumed that the E x B drift velocity
is comparable to the ion thermal velocity v,;. Therefore,
pg ~ p for ions. The guiding-centre transformation for X
is different from conventional ones in which the guiding
centre position X’ is defined by X’ = x — ep [12-16]. X is
mainly shifted by p; from X’. The guiding-centre funda-

©2010 by The Japan Society of Plasma
Science and Nuclear Fusion Research



N. Miyato et al., Fluid Moments in Modified Guiding-Centre Coordinates

mental 1-form is given by

r = qA0+6mUB—€2ﬂuW -dX
q

+e %pdf — Hdt, (5)

where W = R+ (b -V x b)b/2, b = By/Bo, R = (Ve;) - €5,
e; and e, are unit vectors spanning the plane perpendicular
to b, and the guiding-centre Hamiltonian is

H = qb+ 6(%U2 + uBy — %Dz)

(6)

The guiding-centre Hamilton equations, Z' = {Z, H}, are
written as

o B OH 13

X =
mB; au B; D
. B*
U = —e_l ol VH, (8)
mBH
a=0, )
H
&= 991 . X, (10)
u
where A* = Ag + (m/q)Ub, B* = VX A” and Bf = b - B".

These are the same as those in the standard gyrokinetic
model formally.

3. Push-forward representation of fluid mo-
ments
3.1 Standard gyrokinetic case
Following Belova [3], we brief the relation between
the gyro-centre fluid moments and the particle fluid mo-
ments first. A general particle fluid moment is defined by

) WS (x = r)d’xd’v. (11)

5\ k
(r) = mvy
m =
Kl 2B,
This particle fluid moment can be written in terms of the
gyro-centre distribution function F in the electrostatic limit
as

my(r)

f d°Z2.9(Z)
—1x mvf_ .

X[ Tae (Z_BO) VH (Z)

x[Te, FIZ)6 (TghX - 1)

f YA LVA T

x> (X +p—r1)

1

q¢}

F+egit—
€(SB ou

(12)

where Z = (X U, 1, f) are the gyro-centre coordinates,
dSZ = dXdUdpdé¢, T = Bj'/m is the Jacobian, T is the
inverse of the transformatlon from the partlcle phase space
to the guiding-centre phase space, T * is the pull-back
transformation associated with T or the push-forward
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Fig. 1 Phase space transformations in the standard gyrokinetic
formulation.

transformation associated with Tgc, Tgy is the transfor-
mation from the guiding-centre phase space to the gyro-
centre phase space, T¢, 1s the pull-back transformation as-
sociated with Tgy, ¢ = gb(X +p) - (¢(X + p)) is the gy-
rophase dependent part of the electrostatic potential, (-)
denotes the gyrophase average, €; is the small parameter
for the amplitude of ¢ and p = p(Z). It is noted that
generally Tgyf is expressed as F +e{S1, F} + O(eg) with
S1=(q/Q) f @dg—r The phase space transformations in the
standard gyrokinetic formulation [5, 17] are summarised
in Fig. 1. The particle phase space is transformed to the
gyro-centre phase space through two steps. First, the trans-
formation from the particle phase space to the guiding-
centre phase space is performed with € ~ p/L to remove
gyrophase dependence from the single particle motion in
an equilibrium magnetic field. After that, a small pertur-
bation of electrostatic potential, ¢, is introduced and the
transformation from the guiding-centre phase space to the
gyro-centre phase space is performed with €5 ~ g¢/T to re-
move the gyrophase dependence reintroduced by ¢. Thus
smallness of ¢ is necessary for the gyro-centre transforma-
tion. Push-forward of a scalar function is shown in Fig.
2 schematically. Here we consider a scalar function on
z denoted by f and a transformation from the particle z
space to the guiding-centre Z space denoted by Tgc. Then
we can represent f(z) in terms of Z through z = TaICZ as
f(z) = f(TE}lCZ) = T’ ¢ f(Z). Thus we obtain a function
F=T_ 1*f on Z. Slnce T Ny ¢ “pushes forward” fonzto F
on Z, it is called the push forward transformation associ-
ated with Tgc. Note that the function of the transformation
is opposite to appearance of the symbol. Conversely, we
can obtain a function on z, TG, from a function on Z
denoted by G. Then T¢,. is called the pull-back transfor-
mation associated with Tgc. Some explanation would be
needed for Tt X. Originally [TotX1(Z) = X + p(Z) + - -
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Fig.2 Push-forward of a scalar function. F(Z) = Tt f(Z) =
f(T6eZ) = f(@).

