
LU

JAERI 1341

JP0150188

Gyrokinetic Analysis of Micro-instabilities
in Negative Shear Tokamaks

January 2001

Japan Atomic Energy Research Institute



fit k

SfW W (fflSf^'f ^^S^T.'^SP

mm

Japan Atomic Energy Research Institute

Board of Editors

Yukio SATO (Chief Editor)

Hidetoshi AMANO
Hidehiko ARA1
Tatsuo IYOKU
Akira IWAMOTO
Hideki OMICHI
Masuro OGAWA
Yoshihiro OHARA
Shohei KATO
Masahiro SAIDOH

Fumio SAKURAI
Teikichi SASAKI
Nobuo SASAMOTO
Masakazu TANASE
Takashi TSUDA
Yasushi NOMURA
Tsunetaka BANBA
Kazuo FUJIKI
Nobuvuki IIOSOGANE

Atsushi MAEDA
Tadazumi MUROMURA
Takamasa MORI
Yosuke MORITA
Satoshi YANAGIHARA
Ryuji YOSHINO
Osamu YODA
Tadashi WATANABE

JAKRI u#- \- (i, 11 w ;

, \\4-u

(=r319-1195 ^mU^

319-1195

JAERI reports are reviewed by the Board of Editors and issued irregularly.
Inquiries about availability of the reports should be addressed to Research Information

Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute,
Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan.

(C) Japan Atomic Energy Research Institute, 2001

u & -/- % m



JAERI 1341

Gyrokinetic Analysis of Micro-instabilities in Negative Shear Tokamaks

Yasuhiro IDOMURA

Department of Fusion Plasma Research

Naka Fusion Research Establishment

Japan Atomic Energy Research Institute

Naka-machi, Naka-gun, Ibaraki-ken

(Received October 31, 2000)

Abstract

In order to study linear and nonlinear properties of micro-instabilities in negative
shear tokamaks, a gyrokinetic integral eigenvalue code and a gyrokinetic finite ele-
ment particle-in-cell (PIC) code are developed. Linear calculations show that both
the slab ion temperature gradient driven (ITG) mode and the slab electron tempera-
ture gradient driven (ETG) mode become strongly unstable around the qm\n-surface,
where qm[n is the minimum value of a safety factor q. Both modes have three types
of branches in the negative shear configuration: a single mode-rational surface mode,
a double mode-rational surface mode, and a nonresonant mode. The ETG turbu-
lence in a slab configuration modeling the negative shear tokamak is studied using
a gyrokinetic finite element PIC code. It is found that quasi-steady Er x B zonal
flows are generated in finite magnetic shear regions in both sides of the qmin-surface,
where the electron thermal transport is reduced substantially. Stability analyses of
the electrostatic Kelvin-Helmholtz (K-H) mode show that the quasi-steady Er x B
zonal flow profile is closely related to the g-profile or the magnetic shear, which has
a stabilizing effect on the K-H mode. By changing the ^-profile to reduce the mag-
netic shear, the K-H mode becomes unstable for the quasi-steady Er x B zonal flows,
and the Er x B zonal flows disappear in the weak magnetic shear region. Numerical
results show a possibility of controlling Er x B zonal flows with the magnetic shear,
through the stability of the K-H mode.

Keywords: Gyrokinetic Theory, Negative Shear Tokamaks, Drift Wave Instability,
Kelvin-Helmholtz Instability, Particle Simulation
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1 Introduction

Understanding of a transport process in fusion plasmas is one of the critical issues for

a future development of the magnetic thermonuclear fusion reactor, because the energy

confinement time determines the reactor size which greatly affects economical efficiency. In

order to investigate the turbulent transport in tokamaks, the gyrokinetic theory [1, 2, 3, 4, 5]

has been developed. The gyrokinetic theory provides a rigorous kinetic description of low

frequency phenomena in high temperature tokamak plasmas. In this paper, particularly for

negative shear tokamaks, various linear and nonlinear properties of micro-instabilities such

as the ion temperature gradient driven (ITG) mode and the electron temperature gradient

driven (ETG) mode are addressed, based on the gyrokinetic theory.

1.1 Brief historical review and motivation

Early experimental researches on the energy confinement property in DOUBLET III [6, 7]

have shown that both the ion and electron heat conductivities are considerably high com-

pared with predictions by the neoclassical theory. It has been believed that the tokamak

anomalous transport is produced by a plasma turbulence. Prom density fluctuations ob-

served by the beam emission spectroscopy (BES) measurement, correlation between low

frequency density fluctuations and the anomalous heat conductivity was confirmed [8] in

the Tokamak Fusion Test Reactor (TFTR) [9]. Drift-type micro-instabilities have been

considered as a driving mechanism of a plasma turbulence, because they become unstable

easily for finite density and temperature gradients even in a configuration where magneto-

hydrodynamic (MHD) instabilities are suppressed. From comprehensive theoretical studies

on linear properties of micro-instabilities, various ion and electron modes have been found.

Although the distinction among several branches of drift-type instabilities is sometimes

difficult, they are classified mainly into the slab mode, the toroidal mode, and the trapped

particle mode, depending on their driving mechanisms. The slab drift mode [10, 11] is the

most basic drift wave which is excited by a resonance of particle motion with a wave phase

velocity in the direction parallel to the ambient magnetic field. The toroidal mode [12]

is destabilized by the magnetic drift in a bad curvature region of a toroidal plasma. The

trapped particle mode [10] is caused by a resonance of the precessional drift of trapped

particles with a wave phase velocity. Low frequency density fluctuations propagating in

the ion diamagnetic direction were observed firstly in the Texas Experimental Tokamak

(TEXT) [13], and later in other machines [14, 15]. Thus, a model of the ion anomalous

transport based on the ITG mode has been widely accepted in the magnetic fusion com-

munity, and substantial efforts have been made for a study of the ITG turbulence. Low

frequency density fluctuations propagating in the electron diamagnetic direction have also

been reported [14]. From comprehensive linear kinetic calculations [16, 17], the toroidal

ITG mode and the trapped electron mode (TEM) have been considered as important can-

didates for these ion branch and electron branch fluctuations.
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In recent advanced tokamak configurations with a reversed magnetic shear or a negative

shear configuration, the observed confinement properties have been drastically changed

from those in the conventional normal shear experiments. In the negative shear tokamaks,

significant improvement of the particle and energy confinement due to the internal transport

barrier (ITB) has been observed [18, 19, 20]. The ITB in the weak magnetic shear region

was firstly observed in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade

(JT-60U) [21]. The energy break-even will be expected in the reversed shear plasmas

with the ITB on JT-60U [22]. Since this configuration is realized with a high fraction

of the bootstrap current, the negative shear configuration is considered as a promising

operation mode in future tokamak reactors. The ITB in the negative shear tokamaks

is characterized by steep density and temperature gradients near the (7min-surface. The

sheared poloidal and toroidal flows are often observed in the same region. Here, the qmin-

surface is a magnetic surface where a safety factor q becomes the minimum value. Recent

transport analyses for negative shear tokamak experiments [23, 24] have shown that the ion

thermal diffusivity reduces to the neoclassical level in the internal transport barrier (ITB)

region. This transport reduction is well explained by a model based on a Er x B flow shear

suppression [25] for micro-instabilities, especially for the ITG mode. Coincidence between

the region of the flow shear suppression for the ITG mode, which is characterized by the

empirical condition, UETXB > Tmax [26], and the region of the reduced ion thermal diffusivity

has been obtained experimentally, where uiErxB is the ET x B shearing rate and 7max is the

maximum growth rate of the ITG mode. Although the TEM has also been considered to be

stabilized with the observed OJET-KBI the electron thermal diffusivity is often still anomalous

in the ITB region. Recently, the ETG mode [27, 28] has been proposed as a cause of the

electron anomalous transport in the ITB [29]. In analyses for the DIII-D negative shear

discharges [30], it has been shown that the growth rate of the toroidal ETG mode greatly

exceeds an observed Er x B shearing rate, and that the electron temperature gradient is

limited by its critical value where the toroidal ETG mode is marginally stable.

