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1. Introduction

A global gyrokinetic toroidal particle code for a 3-
dimensional nonlinear turbulence simulation (GT3D) [1] has
been developed to study the ion temperature gradient driven
– trapped electron mode (ITG-TEM) turbulence in tokamak
plasmas. The code has been developed based on a finite
element particle-in-cell (PIC) method [2], except for several
extensions for a nonlinear simulation. Main features of GT3D
are summarized as follows. First, we have developed a new
method based on a canonical Maxwellian distribution FCM

(Pj, e, m) [1], which is defined by using three constants of
motion in the axisymmetric toroidal system, the canonical
angular momentum Pj, the energy e, and the magnetic mo-
ment m. Second, the conservation property of GT3D is greatly
improved using the optimized particle loading [3]. Third, we
use a quasi-ballooning representation [4] for nonlinear
perturbations, which enables linear and nonlinear global high-
m, n calculations. Fourth, an analysis of the ITG-TEM is
enabled by using kinetic trapped electron models. Finally, the
code has been optimized for massively parallel scalar and
vector machines, and it operates with 40 % and 25 % pro-
cessing efficiency up to 512 processors respectively on the
JAERI Origin3800 system and on the Earth Simulator [5,6].

In this paper, first, we discuss code developments towards
the ITG-TEM calculations. A new bounce-averaged kinetic
trapped electron model enables order of magnitude low cost

ITG-TEM calculations. A gyrokinetic field solver which can
treat a short wavelength unstable region is developed by
applying a Pade approximation to the ion polarization density.
Linear properties of the ITG-TEM is successfully recovered
by using these calculation models. Adding trapped electrons
not only increase the growth rate of the ITG mode, but also
produce another unstable electron mode, the TEM. Between
these two modes, the dominant mode changes depending on
kq and hi (= Ln/Lti), where kq is the poloidal wave number,
and Ln and Lti are scale lengths of density and ion temperature
gradients, respectively.

We then discuss zonal flow dynamics in the ITG tur-
bulence. Unlike a conventional method based on a local
Maxwellian distribution FLM (y, e, m), which is defined by a
flux label y, the new FCM method avoids spurious linear
driving effect on axisymmetric modes. Through zonal flow
damping tests and ITG turbulence simulations, it is found
that this spurious driving effect significantly affects zonal
flow dynamics and spurious zonal flow oscillations are
excited.

The reminder of the paper is organized as follows. In
Sec. 2, model equations and numerical methods are described.
In Sec. 3, preliminary linear calculations including kinetic
trapped electrons are shown and the validity of new models
are discussed. In Sec. 4, zonal flow dynamics in the ITG
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simulations based on FCM and FLM is discussed. Finally, a
summary is given in Sec. 5.

2. Calculation model

2.1 Gyrokinetic equations

The present version of GT3D solves the electrostatic
gyrokinetic Vlasov-Maxwell system in a circular concentric
tokamak configuration. In the gyro-averaged coordinates, Z
= (t ; R, v||, m, a), the electrostatic gyrokinetic Vlasov-
Maxwell system [7] is written as
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where R is a position of the guiding center; v|| = v · b ; v^ =
| v ¥ b |; m � msv^

2/2B ; Ws = qsB/msc; ms and qs are the mass
and charge of the particle species s, respectively; c is the
velocity of light; b = B/B is the unit vector in the direction of
the magnetic field; a is the gyro-phase angle; B*= B + (Bv||/
Ws)—R ¥ b ; B||

* = b · B*; f and fk are the electrostatic potentials
in the configuration and wave number spaces, respectively;
·fÒa is the gyro-averaged electrostatic potential; F0 and d fs

are the equilibrium and perturbed parts of the distribution
function Fs, respectively; ns and dns are the equilibrium and
perturbed parts of the particle density; Ts is the temperature;
Ds is the Jacobian of the gyro-averaged coordinates; In is the
n-th order modified Bessel function; k|| = k · b and k^ = | k ¥
b | are the parapllel and perpendicular component of the wave
vector k and rts is the Larmor radius evaluated with the
thermal velocity vts.