denotes the particle position in the guiding-centre phase
space. T X denotes [T.x] whose argument is replaced
by the gyro-centre coordinates Z, that is, TE’ICX ~X+p(Z)
and does not agree with the particle position in the gyro-
centre phase space Ta;Talcx. Expanding the delta function
and ¢ in powers of p and integrating by parts lead to the
representation of the particle fluid moment my; in terms of
gyrofluid moments up to O(€?) (see appendix A),

my(r) = Mpy(r)+ %V‘ [qLQVLMkHI(r)]

Mi(r)
ByQ

+(k + l)V-[ (13)

Vﬂﬁ(r)} ;

where M}, is the general gyrofluid moment defined by

M = [#Og@F@aTaE 9
and we have assumed that (k,p)> ~ €, for a small O(es)
perturbation, (k. p) ~ €, for a O(1) moment and € ~ €5 ~
€,. For k = [ = 0, we have the well known push-forward
representation of the particle density 7,

o] [T

=N+V.
" QB, 2" | 498,

(15)

where N and P, are the gyro-centre density and the gyro-
centre perpendicular pressure defined by

N= f FJdUdudé, (16)

P, = f UBoF JdUdudé, (17)
respectively. Although spatial derivatives are reduced to
the perpendicular Laplacian in ref. [3], we keep the diver-
gence form to manifest the polarisation effects here [5, 8].
It is easily shown by the volume integration of eq. (15)
over the domain including the whole plasma that the num-
ber of particles included in the whole plasma agrees with
that of gyro-centres.
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3.2 Modified guiding-centre case
In this subsection we consider a particle fluid moment
defined by

k
my(r) = f(m_wz) vlllf63(x - r)d’xd’v.

e (18)

Note that w = |v, — D] is used for the definition of my,
while v, is used for my;. Therefore, my with &k # 0 is
different from my,;. For example, the relation between p, =
B()I’I_’llo and pl = Bomlo is given by

pi=p, —mnV,-D+mnD?/2, (19)

where

nV, = vafaﬁV. (20)
Since V, = D + O(e) in the strong E X B case, the relation
between p, and p’| is written as

p. = p, —mnD*/2 + O(e). (21)

Obviously, my; — my as D — 0. The ExB drift velocity D
is sub-thermal in most cases of interest. Therefore, we as-
sume D ~ €!/2v,; in the following. In terms of the modified
guiding-centre distribution function F, my; can be written
as

my(r)

f d*2.9(Z)

2\ k
Tae {(%) (u)’}
XF(Z)5*(Tghx — 1)

f LI @) - G U'F(Z)
FX+p +pp—1).

X

(Z)

1R

(22)

Here the ¢ component of the vector field generating the
guiding-centre transformation, G, is kept because it has
the nonvanishing gyroaveraged part due to the E X B flow.
The delta function expanded in powers of p and pj, the
above equation is rewritten as

1

) = (276 - U F@)
x|8*(X = 1)+ pg - VO(X - 1)

+%(p-V)263(X— r)]

R

f L8 X - U'Fg
—k f d° L8 X - O GHU'FT
+ f AU FTpy - V(X -1)

+ f dGZ,ukUle%(p SV (X -r).
(23)
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Since the main part of (G’f ) is given by [11]

JTA A
@) = —gb VxD+Ub

v (px£5)

Q
= —V-( s

1

QB @4

the second term on the right hand side of eq. (23) becomes

VJ_¢) s

—k f L (GHU'FTS (X - 1)
~k f d°Z283(X - ryf U’
FgJ ) b ]

V. (DX —b|-Dx = -VF,
X (x 0 0 J

kil
N 67 3 (LU
~k f 25 (X — 1) [V (—QBO Fleqﬁ)

D bx VEJ U
Q
=kV ( B, Vl¢) kD o (25)

where the guiding-centre fluid moment My, is defined by
M0 = [ WU T@F@ddE 20

Integrating by parts the third term on the right hand side of
eq. (23), we have

f 27U U'FTp, - V8 (X - 1)

_ f d6Z63(X—r)V-(,ukU1Fjb>;2D)
I N S Tapm Y )
—fd 78 (X - 1)V (/1 UFjQBO)
M
= V.(QBfi)vm). 27)