In most of analyses mentioned above, linear growth rates have been evaluated with ki-

netic ballooning calculations [16, 17], which solves a linear gyrokinetic eigenmode equation

under the ballooning representation or the Wentzel-Kramers-Brillouin (WKB) approxima-

tion. Since the scale length ordering between the radial mode structure and equilibrium

profiles or k~l/Ln ~ k~l/Lt <C 1 has been considered to be valid for relatively high-n

modes in the conventional normal shear tokamaks, the WKB method has been adopted

in these calculations, where n is a toroidal mode number, kr is a wavenumber in the ra-

dial direction, and Ln and Lt are scale lengths of the density and temperature gradients,

respectively. However, as is shown in recent works using the gyrokinetic global spectral

code [31, 32], the linear gyrokinetic particle-in-cell (PIC) code [33], and the nonlinear gy-

rokinetic PIC codes [34, 35], medium (or low)-n modes have a global radial eigenmode

structure. Furthermore, in negative shear tokamaks, steep density and temperature pro-

files have been observed in the ITB region or a weak magnetic shear region around the
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9min-surface. The scale length ordering should be modified as k~l/Ln ~ k~l/'Lt < 1, where

the WKB approximation may not be a good approximation. In analyzing various micro-

instabilities ranging from a relatively long wavelength ITG mode to a short wavelength

ETG mode, a treatment of the full finite Larmor radius (FLR) effect is required. There-

fore, a global approach based on a gyrokinetic integral eigenmode equation is required for

studying properties of micro-instabilities in the ITB region of the negative shear tokamaks.

Although several kinetic eigenvalue codes based on the Vlasov or gyrokinetic integral

eigenmode equation have been developed for a slab or cylindrical geometry [31, 36, 37],

and for a toroidal geometry [32, 38], numerical results for clarifying properties of micro-

instabilities in the negative shear configuration were very limited. Only a few cases have

been reported in Ref. [32], where the ITG mode with a medium-n mode number (n ~ 10)

shows a slab-like eigenmode structure in the negative shear configuration. This may imply

an importance of the slab ITG mode in the negative shear configuration.

The linear theory is useful for providing many insights on the driving mechanism, the

characteristic wavelength and frequency, and the marginal stability condition. However, as

for a study of micro-instabilities, prior attention should be paid to their nonlinear proper-

ties, because fluctuations which are usually observed in tokamak plasmas are considered as

a nonlinearly saturated state of micro-instabilities. In relation to Er x B flow shear stabi-

lization of the ITG mode, the linear stability analyses were performed for a model ET x B

shear flow [37, 39]. Using the empirical condition, u)ErxB > 7max5 the Er x B flow shear

suppression has been discussed for the experimental Er x B shear flow [24, 30]. However,

important nonlinear issues such as a generation of self-consistent Er x B shear flows in a

neutral plasma can not be resolved only by the linear theory. It is essential to consider a

nonlinear approach in analyzing the transport properties of fusion plasmas. A lot of the-

oretical attempts have been made to describe nonlinear properties of micro-instabilities.

The quasilinear theory and the weak turbulence theory [40, 41] are standard descriptions

of a drift wave turbulence in tokamak plasmas, which is considered as a weak turbulence,

but the present existing theories are not enough for explaining the experimental data

completely. Thus, future experimental devices such as the International Thermonuclear

Experimental Reactor [42] (ITER) have been designed principally based on the empirical

energy confinement scalings obtained from the experimental database.

Besides experimental and theoretical approaches, recent progress on high performance

computers and numerical techniques suggest the third approach, a computer simulation or

a numerical experiment. The particle simulation model of plasma is one of the standard

simulation methods in the space and laboratory plasma research [43, 44, 45]. In this

model, a plasma is simulated by following motions of a large number of particles in the

self-consistent electromagnetic fields, which is described with the coupled Newton-Maxwell

equations. The particle model essentially describes all the phenomena from the microscopic

phase space trajectory [46] to the macroscopic collective motion. Since simulations based

on the particle model require a large storage memory and a high computational speed, both
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the time and spatial scales of phenomena investigated by the particle model were greatly

limited with the available computational resources. Recent improvements in simulation

techniques and development of parallel computers make a large scale plasma simulation

with ~ 109 particles possible.

As for a simulation modeling in the fusion plasma research, a global gyrokinetic particle

simulation has become a powerful tool in a study of kinetic instabilities in tokamaks. In

these problems, the frequency of the drift wave or the kinetic MHD mode is much smaller

than that of basic plasma phenomena, such as the plasma oscillation or gyro-motion of par-

ticles. In order to explore the low frequency physics in tokamaks, the empirical gyrokinetic

model was firstly proposed by Lee [1]. The model was refined in an excellent way using the

action-variational Lie perturbation method [47, 48], and the gyrokinetic formalism of the

Vlasov-Maxwell system was derived [3, 4, 5]. The gyrokinetic Vlasov-Maxwell system was

successfully implemented on the gyrokinetic particle simulation code [49]. In the gyroki-

netic Vlasov-Maxwell equations, the gyro-motion of particles, and the waves arising from

the gyro-resonances, are removed analytically without losing important physical effects

such as the FLR effect and the polarization effect of the gyrating particles. In this system,

the plasma oscillation (the longitudinal wave) is also excluded because of the gyrokinetic

ordering, k\\/k± ~ O(e), where k\\,k± are the wave vectors in the parallel and perpendicular

direction to the ambient magnetic field, respectively. As a result, the global gyrokinetic

particle simulation is enabled with the simulation time step of ~ Q"1 and the spatial grid

size of ~ p, where fi and p denote the gyro-frequency and the gyro-radius, respectively.

In recent years, the ITG turbulence has been studied intensively using the global [34, 35]

and local [50] gyrokinetic PIC codes. A modeling for the gyrokinetic particle simulation

tends to converge through a number of linear and nonlinear benchmarks [51]. One of the

most important physics found in those simulations is a reduction of the ion anomalous

transport due to the turbulent driven Er x B shear flows or zonal flows [35]. The genera-

tion of Er x B shear flows or ET x B zonal flows in a magnetized plasma was discussed by

several authors. Hasegawa et al. discussed a self-organization process of an electrostatic

drift wave turbulence by analogy to a Rossby wave turbulence [52]. A generation of shear

flow due to a self-organization process or an inverse wave energy cascade was shown for

the electrostatic turbulence [53]. Diamond and Kim proposed the flow generation mech-

anism based on the turbulence-induced Reynolds stress [54]. Recently, Diamond et al.

discussed the modulational instability of coherent drift waves as a mechanism of zonal flow

generation [55].