2.2 Trapped electron models

In principle, kinetic electrons can be described by taking
a drift-kinetic limit of the gyrokinetic equation, Eqs. (1) – (3).
In the present study, we have developed two drift-kinetic
electron models. One is a full drift-kinetic electron model and
the other is a drift-kinetic trapped electron model with adiaba-
tic passing electrons. From linear benchmark tests, we have
confirmed that both models give the almost same frequency

and growth rate spectra of the ITG-TEM. This means that
passing electrons respond almost adiabatically to the ITG-
TEM with w /k|| << vte, where w is the frequency of the ITG-
TEM. Since the high frequency wH mode [8] does not appear
in the latter model, the computational cost of the latter model
is order of magnitude lower than the former model. However,
the computational cost of the drift-kinetic trapped electron
model is still high, because the Courant-Friedlichs-Lewy
(CFL) condition is limited by the electron bounce frequency
wbe, and the ballistic noise is inevitable in the drift-kinetic
model. In order to resolve these problems, we have developed
a bounce-averaged kinetic electron model based on the
bounce-averaged kinetic equation [9]. In the bounce-averaged
kinetic formalism, the fast bounce motion is eliminated by
applying the Lie perturbation theory under the ordering, w /
wbe ~ O(e). In the deeply trapped approximation, k 2 << 1,
the bounce-averaged coordinates (bb, ab, Y, I, m, a) are given
as

b yb � , (6)

a j qb q� - , (7)

(8)

(9)

where q and j are the poloidal and toroidal angle, respec-
tively, q is the safety factor, k is the pitch angle, R0 is the
major radius, er = r/R0, and 

–
B is a flux surface averaged

magnetic field. In this coordinates, the bounce-averaged
Hamiltonian H0 and the corresponding kinetic equation are
obtained as,
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where ·fÒY is the bounce-averaged electrostatic potential.
Since the action integral I is an exact invariant in the bounce-
averaged coordinates, the Hamiltonian H0 does not depend
on the corresponding conjugate variable Y, and the fast
bounce motion and the associated ballistic noise are eli-
minated from the equation system. Accordingly, the CFL
condition of the bounce-averaged kinetic electron model is
almost comparable with that of ITG calculations, and the
numerical convergence against the number of bounce centers
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is drastically improved compared with the drift-kinetic elec-
tron model. In the electron (zero banana width) limit, the
trapped particle density is given as
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The bounce-average in Eqs. (12), (13) and (14) is calculated
using a finite sampling point average along the bounce orbit
whose turning points are determined by I or the pitch angle k
of each particles. Actually, 20 ~ 80 sampling points are
chosen along the field line by following Dq = v||/qR0D t with
a constant D t.

Another extension of the code for TEM calculations is a
treatment of the ion polarization density. When we consider
the ITG turbulence with adiabatic electrons, where a linear
unstable region is limited for kqrti < 0.6 (see Fig. 3), a Taylor
expansion for the ion polarization density (the second term
in Eq. (4)), 1 – I0(b)e–b ~ b, is a relatively good approxima-
tion. Under a long wavelength approximation, k^

2 r2
ti << 1, Eqs.

(4) and (5) yield the gyrokinetic Poisson equation for the ITG
mode,
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where ·fÒq is the flux surface averaged potential and lDs is
the Debye length. On the other hand, in analyzing the ITG-
TEM turbulence, which has a broad unstable spectrum up to
a short wavelength region or kq rti 0.6, we use a Pade
approximation for the ion polarization density, 1 – I0(b)e–b ~
b/(1 + b) [10]. By using a Pade approximation, the gyrokine-
tic field equation for the ITG-TEM turbulence is obtained as,
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where cp is a fraction of passing electrons and dnt is the
trapped particle density. In the code, the gyrokinetic field
equation is solved using a finite element method [11] with a
fixed boundary condition f = 0 at r = a and a natural
boundary condition at r = 0.