The first and last terms on the right hand side of eq. (23)
are the same as those in the standard gyrokinetic model.
As a consequence, the push-forward representation of my,
in terms of the modified guiding-centre fluid moments is
given by

_ 1 1

m(r) = My(r)+ V- [_QVJ_MkHI(r)]

q

9000
b x V My(r)
—a
This representation is the same as eq. (13) except the last
term formally. The last term goes to the higher order than
O(€?) in the same ordering used in deriving eq. (13). Then
eq. (28) agrees with eq. (13) up to O(€?). The last term has
no effect for k = 0. For k = [ = 0, therefore, we have

1 V.P
ivl(p + -V | ==,
QBO 2 qQBO

+(k+1)V-[

—kD(r) - (28)

n=N+V- (29)
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where N and P, are the guiding-centre density and the
guiding-centre perpendicular pressure defined by

N= f FJdUdudé, (30)

P, = f uBoFJdUdud¢, (31)

respectively. Equation (29) is the same as the standard gy-
rokinetic case (15) formally.

3.3 Variational derivation of the push-
forward representation for the particle
density

The push-forward representation for the particle den-
sity is also derived from the functional derivative of the
action functional / = ft ltz Ldt with the Lagrangian for the
Vlasov-Poisson system,

L= Z f &7 T (2 F(Z 1)

XLJ(ZJ(Z 1 0), Z(Z 15 1), 1]

1
—fd3x—F : F,
4o

where L; is the single particle Lagrangian of species s ob-
tained from the 1-form eq. (5),

(32)

Ly =q,AL X, + 2k, - H,, (33)
qs

7 = (X,U,W/,¢&) and Zy(Z',1; f) denotes the guiding-
centre coordinates of the particle at # with the initial con-
dition, Zy(Z',¢;t") = Z’. The guiding-centre Hamiltonian
H; is given by eq. (6). The last part of L is the Lagrangian
for the electromagnetic fields in which g is permeabil-
ity of vacuum, the electromagnetic field tensor F is de-
fined by F,, = 0,4, — 0,4, and F : F = F*F,,. When
N = = diag(-1, +1, +1, +1) is taken as a metric tensor
of Minkowski spacetime, the covariant four vector poten-
tial and the four gradient operator are 4,, = (—¢/c, Ag) and
0, = ((1/c)0t, V), respectively [8,18]. From 6//6¢ = 0, we
obtatin the guiding-centre Poisson equation [11],

\Y
- Zg: [qSNS +q,V - (Ns B()lgi)

b b
-vlvxpr ,,—
{lrrz )zl
_ZQSnsa
s

where € is permittivity of vacuum. It is noted that we
have assumed D ~ €!/?v, and (m2D2/4qBo)3 -V xD in the
Hamiltonian (6) has been neglected. The right hand side of
the above equation is the sum of charge density of species
s. Noting

€ V2 o(x, 1)

34

VXPJ_E Xi: VPlxi Xi
By) 2Q By) 2Q
V.pP,
= - 35
2B,Q’ (33)
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we have the same relation between the particle density 7,
and the guiding-centre fluid moments as eq. (29).

4. Summary and discussion

In the previous section it was shown that the push-
forward representation of the particle fluid moment in
terms of the modified guiding-centre fluid moments is very
similar to that in terms of the standard gyrofluid moments
in the appropriate limit. However, there is an apparent dif-
ference between the exact representations (12) and (22).
Equation (22) has the standard form of the push-forward
representation associated with the guiding-centre trnasfor-
mation, while eq. (12) is the mixed representation of the
push-forward transformation associated with Tgc and the
pull-back transformation assciated with Tgy. The repre-
sentation (12) is derived by considering Z in the integral
on the right hand side of eq. (22) a dummy variable, re-
placing Z by Z and using F = TgyF [17]. Since the pertur-
bation of the electrostatic potential is introduced after the
guiding-centre transformation in the standard gyrokinetic
formulation, its effect is not included in Tgc, but in Tg,.
Therefore the effect of ¢ is included only in TEyF_ in eq.
(12). On the other hand, it is included in Tg¢ in the modi-
fied guiding-centre case. The correspondence between the
standard gyrokinetic case and the modified guiding-centre
case becomes more transparent by considering the alterna-
tive form similar to eq. (22) given by [19]

f d2.9(Z)