We recognize here that for keeping quasi-steady Er x B shear flows, the Er x B shear

flows should be linearly stable for perturbations destroying the flow structure. Accord-

ing to the Rayleigh necessary condition for instability, it is well known that the Kelvin-

Helmholtz (K-H) mode becomes unstable in a neutral fluid or a plasma, provided that the

flow velocity profile has an inflection point of flow shear [56]. If we assume a homogeneous

magnetized plasma in a uniform background field with sufficiently large system size that
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satisfies Lv/Lx < 1, the K-H mode is basically unstable for Er x B zonal flows, where Lx

is a system size and Lv is a characteristic scale length of flow shear. This implies that an

intrinsic stabilizing effect on the K-H modes is required for sustaining quasi-steady Er x B

zonal flows.

Prom a comparison between the gyrokinetic [50] and gyro-Landau fluid [57] simulations

of the ITG turbulence, it was shown that a damping mechanism of the ET x B zonal flow

plays a critical role for determining an ion thermal diffusivity in the saturated stationary

state. Rosenbluth et al. have shown that a damping of a poloidal flow is sufficiently weak in

collisionless high temperature plasmas [58]. However, if Er x B shear flows become unstable

to the K-H mode, Er x B shear flows are destroyed easily. Therefore, it is crucial to study

the stability of ET x B shear flows or Er x B zonal flows, especially for understanding the

transport properties of the ITB in negative shear tokamaks, where Er x B shear flows are

considered to play a critical role.

1.2 Outline

In Section 2, basic equations are derived, and their physical meanings are discussed. In

Section 2.2, by showing the formulation of the kinetic equations from the Newton-Maxwell

equations to the Vlasov-Maxwell equations, the basis for the collisionless or Vlasov de-

scription of a plasma is discussed. In Section 2.3, the gyrokinetic Vlasov-Maxwell system

is formulated based on the Lagrangian formalism of the action variational Lie perturbation

method. In Section 2.4. a similar approach is also considered for the treatment of the

transit motion of high energy passing electrons, and the equation system is extended to in-

clude the orbit-averaged electron drift-kinetic equation [59]. This equation system enables

an efficient description of the low frequency phenomena with thermal electrons. In Section

2.5, the energy conservation low is derived from an intrinsic nature of the Hamiltonian

system, which is conserved via an area preserving property of the Lie transform.

Linear calculations for the slab ITG mode and the slab ETG mode in the negative shear

configuration with TFTR like parameters are presented in Sections 3 and 4. In Section

3.2, the linearized gyrokinetic Vlasov-Maxwell system is formulated to derive a gyrokinetic

integral eigenvalue equation with retaining the full kinetic responses of ions and electrons.

Although a full toroidal calculation is essential for quantitative understanding of the linear

stability, it is useful to capture the underlying physics even with a preliminary sheared slab

model. In studying micro-instabilities in such a new configuration as the negative shear

configuration, it is important to restructure a linear theory of slab drift waves before doing

full toroidal calculations. Therefore, we have started a development of our code from a

sheared slab geometry.

Depending on a number of the mode-rational surfaces, the slab ITG mode in the

negative shear configuration has three types of branches: a single mode-rational surface

(Single) mode, a double mode-rational surface (Double) mode, and a Nonresonant mode.
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In Section 3.3, for the latter two modes, new analytic solutions of the negative-sheared slab

ITG (NS-ITG) [60] mode are presented using a Weber type differential eigenmode equation.

In Section 3.4, all three types of the NS-ITG modes are identified in numerical results

obtained from the gyrokinetic integral eigenvalue code. The stabilizing and destabilizing

mechanisms of the NS-ITG mode are discussed in detail based on both the fluid and kinetic

pictures.

Three types of solutions are also found for the slab ETG mode. However, unlike the

conventional theory of the ETG mode [10], it is found that the ITG and ETG modes show

different features for the present plasma parameters. In Sec 4.2, analytic solutions of the

negative-sheared slab ETG (NS-ETG) [61] mode are obtained from a new Weber type

differential eigenmode equation which is formulated with retaining the Debye shielding ef-

fect. This new eigenmode equation shows that for typical fusion plasma parameters with

X2
De » Pte, the Debye shielding is effective for the ETG mode, while for the ITG mode,

the quasineutrality condition is imposed by the ion polarization. Here, Xoe is the electron

Debye length and pte is the electron Larmor radius. In Section 4.3, numerical solutions

of the NS-ETG mode is obtained by the gyrokinetic integral eigenvalue code. In Section

4.4, the obtained numerical solutions of ITG and ETG modes are compared quantitatively

with respect to the growth rate spectra, the critical values of the temperature gradient

parameter, and the mixing length estimate for the transport coefficients. From these lin-

ear calculations, it is shown that a plasma turbulence in the negative shear tokamaks is

considerably different from that in the normal shear tokamaks.

In Section 5, nonlinear simulations of the ETG turbulence [62, 63] are presented with a

gyrokinetic finite element PIC code [33]. In the numerical results, a generation mechanism

and a stability of turbulent driven Er x B zonal flows are investigated intensively. In

Section 5.2, an implementation of the gyrokinetic finite element PIC code is described. The

simulations of the Nonresonant NS-ETG mode are shown in Section 5.3. A spontaneous

generation of the Er x B zonal flows is observed in the simulations. Effects of Er x B

zonal flows on the electron anomalous transport are discussed based on the simulation

data. In Section 5.4, a stability of Er x B zonal flows is studied from a point of view of

the K-H instability. The magnetic shear stabilization of the K-H mode is shown both in

analytical and numerical calculations. A dependence of the marginal ET x B shear flow

velocity on the magnetic shear is studied using the gyrokinetic integral eigenvalue code,

which is extended to include an equilibrium ErxB shear flow. From a comparison between

linear calculations of the K-H mode and the observed ET x B zonal flow profile, it is shown

that the K-H mode plays a critical role in the underlying physics of the Er x B zonal flow

in the ETG turbulence. A possibility of controlling the ET x B zonal flow and resulting

confinement improvement is discussed. In Section 5.5, the linear stability of the ITG mode

in the presence of the Er x B zonal flows is analyzed using a gyrokinetic Fourier particle

code in which the full FLR effect is involved. From numerical results, it is shown that

the microscopic Er x B zonal flow with pu/Lv ~ O(l) is effective for stabilizing the ITG
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mode [64].

Finally, in Section 6, obtained new physical results are summarized, and conclusions

are presented. Remarks for future studies are also discussed.
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2 Gyrokinetic Vlasov-Maxwell system

2.1 Introduction

The Newton-Maxwell equation system is the most rigorous description of the dynamical

system consists of many charged particles. Since it is impossible to follow all the particle

motions in the system directly, some statistical treatments are required for describing a

many charged particle system or a plasma. The Vlasov-Maxwell system is considered

as a statistical description of a collisionless plasma. When a discreteness parameter is

sufficiently small like a fusion plasma, the Vlasov-Maxwell system is useful to study various

kinetic phenomena. However, in analyzing relatively low frequency waves, the frequencies

of either the collisionless drift wave or the kinetic MHD mode are much smaller than

that of basic dynamics, such as the plasma oscillation or the gyro-motion of particles. In

order to investigate the low frequency physics in fusion plasmas efficiently, the gyrokinetic

formalism [1, 2, 3, 4, 5] of the Vlasov-Maxwell equations has been developed.