2.3 New dddddf method based on canonical

Maxwellian

In a nonlinear characteristic d f method [12], d f, which
is defined as a deviation from F0, is solved numerically using
a nonlinear characteristic method. In this method, an evolution
equation of d f along nonlinear characteristics or perturbed
particle orbits is described by
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where dR /dt|1 and dv||/dt |1 show the perturbed part of non-
linear characteristics. Eq. (17) is valid when F0 is an
equilibrium solution, which satisfies dF0/dt = 0. In the
axisymmetric toroidal system, an exact equilibrium solution
is given by a canonical Maxwellian distribution, FCM (Pj, e,
m). However, the conventional d f method was developed
based on a local Maxwellian distribution, FLM (y, e, m). Since
y is not a constant of motion in the axisymmetric toroidal
system, FLM does not satisfy dF0/dt = 0. In the conventional
d f method, Eq. (17) has been used by ignoring a variation of
FLM along the unperturbed characteristics, dR/dt |0 · —RFLM +
dv||/dt |0 �v||FLM. Obviously, this treatment violates the con-
servation property of the gyrokinetic equation. In a new d f
method, we use FCM in calculating the r.h.s. of Eq. (17). In
the flux coordinates (y, q, j, v||, m, a), Eq. (17) is written as
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where yC = –(c/qs)Pj(y, q, v||). Since the new method is con-
structed straightforwardly based on FCM, it keeps the con-
servation property of the system.

3. Linear ITG-TEM calculations

Simulations have been performed using Cyclone base
case parameters [13]: deuterium plasma, R0 = 1.3 m, a = 0.48
m ~ 150rti, B0 = 1.9 T, Te = Ti, R0/Lti = 6.92, R0/Ln = 2.22 at
a reference surface or r0 = 0.5a. The q profile is given as q =
0.84 + 2.18(r/a)2 (q(r0) = 1.4, s(r0) = 0.776).

Figure 1 shows the hi dependence of the growth rate and
frequency. In the frequency spectrum, it is shown that the
ITG-TEM has two independent branches, the ITG mode and
the TEM, which propagate in the ion and electron
diamagnetic directions, respectively [14]. In the adiabatic
electron case, a critical hi exists near hi ~ 2. On the other
hand, in the kinetic electron case, a critical hi disappears, and
the ITG-TEM is destabilized by trapped electrons even at hi

= 0 [15]. In a transition region near hi ~ 2.5, both the ITG
mode and the TEM coexist. In the figure, the bounce-
averaged kinetic electron case shows reasonably good agree-
ment with the drift-kinetic trapped electron case. Differences
of the real frequency (~ 20 %) and the growth rate (~ 10 %)
in a low hi region, where the TEM becomes dominant, may
be due to a deeply trapped assumption k 2 << 1 or a large
aspect ratio assumption r/R0 << 1 used in the present bounce-
average formalism.

Figure 2 shows the kq spectrum of the ITG-TEM. As in
the adiabatic electron case (see Fig. 3), the growth rate
spectrum of the ITG mode peaks at kqrti ~ 0.3, but the growth
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there is no linear driving effect on axisymmetric modes,
because the driving term associated with �FCM/�Pj (the pres-
sure gradient in the Pj direction) disappears. It is noted that
in the zero orbit width limit, the Pj direction becomes the
radial direction or the y direction. But, if we replace FCM

(Pj, e, m) by FLM(y (Pj, q, e), e, m), we have
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In a FLM model, the driving term associated with �FLM/� y
(the radial pressure gradient) can drive axisymmetric modes
through the second term in Eq. (20). For finite toroidal mode
number (n � 0) modes, this spurious driving effect is just a
higher order minor correction compared with the dominant
driving effect in the first term, and the linear theory of micro-

rate itself is enhanced by trapped electrons which do not
respond to the ITG mode adiabatically. In a high kq region,
the ITG mode is stabilized by the finite Larmor radius (FLR)
effect, and the TEM becomes dominant. This high kq region
with kqrti > 0.6 can not be analyzed by using a gyrokinetic
Poisson equation with a long wavelength approximation,
(kqrti)2 << 1. On the other hand, a gyrokinetic field solver with
a Pade approximation successfully captures the high kq ITG-
TEM. It is noted that a linear ITG-TEM benchmark among
GT3D, GTC (a global gyrokinetic PIC code), and FULL (a
local gyrokinetic ballooning code) is now going on, and these
three codes show reasonably good agreements for the linear
frequency and growth rate spectra [16].

