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Abstract

Recent progress in the theory of the Newcomb equation is reported. Emphasis is put on the analysis of external
modes including peeling modes (high n kink modes), where n is the toroidal mode number. A theory for low n
external modes is developed so that it is also useful for the analysis of resistive wall modes.
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1. Introduction

It is well known that the Newcomb equation, the inertia
free linear ideal magnetohydrodynamic (MHD) equation [1],
plays fundamental roles in the MHD stability theory. A code
MARG2D has been developed which solves numerically the
2-dimensional Newcomb equation and the associated
eigenvalue problem [2]. In this paper, recent research on the
Newcomb equation is reported. The main focus is to develop
tools for the analysis of low n and high n external modes,
where n is the toroidal mode number. The high n kink modes,
called peeling modes [3], recently get attention in the study
on MHD stability of tokamak edge plasmas [4]. For the low
n external modes, we develop a theory that expresses the
change of potential energy due to the plasma displacement
by a quadratic form with respect to the values of the
displacement at the plasma surface. This formulation is useful
for the analysis of resistive wall modes. For the analysis of
peeling modes we extend the MARG2D formulation into the
vacuum region by expressing the perturbation of magnetic
fields in vacuum by a suitable vector potential.

2. Newcomb equation

In an axisymmetric toroidal system such as a tokamak,
equilibrium magnetic fields are expressed as

Beq = ∇φ × ∇ψ + F∇φ , (1)

where the cylindrical coordinate system (R, Z, φ) is employed;
ψ(R, Z) and F(ψ) are, respectively, the poloidal flux function
and toroidal field function. We define the radial coordinate
by

r R
q
F

d2
0 0

2:= .∫
ψ

ψ (2)

Here, R0 is the position of the magnetic axis (for simplicity,
the mirror symmetry of the equilibrium is assumed:
ψ (R, –Z ) = ψ (R, Z )); q(r) is the safety factor, as usual. We
define the poloidal angle θ so that the magnetic field lines
are straight; the Jacobian of the coordinate system (r, θ, φ) is
√

⎯
g  = rR2/R0. Let ζ

→
 be an infinitesimal plasma displacement

with the toroidal mode number n that is incompressible
(∇ · ζ

→
 = 0), and let

X r r( ), := ⋅∇ ,θ ζ
→

(3)

V r r
q

( ) ( ), := ⋅∇ − ⋅∇ ,θ θ φ1 ζ
→

ζ
→

(4)

then the change of the plasma potential energy Wp due to the
displacement ζ

→
 reads [5]

W Ldrdp = ,∫π θ (5)

and the Lagrangian density function L reads

a D X c rX Vr= | | + |∂ + ∂ |θ θ( ) ( )2 2L

+ | + ∂ + + |b inV
q

rX hX r D Xr r

1 2( ) ( )β θ θ

+ | | .e X 2 (6)

Here, the operator Dθ(X) is defined by

D X
q

X inXθ θ( ) := ∂ − ,1
(7)

and the other coefficients are given in ref. [2].
By minimizing Wp with respect to V(r, θ), we obtain the

reduced energy integral
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W L drp

a
[ ] [ ]X X X X, = , .∫2 2

0
π (8)

Here, the vector function X(r) is defined as

X(r) := {X–Lf (r), . . . , XLf (r)}t, (9)

by using the poloidal Fourier harmonics Xl(r)

X r X r il
l L

L

l

f

f

( ) ( ) exp( ), = ,
=−
∑θ θ (10)

where Lf is the truncated poloidal mode number. And the
reduced Lagrangian density is

L
d

dr
L

d

dr
K[ ]X X

X X
X X, = | | + | |〈 〉 〈 〉

+ | | + | | ,〈 〉 〈 〉d

dr
M M

d

dr
tX

X X
X

(11)

where L, M, K are matrices; L and K are hermitian, the details
of which are given in ref. [2], and

〈 〉X X| | := .
,

∑K X K X
j k

j jk k

From L[X, X], we have the 2-D Newcomb equation

d

dr
L

d

dr

d

dr
M tX

X
X:= − ⎛

⎝⎜
⎞
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− ( )N

+ + = .M
d

dr
K

X
X 0 (12)

The eigenvalue problem associated with eq. (12) is given by

NX = –λRX, (13)

where R is a multiplicative and diagonal operator whose
components are Rm,m ∝ (m/q – n)2. The natural boundary
condition for Xm is imposed at the rational surface of rm (m =
nq(rm)); the continuous conditions are imposed for other
harmonics Xl (l ≠ m). A code MARG2D which solves
eqs. (12) and (13) has been developed by using a finite
element method. The code has been applied to identify stable
states for ideal MHD internal perturbations [2].