In the gyrokinetic theory, time scales of a fast gyro-motion of particles and low fre-

quency waves are separated under the gyrokinetic ordering. Using the action-variational

Lie perturbation method [47, 48], a fast periodic gyro-motion, which is recognized as a

non-secular perturbation in low frequency waves, is removed from the system, and the gy-

rokinetic Vlasov-Maxwell system appropriate for a description of low frequency phenomena

is derived without losing important physics, such as the FLR effect.

A similar treatment is also considered for disparate time scales between a parallel

thermal motion, which is characterized by a bounce frequency or a transit frequency in a

toroidal plasma, and low frequency waves. Within the gyrokinetic model, we present an

orbit-averaging model [59] for high energy passing electrons. In this model, the action-

variational Lie perturbation method is applied to the treatment of the transit motion of

fast passing electrons in a slab configuration. Since the inherent nature of the Hamiltonian

system is kept in the Lie transform, a conservation low is straightforwardly derived also for

the system with the gyrokinetic and orbit-averaging model.

2.2 Vlasov-Maxwell system

By following the text book by Ichimaru [65], we derive kinetic equations for a plasma

consists of single species charged particles with a smeared-out neutralizing background

charge (or the one component plasma).

A system of many charged particles is fully described by the Newton-Maxwell equations,
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N

n-I>(x-x,-(t))

E(x,t) = -V0(x,t),

(3)

(4)

where Xj and Vj are the position and velocity of j-th particle, respectively, m is the mass,
q is the charge, n is the average number density, N is the number of particles, 0 is the
electrostatic potential, and E(x, t) is the electric field. In Eqs. (l)-(4), the electrostatic
approximation is used for simplicity.

In order to change the description of the system from Lagrangian variables to Eulerian
variables, we introduce the Klimontovich distribution function,

(5)

(6)

where Xj(t) denotes the j-th particle trajectory in the six-dimensional phase space. The
distribution function (5) satisfies the continuity equation in the 6AT-dimensional phase
space,

dM dM • dM _
(7)

dt dt dX

Writing the phase space coordinates explicitly and using Newton's equation (1) and (2),
we have

dM dM q _ dM „ , .
(- v • 1- —E • = 0 (8)

dt ax m av ' v '

which is coupled with the Poisson equation (3) through the electric field (4) to obtain
a closed set of equations. By assuming a system without an external electric field, E is
represented explicitly with the analytical solution of the Poisson equation,

(9)

Substituting the expression (9) into Eq.(8), we obtain the Klimontovich equation,

I- + £(X) - / dX'V(X, X')JV(X')1 M(X) = 0,
dt J J

d

V(X,X') = —

£(X) = v
ex.2 / d l \ JL

) ' dv'

(10)

(11)

(12)

where £(X) denotes a single-particle operator and V(X, X') is a two-particle operator
arising from Coulomb interaction.

The Klimontovich equation is a rigorous microscopic description of a fully ionized
plasma and gives a deterministic time evolution of a plasma in the phase space, provided
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that we could set the initial conditions for all the particles. However, it is impossible to

perform orbit calculations for ~ 102Om~3 of charged particles. Prom a practical point of

view, it is not necessary to obtain the time evolution of all the particles, and, therefore, we

consider a coarse-graining treatment in the following.

In the 6iV-dimensional phase space, the phase point is defined as

{X i} = (X 1 ,X 2 , - - . ,X A , ) . (13)

Here, we consider statistical ensembles X for the system {Xj} and introduce the Liouville

distribution D({Xi} ;t) in the 6iV-dimensional phase space according to

^({XJ^lXa^Jim!, (14)

where X{ refers to the number of ensembles in an infinitesimal volume d {X^} around {X;}.

By the definition it satisfies the normalization condition

fd{Xi}D({Xi};t) = l. (15)

By using the Liouville distribution (14), the ensemble average of a microscopic quantity

A (Xi, X2, • • •, XJV; {Xj}) is defined as

(A(X1,X2,---,XN;t)) = Jd{Xz}D({Xi}-t)A(X1,X2,---,XN;{Xi}). (16)

T h e s-particle d is t r ibut ion function Fs(l,2, ••• ,s) is ob ta ined by averaging the Kl imon-

tovich d is t r ibu t ion as

(17)

F2(l,2) = (Af(l;t)Af(2;t))-6(l-2)F1(l), (18)

F3(l,2,3) - (Af(l;t)Af(2;t)Af(3;t))-6(l-2)6(l-3)F1(l)

-6(1 - 2)F2(2,3) - 6(2 - 3)F2(3,1) - 6(3 - 1)F2(1,2), (19)

where the coordinates, Xi ,X 2 , - - - , are replaced by simplified notations, 1,2, •••. The

higher-order distributions have information of interaction between multi-particles. On the

other hand, the single-particle distribution is sufficient for a kinetic description of a col-

lective motion in a plasma. The s-particle distribution function is calculated by using the

ensemble averaged Klimontovich equation.

The Klimontovich equation (10) is written using a notation introduced above as

d _ / • , „ , . , . „ , . „ „ -17V"(1; t) = 0. (20)
m , ̂ , - jdX2V(l,2)U(2]t)

Carrying out the ensemble average of this equation, we have an equation for the single-

particle and two-particle distributions,

= | d X 2 V ( l , 2 ) F 2 ( l , 2 ) . (21)
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Here, from the symmetry of the two-particle operator V(l,2), a relation

jdX25(\ - 2)V(1,2)F2(1,2) = 0, (22)

is used. For the two-particle and three-particle distributions, we transform the Klimon-

tovich equation in the following form,

^+£(l)+£(2)

= I dX3[V(l,S) + V(2,3)]M(l;t)Af(2; ;t), (23)

By taking the ensemble average of Eq. (23), we obtain an equation for the two-particle

and three-particle distributions,

(24)= J dX3 [V(l, 3) + V(2,3)] F3(l, 2,3).

These procedures are analogously extended to the s-particle distribution function and we

have the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy equations,

d_
dt

i, S + , • • - , 8 , 3 (25)

Since the BBGKY hierarchy has a structure such that the s-particle distribution function

depends on the (s + l)-particle distribution function, there is no straightforward closed

form in itself. We then consider a truncation method for the hierarchy equations.

The discreteness parameter A is defined as the inverse of the number of particles

contained in the Debye sphere,

A = (y^Af,) , (26)

where n is the mean particle density and AD is the Debye length. Since the discrete-

ness parameter A becomes extremely small parameter, ~ 10~10, for typical fusion plasma

parameters, we can expand the s-particle distribution function with respect to A,

r i 17(0) 1 Z? ( l ) _(_ f?(2) 1 . . . (l?7\

We substitute this expression to the BBGKY hierarchy equations (25) and leave only the

lowest order terms to obtain

d

(28)= £ | dXs+1V(h s + 1)FS
(°\(1, •. • •, s, s + 1).
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In order to truncate the hierarchy equations, we introduce an ansatz that Fj® is expressed

in a form of a product of single particle distribution functions,

(29)

where f(i) is the normalized single-particle distribution function. Substituting this relation
into Eq.(21), we have an equation for f(i),

= n|dX2V(l,2)/( l ) / (2) . (30)

Writing £, V and the simplified notations 1,2, • • •, explicitly, this equation is rewritten as

JdX2

.2 s / a 1 \ a

(31)

The right hand of Eq.(31) represents the many particle correlation which corresponds to

the collision operator. A small discreteness parameter of fusion plasmas A ~ 10~10 enables

a description in the Vlasov limit [66], where the individuality of the particles is suppressed.