4. Zonal flow dynamics in plasmas with

canonical Maxwellian distribution

In most of conventional gyrokinetic simulations, a local
Maxwellian distribution FLM (y, e, m) has been used as an
approximate equilibrium solution. Besides the problem related
to the conservation property of the d f scheme, a gyrokinetic
simulation based on FLM has the following problem.
According to the linear gyrokinetic equation in the canonical
coordinates, (Pj, q, j, e, m, a) [17],

Fig. 1 The hi dependences of growth rate and frequency are plotted for the ITG-TEM (drift-kinetic trapped electrons:
open circle, bounce-averaged kinetic trapped electrons: open square) and the ITG mode (adiabatic electrons:
cross) in Cyclone base case plasmas kq rti = 0.275).

Fig. 2 The growth rate and frequency spectra of the ITG-TEM in Cyclone base case plasmas (R0/Lti = 6.92, hi = 3.12).
Results obtained from gyrokinetic Poisson field solvers with a long wavelength approximation (Taylor) and
with a Pade approximation are compared.
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instabilities has been developed successfully based on a FLM

model. However, for the axisymmetric perturbations, where
the dominant driving term disappears, the spurious driving
term may be more significant.

In order to examine these points, we have performed
linear calculations of the ITG mode and zonal flow damping
tests [18] in Cyclone base case plasmas with FCM and FLM. In
Fig. 3, both the FCM and FLM cases give similar growth rate
and frequency spectra, and both results agree well with the
previous linear benchmark calculations [13]. On the other
hand, in zonal flow damping tests (see Fig. 4), the FCM and
FLM cases show quite different behaviors. In the FCM case,
zonal flows are damped rapidly with m = 1 damping oscilla-
tions and the residual zonal flow level agrees well with the
theoretical prediction [18]. However, in the FLM case, spurious
zonal flow oscillations are excited. This result is inconsistent
with the linear gyrokinetic theory, which predicts no driving
effect on axisymmetric perturbations including zonal flows.

Figure 5 shows the time history of the fluctuation field
energy in ITG turbulence simulations. In the FLM case, zonal
flow oscillations grow after the nonlinear saturation. On the

other hand, in the FCM case, the zonal flow energy keeps a
quasi-steady state. These zonal flow oscillations are often
discussed as the geodesic acoustic mode (GAM). Since zonal
flows are linearly stable, some nonlinear turbulent drive is
needed to excite GAM. However, according to the saturation
amplitude and the turbulent spectra in the initial saturation
phase, such a nonlinear driving effect is expected to be almost
the same in both cases. Thus, it is considered that zonal flow
oscillations are excited by a spurious linear driving effect on
zonal flows in plasmas with FLM.

5. Summary

Through zonal flow damping tests and ITG simulations,
a spurious driving effect of FLM on zonal flows are identified.
This result shows an importance of a new FCM model in gyro-
kinetic turbulence simulations where zonal flows play a
significant role. For the ITG-TEM calculations, GT3D is
extended including kinetic trapped electrons. A computational
cost of ITG-TEM calculations is drastically reduced by a
newly developed bounce-averaged kinetic trapped electron
model. A short wavelength unstable region of the ITG-TEM

Fig. 3 The eigenfrequency spectra of the ITG mode with adia-
batic electrons are calculated for Cyclone base case
plasmas with FCM and FLM.

Fig. 4 Zonal flow damping tests in Cyclone base case plasmas
with FCM and FLM. In the FCM case, the residual flow level
agrees well with the theory.

Fig. 5 The fluctuation field energy in ITG turbulence simulations with FCM and FLM. Cyclone base case plasmas are
simulated with Np = 4 ¥ 107 marker particles. Eturbulence and En =0,m=0 show the turbulent and zonal flow components,
respectively (Etotal = Eturbulence + En = 0, m = 0). In the nonlinear phase, spurious zonal flow oscillations grow in the FLM

case.
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is successfully calculated using a gyrokinetic field solver with
a Pade approximation. The validity of these models are con-
firmed through the preliminary linear ITG-TEM calculations.
The results show that trapped electrons drastically change ion-
scale micro-instabilities. The ITG-TEM turbulence simulation
is essential for a comprehensive study of the anomalous ion/
electron heat transport and the anomalous particle transport.
In a future work, nonlinear ITG-TEM simulations will be
addressed.
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