7\ K
x [Ta‘y*T o {('5—30) ﬁ}}

XF(Z)5*(Tg, Tgex — 1),

my(r) =

(36)

This is more straightforward representation than eq. (12).
The particle position in the gyro-centre phase space
TE;;TE}EX is given by

TaTacXx=X+p+p, +--, (37)
where p; = —{S1,X + p} is the gyro-centre displace-
ment vector [5, 6]. The gyroangle average of p, corre-
sponds to p in the small amplitude limit. Since the stan-
dard guiding-centre magnetic moment y is related with the
gyro-centre coordinates as

M= /I_{Shﬁ}

Y. i€l
~ - gdx+p)L, (38)
we have
2 — _
oy Tel (’Z—;O) ~ u(Z) - Gi(Z)
~ i = 23X +p) - G/(2)
0
(39)
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Using the above result and expanding the delta function
and ¢, we have

m(r) = f d°LT [ﬁ" — k! Bio&(i +p)
XU'FS(X+p+p, —1)
~ f d°LIFEU' [ (X - 1)

o) VX 1)+ 15 VYK - r>]

—k f LT Fi -lﬁlBifp()Z +p)
0

xp - V& (X —r)
M 1_ (V.M
= My+V-|—LV, |+ v [N
QB, 2 qQ
My
KV - [ =2y, 6|, 40
+ (QBO J.¢) (40)

where the contribution from G| has been dropped because
in the standard guiding-centre theory (G) = —uUb -V x
b/ and variation of the magnetic field has been assumed
to be very mild, and the gyrofliud moment is defined by
eq. (14). Thus the alternative form of the push-forward
representation yields the same representation as eq. (13)
and gives the direct correspondence to the representation
in the modified guiding-centre case.
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A. Derivation of the push-forward represen-

tation in the standard gyrokinetic model
The first term on the right hand side of eq. (12) yields

f SZFUFZ)S X +p-r1)
= f d°ZiU'F(Z) [6(X - 1)

+%(E-€)263()Z—r)+---

1 1
=~ Mu(r) + EV : [Q_QVJ.Mk+ll(r)} .

The second term of eq. (12) becomes

(41)

—  —q$OF 5 = _
fd6Z,JkU’@6—_63(X +p-r)
B() (3}1
- —qg_ — —0F_ — ., —
~ fd(’ZﬁkUlip'VgS(X)—_p~V63(X—r)
Bo (3/.1

= f d°25(X - r)

v k7l F_ o Y
3 Mi(r)




N. Miyato et al., Fluid Moments in Modified Guiding-Centre Coordinates

[11 A. Brizard, Phys. Fluids B 4, 1213 (1992).

[2] W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812
(1993).

[3] E. V. Belova, Phys. Plasmas 8, 3936 (2001).

[4] B.D. Scott, Phys. Plasmas 14, 102318 (2007).

[5] A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421
(2007).

[6] A.J.Brizard, Phys. Plasmas 15, 082302 (2008).

[7] J.R. Cary and A. J. Brizard, Rev. Mod. Phys. 81, 693 (2009).

[8] A.J.Brizard, J. Phys.: Conf. Ser. 169, 012003 (2009).

[9] F. L. Hinton and C. W. Horton, Phys. Fluids 14, 116 (1971).

[10] Z. Chang and J. D. Callen, Phys. Fluids B 4, 1766 (1992).

[11] N. Miyato, B. D. Scott, D. Strintzi and S. Tokuda, J. Phys.
Soc. Jpn. 78, 104501 (2009).

[12] R. G. Littlejohn, Phys. Fluids 24, 1730 (1981).

[13] A.J. Brizard, Phys. Plasmas 2, 459 (1995).

[14] T.S. Hahm, Phys. Plasmas 3, 4658 (1996).

[15] H. Qin, Conrib. Plasma Phys. 46, 477 (2006).

[16] G.Kawamura and A. Fukuyama, Phys. Plasmas 15, 042304
(2008).

[17] A. Brizard, J. Plasma Phys. 41, 541 (1989).

[18] R. D. Hazeltine and F. L. Waelbroeck, The Framework of
Plasma Physics (Westview, Boulder, 2004), p. 283.

[19] H. Qin and W. M. Tang, Phys. Plasmas 11, 1052 (2004).

551