The Vlasov limit or the fluid limit is introduced by taking the limit m —> 0, q —> 0, n —>• oo,

remaining q/m,nq as constant. In this limit, the collision operator is eliminated and the

Vlasov equation is obtained,

d
ot

d q2n
m j

« •
d

(32)

The Vlasov equation (32) is recognized as a conservation law of / along the characteristics

in the six-dimensional phase space. Consequently, the Vlasov-Maxwell system is the Hamil-

tonian system. The Hamiltonian structure of the Vlasov-Maxwell system is advantageous

in studying the perturbation theory and performing a nonlinear simulation.

2.3 Gyrokinetic model

In this section, the derivation of the gyro-phase averaged Vlasov-Maxwell equations using

the Lagrangian formalism [5] is shown.

Let us consider a charged particle motion in a strong background magnetic field with an

electrostatic fluctuation. For describing a charged particle motion in a strong magnetic field,

it is convenient to use the non-canonical coordinates, so-called the gyro-center coordinates,

z = (t; R, vz, M, 6), where R is the position of guiding center; vz = v • b; v± — |v x b|; M

is defined as M = mv\/2Q.; Q. = qBo/mc; m and q are the mass and charge of particles,

respectively; c is the velocity of light; the gyro-phase angle is given by 8 = tan~1(v-ei/v-e2)

and ei, e2 are the unit vector in the x- and ^/-directions. In this formulation, we consider



JAERI 1341 2. Gyrokinetic Vlasov-Maxwell system 13

a sheared slab geometry. Here, in addition to the uniform magnetic field Bo = Bob

in the z-direction, the finite sheared magnetic field Bi(x) is imposed in the y-direction.

B\/BQ ~ O(e) is assumed for describing tokamak plasmas. In this configuration, the

fundamental one-form of a perturbed single particle motion in the canonical coordinates

(t; x, v) is given by

7 = f-Ao(x) + -Az(x)b + mvl • dx - \-mv2 + q<j>(x, t)] dt, (33)

where <fi is the perturbed electrostatic potential, and Ao and Az(x)b are the vector poten-

tials describing Bo and Bi, respectively. In general, a transformation to the gyro-center

coordinates is performed using the Darboux transformation [47]. In the present case with

the uniform background field Bo, the transformation is done by using a simple gauge trans-

formation, in which a gauge scalar is chosen as —(mv±/Bo)Ao • [cos 0e\ — sin Oe-^. We then

obtain the fundamental one-form in the gyro-center coordinates as

70 = -A o • dR± + mvzdRz + Md6 - hodt, (34)

(35)

and the Hamiltonians h0, hi are

ho = MQ + -mv2
z, (36)

h = # ( R + p,t), (37)

where p = b x v/Q and Rj_ denotes the coordinate vector in the perpendicular direction

to b. Since the wavenumbers and frequency of the low frequency fluctuation, or the char-

acteristic scale lengths in tokamak plasmas can be specified, we analyze a charged particle

motion with Eqs. (34)-(37), under the usual gyrokinetic ordering: ui/Q ~ k\\/k±. ~ q<t>/T ~

p/Ln ~ O(e), where u) is the characteristic frequency of the fluctuation, fc|| and k± are

the wavenumbers in the parallel and perpendicular directions to b, T is the temperature,

and Ln is the characteristic scale length of the density gradient. The unperturbed particle

motion described by the Euler-Lagrange equation of Eq. (34) involves the fast periodic

motion about 6, the gyration of a particle. We consider to transform the fundamental one-

form, Eqs. (34)-(37), to the system where the ^-dependent non-secular perturbation does

not exist by using the non-canonical Lie transform. The first order Lie transform [47, 48]

is

To = 7o, (38)

f (39)

, (40)

where f is the fundamental one-form in the new coordinate system. Under the gyrokinetic

ordering, the generating function S\ and the generator g% of the first order Lie transform
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are solved as:

lf (41)
(42)

9? = -^-VR,S1xb--^b, (43)
qB mdvz

(44)? R 1
in vnc

M _

a6 - - ^ (46)
91 ~ dM' { }

where (•)<? denotes a ̂ -independent part of a quantity, Az = Az — {Az)e is the f?-dependent

part of Az, and ^ = (p—vzAz/c is a generalized potential. It is noted that in an electrostatic

model, the ^-dependence of the shear magnetic field Bi = Vx^4^b is often ignored (Az = 0)

because of the tokamak ordering Bi/B0 ~ O(e). We then find the fundamental one-form

in the gyro-averaged coordinates, Z = (t; R, vz, M, 6),

T - - A o • dR± + UAZ)§ + mvz] dRz + Mdd - hdt, (47)
c

where the gyro-phase averaged Hamiltonian is

h = MQ + \mv2
z + q{4>)e. (48)

Relations between the non-vanishing components of the Poisson tensor in the gyro-center

coordinates z and those in the gyro-averaged coordinates Z are calculated as

^ - , (49)

—, (50)

-1, (51)

where {, } denotes the Poisson bracket. Since the Poisson tensor possesses a form invariance,

the area preserving property of the Hamiltonian system is kept in this transformation.

The Jacobian of the gyro-center coordinates, D, and the gyro-averaged coordinates, D,

are also unchanged, D = D = \qmB0/c\. By calculating the Euler-Lagrange equations

Z,j, — (dfjTv — ^f/j)~1(5tf1/ — duh), we obtain equations of motion in the gyro-averaged

coordinates:

^ ^ ^ (52)

( 5 3 )
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We then have the gyrokinetic equation for the distribution function, F , in the gyro-averaged

coordinates,

f + [ | ;bx V.<«>, + |(B),-] • VftF - ^ ( B ) , • V f t W , -f | = 0, (56)

where B = B o + Bi = VxAo + VxA s b. It is noted that, since the Hamiltonian h is not

a function of 6, F must be ^-independent.

For Eq. (56), we impose the consistency condition in the real space, x. From the

functional relationship of a scalar function in the Lie transform, the distribution functions

F in the gyro-averaged coordinates and / in the gyro-center coordinates are related as

+ C?(e2), (57)

where (•) denotes dummy arguments. We then have the particle density n in the real space

as:

(x,i) - If{R,vz,M,e,t)6([R

1 a ~\ dF dSi dF - - * -
—b-VKSi + —Az) — + —±—=- 6([R + p]-x)Dd?Z. (58)

^m me J ovz 08 oM\

In evaluating the second term in Eq. (58), we will linearize the distribution function with

a local Maxwellian,

TO(RX) 2T0(R,)J ' (59)

where no and To are the background guiding center density and temperature, respectively.

With retaining the leading order terms and substituting the generating function (41) into

Eq. (58), we obtain the usual polarization density,

= f F(R,vz,M,t)5([R

= f
-~- E [l - hfofi) exp(-fcip?)] faexp(ik • x), (60)

Jo k

where pt is the Larmor radius evaluated with the thermal velocity and IQ is the zeroth order

modified Bessel function. It is noted that, since we are considering electrostatic pertur-

bations, such as drift waves driven by density and temperature gradients, the equilibrium
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current, which appears as the drift velocity in the local Maxwellian, is ignored, and the

sheared magnetic field Bi is treated as an external field in the present formulation. Finally,

the self-consistency condition is imposed with the Poisson equation,

- V 2 0 = 47re[n i(x)-ne(x)]. (61)

Equations (56), (60) and (61) constitute a closed set of equations, which describe the low

frequency dynamics of tokamak plasmas.