3. Application to the theory of external

modes

The bilinear form associated with eq. (8) is given by

W[ξ
→

, η→] = Wp[ξ
→

, η→] + 〈ξ
→

a | MV |η→a〉, (14)

where

ξ
→

a = ξ
→

(a), (15)

and the matrix MV stands for the contribution from the
vacuum region. Let S = {ξ

→
|N ξ

→
 = 0} be a set of functions

that satisfy the Newcomb equation. If ξ
→

(r), η→(r) ∈ S, then
we have

W M L
d

drp a H a a
a[ ] 〈 〉η ξ η ξ

η
, = | | + | |1

2

+ | | ,1

2

d
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La

a

ξ
η

→ →→ →
→

→
→

ξ
→

(16)

H
tM M M:= + .1

2
( ) (17)

Now let us make a vector function Y m(r) ∈ S

Y m(r) = (Y m
–L f(r), . . . , Y m

L f(r))t, (18)

for m = 0, ±1, . . . , ± L f , where each poloidal harmonics
Yl

m(r) satisfies the condition

Yl
m(a) = 0 (l ≠ m), Ym

m(a) = 1,

l = 0, ±1, . . . , ±L f . (19)

The set {Y m(r)} forms a basis [6]. An external mode can be
expressed by using an arbitrary set {xm} of real numbers as

ξ ( ) ( )r x Y r
m

m
m= .∑

→
(20)

The change of the potential energy due to ξ
→

 is given by the
quadratic form of the vector x,

W[ξ
→

, ξ
→

] = 〈x|A|x〉, (21)

where the matrix A, which is real and symmetric, is given by

A = Mp + MV, (22)

Mp(l,m) = Wp[Y l, Y m]. (23)

We call A the stability matrix for external modes. If the
minimum eigenvalue of A is negative, then the plasma is
unstable against ideal external kink modes. The matrix A also
plays an important role in the stability of resistive wall modes
[6].

The basis {Y m(r)} can be constructed by using the
response formalism [7]. Let us write Ym(r) as

Y m(r) = Xm(r) + Zm(r), (24)

where Zm(r) given analytically satisfies the inhomogenous
boundary condition, eq. (19). Then, we have an in-
homogeneous equation for X m(r) with the homogenous
boundaryn condition

NXm(r) = –NZm(r), X m(a) = 0. (25)

Since eq. (25) can be solved by the MARG2D code, we can
construct the basis {Y m(r)} and the stability matrix A.

The present formalism has been satisfactory applied to
the stability analysis of low n, typically n = 1 or 2, external
modes, which is reported at this conference [8].

4. Extension of the MARG2D formulation

into the vacuum

The vacuum contribution to the change of potential
energy is represented by the matrix MV in eq. (14), which is
computed by using Green’s function of the Laplace operator
[9]. This method deals flexibly with the shape of a conducting
wall. However, the method is limited to low n modes since it
is difficult to evaluate numerically special functions that
appear in constructing MV when n becomes large. It is
convenient to express magnetic fields by a vector potential
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for middle n (n = 2, 3, . . . , 10) or high n (n > 10) external
modes, which was shown in ref. [10]. We adopt the vector
potential method in the MARG2D code for the analysis of
peeling modes. It is shown that the Lagrangian density
function for the change of energy in the vacuum has the same
form as that for the change of plasma potential energy, and
that the MARG2D formulation is easily extended to such
external modes.

Let ψ V(R, Z ) be a function defined in the vacuum. The
coutour ψ V(R, Z ) = ψs coincides with the plasma surface
ψ (R, Z ) = ψs. We also assume that the outermost contour of
ψ V(R, Z ) = const. coincides with the cross section of the
conducting wall. Next, we introduce a vector field CV in the
vacuume by

CV = ∇φ × ∇ψ V + TV (R, Z )∇φ . (26)

Here we assume TV is independent of φ. It is easy to see that
CV is a solenoidal vector [10], div CV = 0. The poloidal angle
θ and the function TV can be defined such that

C
(==  const.),V q s∇

⋅∇
θ
φ

CV ⋅ (27)

at all points in the vacuum, where qs is the safety factor at
the edge.

The perturbation of magnetic fields is given by

B = ∇ × A, (28)

and the vector potential A is expressed by

A = ξ
→

V × CV, (29)

where ξ
→

V is the unknown vector to be determined. By
introducing the functions

Y(ψV , θ ) := ξ
→

V · ∇ψV , (30)

V (ψ V , θ) := ξV ⋅ ∇θ – 1
qs

V ⋅ ∇φ ,
→

ξ
→

(31)

the change of energy in the vacuum is given by

W LdV V= ,∫π ψ θqs d (32)

= a D θ (Y)
2

+ T ∂V
∂θ

+ ∂Y
∂ψ V

2

+ b inq s V + ∂Y
∂ψ V

βψθ Dθ (Y)
2

.

L

(33)

Here

Dθ (Y ) := 1
qs

∂θ – in Y , (34)

βψθ := qs

∇ ·∇θ

∇ 2
,

ψV

ψV (35)

and

a :=
TV

R 2 2
, b :=

2

.
∇ψV

∇ψV

TV
(36)

We can eliminate the function V by the same procedure in
Sec. 2 by using the poloidal Fourier harmonics

Y (ψ V ,θ ) = Y lΣ
l

(ψ V ) exp (ilθ ) , (37)

Y(ψV) := {Y–L f(ψV), . . . , YL f(ψV)}t. (38)

The reduced form has the same form in eq. (11):

W L dV T ( (Y, Y )V V= ,∫π ψqs2 2
Vψ (39)

(Y, Y ) = dY
d

L dY + Y K Y

+ dY M t Y + Y M dY .

L
Vψ d Vψ

d Vψ d Vψ
(40)

5. Summary

We have reported the recent progress in the theory of
the Newcomb equation and applications to MHD stability
analysis. A theory of external modes has been developed by
using the Newcomb equation, which is also useful for the
analysis of resistive wall modes. The MARG2D formulation
has been extended in the vacuum region. Such extension
enable us to analyze the stability of the edge region of a
tokamak, and code developing is now on going.
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