2.4 Orbit-averaging model

In this section, we present an orbit-averaging model for fast passing electrons, which is

formulated under the transit time ordering. The formulation is shown for a limit of the

drift-kinetic electrons pe —• 0 and the shearless or semi-local case Bi —• 0.

Before introducing the transit time ordering, we briefly discuss the ballistic mode [67].

By taking the drift-kinetic limit of Eq. (56), we have the electron drift-kinetic equation in

a shearless slab configuration,

£ + l^bV^ + M V F + —b • V R ^ = 0. (62)£ + l^bxV^ + vM VftFe +
at IBO J me z

We linearize the electron distribution function as Fe = Fe0 + F e l and apply the Fourier-

Laplace transform to the perturbed distribution function F e l and the perturbed electro-

static potential (f>. We then have a perturbed distribution function,

F e i k ( * = 0 ) \ ( / o ) ^ e O + ( / e ) z ( e O / z ) ] l p M
FeiP,k = , ., _ 1 , ., _ , (63)

p + ikzvz p + ikzvz

where p is a complex frequency. In Eq. (63), the second term shows the contribution from

the eigenmode of the system. The first term (the ballistic term) shows a perturbation

due to the free streaming of particles. This means that the Vlasov system conserves the

memory of an initial perturbation during the whole time. By taking the inverse Laplace

transform of the first term, the perturbation of the ballistic mode is obtained as

FeiBk(t) = FelBk(t = 0) exp(-ikzv,t). (64)

The contribution of Fe\B to the Poisson equation vanishes as t —> oo because of the phase

mixing; therefore, the ballistic term is not often considered in the linear analysis. However,

in a simulation which solves the initial value problem directly, the system will inevitably

contain the ballistic mode. From the comparison of the transit time rtr to the characteristic

time scale of the low frequency fluctuation (e.g., the Alfven time TA), we have the following

relation:

— = — ~ —P , (65)
rtr vA \me }
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where rtr is evaluated with the electron thermal velocity vte and j3 is the plasma beta. For

the case /? ~ 5%, TA/rtr becomes ~ 10. Although the ballistic mode plays no important

roles in the low frequency physics in fusion plasmas, the electron ballistic mode arising

from the high energy electrons determines the Courant-Friedlichs-Lewy (CFL) condition of

the simulation system. In order to reduce the computational cost of the global gyrokinetic

particle simulation with drift-kinetic electrons, we eliminate the ballistic mode analytically

by applying a secular perturbation theory to the high energy transit electron. We separate

the time scale of the low frequency fluctuation and the transit motion of the high energy

electrons by introducing the transit time ordering uj/u!tr ~ O(e), where utr = kzvte. Since,

in the orbit analysis of the high energy transit electron, the adiabatic change is assumed for

the low frequency fluctuation of the eigenmode, the Z-dependent non-secular perturbation

is averaged over the unperturbed orbit. Consequently, the ignorable coordinate, Z, and the

corresponding adiabatic invariant appear in the perturbed orbit. In the averaging trans-

formation, we adopt the action variational Lie perturbation method as in the gyrokinetic

theory.

Let us consider the high energy electron to which we apply the transit time ordering.

By taking the limit of pe —»• 0 and Az —> 0 in Eqs. (47) and (48), we have the fundamental

one-form for the electron in the gyro-averaged coordinates,

T A (66)

where the Hamiltonian h is

1 _2
h = M$le H—Ttievz — e<j). (67)

By neglecting 0 in Eqs. (66) and (67), we obtain equations for the unperturbed orbit,

(68)

I = °. («)
= 0, (70)

I - *
The particle motion in the ^-direction is periodic because the periodic boundary condition

is imposed in the ^-direction. This corresponds to the inherent periodicity in the toroidal

system. The unperturbed orbit of the transit electron contains the fast periodic motion

in the ^-direction. Using the non-canonical Lie transform, the fundamental one-form,

Eq. (66), is transformed to the orbit-averaged coordinates, Z = (t; X, V, M, 8), where the

^-dependent non-secular perturbation is removed. The functional relationship of the first

order Lie transform is again given as

To - r0 , (72)
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'Y* Ao j "p _i_ "p (7'\\

ylj\L 0)1/ -— QY \^U*- OU C/n,i. Qi/) j \ * Q)

where T is the fundamental one-form in the orbit-averaged coordinates. Under the transit

time ordering, the generating function S\ and the generator g^ of the Lie transform are

solved as,

01 = — > — Qve , (75)
, , n lruzuz

(76)S? = ^Vft
eB0

9T = ^ b - V R ^ ' (77)

9? = 0, (78)

g{ = 0. (79)

We then have the fundamental one-form T and the Hamiltonian "H in the orbit-averaged

coordinates,

T = - - Ao • dX± + meVdZ + Md6 - Hdt, (80)
c

H = MQe + \meV
2 - e(<t>)z, (81)

where {-)z denotes a Z-independent quantity. Also for the fundamental one-forms, Eqs.

(66) and (80), the non-vanishing components of the Poisson tensor are calculated as

£ (82)

{R,,va} = {Z,V} = ±-, (83)

{M,9} = -1, (84)

where the Jacobian of the orbit-averaged coordinates is Ve = De = \emeBo/c\. Conse-

quently, the transformation to the orbit-averaged coordinates is also the area preserving

transform. The Euler-Lagrange equations of the fundamental one-form, Eq. (80), are

, (85)

f

dtdt
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Like the symmetry about 6 in the gyrokinetic system, this system has another symmetry

about Z\ therefore, the momentum in the Z-direction is also an adiabatic invariant in the

orbit-averaged coordinates. The change of velocity due to an adiabatic response to the low

frequency fluctuation is absorbed in the generator (77) and is proportional to the amplitude

of kz 7̂  0 component of the electrostatic potential. Accordingly, when the instability is

weak, the high energy electrons remain in the same region of velocity space during the

whole simulation time. Prom equations of motion (85)-(89), we obtain the orbit-averaged

drift-kinetic equation,

-j^ + — bx Vx±(0)z • Vxx-Fe = 0, (90)
at ±>o

where Te is the electron distribution function in the orbit-averaged coordinates. Since the

Hamiltonian H is Z-independent, the 8J-e/dZ term does not appear in Eq. (90) and the

problem reduces to a two-dimensional problem which involves only the E x B nonlinearity.

The self-consistency condition for this equation system is also imposed in the real space

x. By using the functional relationship of a scalar function in the Lie transform, the high

energy part of the electron distribution function in the gyro-averaged coordinates, Fe, takes

the form:

+ O(e2). (91)

Substituting Eq. (91) into the electron density, Eq. (58), we have

ne(x,t) = [ Fe(R,vz,M,t)5(R-x)Ded?Z

f Te(X±,
JH

f [-4-
JH L eB0— b • V x & l ^ l S(X - *)Ve<fZ + O(e2), (92)

where the electron polarization density vanishes in the drift-kinetic limit. In Eq. (92), the

first term is the contribution from the low energy part of the electron distribution function

[ which is determined by Eq. (62)] and the other terms show the contribution from the high

energy electrons. As in the case of the ion polarization density, the third term is evaluated

with the local Maxwellian;

ne(x,t) = Fe8(R-x)DedPZ + Fe6(X- x)DecfZ + —-N* (<f> - {<p)z), (93)
JL JH iQe

exp
271

dV, (94)

where noe and T$e denote the local background electron density and electron temperature

respectively, and VeL is the threshold velocity where the high and low energy part of the

electron distribution function are separated. In Eq. (93), the third term represents the
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adiabatic response of the high energy electrons to the fluctuating electric field. This is

shown clearly by taking the limit VeL —* 0. In this limit, we can see that this renormalized

term reduces to the usual adiabatic approximation, enoe/Toe{4> — (4>)z)- Eqs. (56), (60),

(61), (62), (90), and (93) constitute a closed set of equations in which the ballistic mode

arising from the high energy transit electron is removed. Here, the threshold velocity,

VeL, must be chosen carefully in order to correctly incorporate the wave-particle resonant

interaction or the particle trapping effect.

2.5 Energy conservation

In this section, the energy conservation property [68] of the gyrokinetic Vlasov-Maxwell

system is derived by using an inherent nature of the Hamiltonian system. Let us consider

the Hamiltonian if of a single particle motion in a coordinate system z. The particle

density ft in the phase space is written in the differential form as

ft = fDd*z, (95)

where D is the Jacobian of the coordinate system z. The Vlasov equation is written as

—ft = dtCl + Lgn = 0, (96)

where Lg is the Lie derivative along the vector field g^ generated by equations of motion.

The change of the energy in a volume element ft along its characteristics is given as

d(HQ) _ dH_ dQ,
dt dt dt

= dt(H)fDd6z. (97)

In another notation, Eq. (97) is written as

^ = dt(HQ) + Lg(HQ)

Combining Eqs. (97) and (98), we obtain the following equality

HdtfDcPz = -dfi(gh'
1HfD)d6z. (99)

Eq. (99) is integrated over the whole phase space to obtain the conservation law in the

Hamiltonian system,

[ H(z, t)dtf(z, t)Dd*z = 0. (100)

By applying Eq. (100) to the gyrokinetic Vlasov-Maxwell system, Eqs. (56), (60), and

(61), we derive the energy conservation law in the total system

d
J qa(<l>)sdtFaDad

6Z (ioi)
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where s denotes the particle species, and the contribution from the adiabatic invariant, M

is omitted for simplicity. Using an expression for the particle density, Eq. (60), and the

Poisson equation, Eq. (61), the field energy e<$, is calculated as

(102)

-^ = E j'
d X ^ -\

Finally, we derive a convenient form of the energy conservation law as

i E \[\mtfF.D.<PZ 4 E E { 1 - WIPD eM-k'ipl)}<hK.
at s iJ z 0 7 r k k'

°- <io3>
A similar energy conservation law is also derived for the new gyrokinetic Vlasov-Maxwell

system including the orbit-averaged electron drift-kinetic equation, Eqs. (56), (60), (61),

(62), (90), and (93). By omitting a contribution from the new adiabatic invariant V, we

write the energy conservation law as

d 1

k k'

2.6 Discussion

In this section, we have discussed about a treatment of disparate time scales involved

in the Vlasov-Maxwell system. This problem becomes crucial especially in the nonlinear

simulation which solves an initial value problem. In order to resolve this difficulty, the gyro-

motion (and the transit motion) of charged particles, which determines the CFL condition

of the simulation, is eliminated analytically by using the non-canonical Lie perturbation

method. Also, the gyrokinetic Vlasov-Maxwell equations (with the orbit-averaged drift-

kinetic equation for high energy electrons) are formulated. This equation system has the

following properties: (a) the system conserves the Hamiltonian structure of the dynamics

of the collisionless plasma, (b) the gyro-motion (and the transit motion) of charged parti-

cles and the corresponding resonance and ballistic mode are removed analytically, (c) the

polarization (and adiabatic) response is renormalized in the particle density, and important

physics such as the FLR effect (and the E x B nonlinearity) is retained. Hence, the CFL

condition of the simulation is relaxed and a low cost computation is enabled without losing

the important physical effects.

In the former work [49], a gyrokinetic PIC simulation with a time step of ~ Q,^1 was

reported, and the efficiency of the model was validated. In Ref. [59], we have developed a



22 Gyrokinetic Analysis of Micro-instabilities in Negative Shear Tokamaks JAERI 1341

new gyrokinetic PIC code using the orbit-averaging model. Using this code, a reduction of

about 70% of the computational cost has been achieved in a test simulation of the universal

mode.

Although we have applied the non-canonical Lie perturbation method only to the treat-

ment of the gyro-motion and transit motion of charged particles, this technique is quite

general. We can apply this technique to the analysis of any kind of particle orbits, provided

that the unperturbed orbit is well understood. A similar treatment can also be applied to

the bounce motion of trapped particles in the toroidal case [69], because the unperturbed

orbit of the trapped particles has a periodicity and the bounce frequency is also much higher

than the eigenfrequency of low frequency waves. Thus, the orbit averaging model provides

many promising features towards the global gyrokinetic particle simulation including the

drift-kinetic electrons.



JAERI 1341 3. Slab ion temperature gradient driven mode 23

3 Slab ion temperature gradient driven mode

3.1 Introduction

In this section, we will clarify various stabilizing or destabilizing mechanisms of the slab

ITG mode in the negative-sheared slab configuration modeling the ITB of negative shear

tokamaks. As is mentioned in Section 1, the ITB region is characterized by a weak or zero

magnetic shear and steep density and temperature gradients, where a WKB approach is

inappropriate. Basically, the eigenmode structure and the corresponding eigenvalue are

determined by the balance between the destabilizing and stabilizing contributions, which

are related to the equilibrium profiles. For a proper treatment of these contributions, it

is required to solve the integral eigenmode equation without using any assumption among

scale lengths of an eigenmode structure and equilibrium profiles. To this end, we have

developed a gyrokinetic integral eigenvalue code [60], which involves full kinetic effects of

ions and electrons. From numerical results, it is found that a combination of the negative

shear configuration and the steep ion temperature gradient produces unique features of

the negative-sheared slab ITG (NS-ITG) mode [60]. Also, it is shown that modes which

appear in the h\gh-k± region with k±pti > 1, the kinetic responses of ions and electrons,

and the asymmetric FLR effect due to the steep ion temperature gradient play a significant

role in the linear stability of the NS-ITG modes. These effects were ignored in the pre-

vious works [70, 71], in which the slab ITG mode in the negative shear configuration has

been studied using the fluid type linear eigenmode equation and the corresponding WKB

shooting code [72].

In our analytical and numerical analyses, a slab geometry is used as a model configura-

tion. In the framework of the ballooning representation [12], the magnetic drift frequency

is written as UD = 2enu*[(vj + v"j_/2)/v^)](cos0b + sObsinOb), where en = Lni/R (R is the

major radius), s = rq'/q (q is the safety factor), u* is the ion diamagnetic frequency, v\\ and

v± are the velocities parallel and perpendicular to the ambient magnetic field, respectively,

vu is the ion thermal velocity, and 6b is the ballooning angle. Here, the contribution from

the second term disappears in a small magnetic shear region [32]. From the comparison

between the average magnetic drift frequency, (u/£>) ~ 2enu/t*, and a typical frequency of

the ITG mode, u ~ a£ (o>t* = rjiUJ*), we have a relation, (UD)/V ~ 2eti, where T?J = Lni/Lti

and eti = Lti/R. If we assume a steep ion temperature gradient as in the ITB region, this

relation yields {UD)/W <C 1. Consequently, a driving effect due to the magnetic drift tends

to become weak for configurations considered in the present analysis. In addition, the

toroidal mode coupling is weak in a small magnetic shear region around the gmin-surface.

Although it may be significant to treat full toroidal effects for a quantitative evaluation of

a growth rate and a stability limit, we believe that most of features of the NS-ITG modes

can be captured in a slab model, and that a slab model is useful for the present analysis. A

slab model is advantageous in regard to an analytical treatment of the eigenmode equation,

as well as a numerical resolution in solving the gyrokinetic integral eigenmode equation.
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Drift waves in the negative shear configuration are characterized by following features:

(a) the magnetic shear stabilization disappear around the <7min-surface, (b) the variation

of the magnetic shear, q"', characterizes an effective potential structure in a Weber type

differential eigenmode equation, and (c) a single mode-rational surface (Single) mode, a

double mode-rational surface (Double) mode, and a Nonresonant mode appear depending

on the number of the mode-rational surfaces. The Single NS-ITG mode corresponds to

the weak shear limit [73] of the slab ITG mode. Its property is significantly affected

by a steep ion temperature gradient which produces an asymmetric eigenmode structure

with respect to the ^min-surface through a variation of the FLR effect. The latter two

modes appear only in the negative shear configuration. The properties of these modes

are understood by an effective potential structure in a Weber type differential eigenmode

equation. For the Double (Nonresonant) NS-ITG mode, a parabolic potential well (hill)

perturbed by a fourth order potential hill is formed near the </min-surface. Thus, the Double

(Nonresonant) NS-ITG mode becomes a bounded (oscillatory) solution around the qmin-

surface, and an asymptotic solution of the NS-ITG mode behaves as the outgoing wave,

which has a stabilizing effect on the Nonresonant NS-ITG mode (an oscillatory solution).

The stability of these modes is determined locally at the gmin-surface because q' ~ 0. As

a result, the unstable region in the ky space widely spreads over the high-fcy region with

kyPti ~ 10. This is a remarkable feature of the NS-ITG mode clarified by the gyrokinetic

integral eigenvalue code which make analyses of micro-instabilities with k±pti 3> 1 possible.

3.2 Gyrokinetic integral eigenvalue code

In this section, we derive an integral eigenvalue equation based on the gyrokinetic Vlasov-

Maxwell system. We also give a numerical method for solving the linear eigenvalue problem

described as a transcendental equation.

In the present study of the ITG mode, we consider a sheared slab geometry, where the

^-direction corresponds to the radial direction, the z-direction is chosen in the direction of

the magnetic field at x — 0, and the y-direction is chosen to be normal to both the x- and

z-directions. We assume the periodic boundary condition in the y- and ^-directions, and

the fixed boundary condition with conducting walls in the ̂ -direction. By expanding the q-

profile around the position x = 0, we write the ̂ -profile as q(x) = qo+q'Qx+\qQX2-\ , where

qo, q'o and q% are evaluated at x — 0. The corresponding slab magnetic field configuration

for the normal shear case with q'o ̂  0 is

B(x) = B0[ez-x/Lsey], (105)

where Ls = (qoR)/(q'oro), R is the major radius of a toroidal plasma, ro is the minor radius

at the position x = 0, and x = 0 is the position of the mode-rational surface. For the

negative shear case with q'o = 0, we choose the model magnetic configuration as

B(rr) = B0[ez - (x/Lns)
2ey], (106)
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where Lns = J {2q^R) / (q'^ro), and x = 0 corresponds to the position of the gm;n-surface.

Here, it is noted that an inclusion of the first order shear term [71] in Eq. (106) just shifts

the position of the gmin-surface, and changes the minimum value of q from q0. Thus, only

the second order derivative term is retained in Eq. (106). In these model configurations,

the asymmetry of the configuration which is produced by q'o" is ignored for simplicity.

By linearizing the gyrokinetic Vlasov-Maxwell system, Eqs. (56), (60), and (61), we

obtain the linearized gyrokinetic equations:

= 0, (107)
v

n i (x) = J FiS([R + p] -
grip

T k

[l - 70(fcip?) exp(-klp2
t)] </>kexp(ik • x), (108)

x) - nel(x)], (109)

where FQ is the unperturbed guiding-center distribution function, and Fi, <j> are the linear

perturbations. In Eq. (107), the gyro-average for the sheared magnetic field is ignored

because of the scale length ordering, p/Ls ~ p/Lns ~ O(e).

Since the system is symmetric in the y- and z-directions, we assume the R\- and Rz-

dependences of a linear perturbation F\ as a plane wave with specified ky and kz:

where the time dependence is also assumed as exp(—iut) with a complex frequency u. By

expanding the radial eigenfunction into a Fourier series, we write a perturbed guiding-center

distribution function and an electrostatic potential in a form:

Fi(R, vz, M,t) = ^2 F\kx {vz, M) exp(ikxRx + ikyRy + ikzRz — iut), (HI)
kx

1 rLx _ _ _ _ _
Fikx(vz, M) = —— / Fi(Rx,vz, M)exp(—ikxRx)dRx, (112)

2LX J-LX

and

<kx exp(ikxRx + ikyRy + ikzRz - iut), (113)
kx

p, t))$ - Y^ 4>kxJo(kj_p) exp(ikxRx + ikyRy + ikzRz - iut), (114)
kx

4>kx = 7TT [ X 4>(Rx)exp(-ikxRx)dRx, (115)

where Lx denotes the system size in the x-direction. In the Fourier series representation,

the gyro-average of a perturbed quantity is written using the zeroth order Bessel function,

Jo- By substituting these expressions into Eq. (107), we have the perturbed guiding-center
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distribution function as

k\\v\\ ~ "

x), (116)

where k\\ = k-B/jB, v\\ = VZB/BQ, T] = din T/d\n n0, and the diamagnetic drift frequency is

io* — (kyT/mQ)(d\nno/dRx). Using a local Maxwellian (59) for the unperturbed guiding-

center distribution function, we obtain the perturbed density from Eq. (108):

1 tL*
n\(x) = —— X 1 H / dx' exP(ikx(x - x') + ik'xx')

Kx K

[{r 0 - ( \ ) } ]
) . (117)

The definitions of quantities in Eq. (117) are given as follows: Z — Z(£) is the Fried-

Conte plasma dispersion function; £ = u/{y/2\k\\\vt); £* = a;*/(\/2|A;|||vt); b — (k% + ky)p^;

b' = (k'x
2 + k2

y)pl ba - (b + b')/2, bg = Vbb1; ro(ba,bg) = exp(-ba)IQ(bg); T^b^bg) =

exp(—ba)Ii(bg); and /„ is the n-th order modified Bessel function. Finally, by imposing

the self-consistency condition or the Poisson equation, Eq. (109), in the Fourier space, we

derive the linear integral equation for the Fourier amplitude, <\>Kx,

1 f^x

= / dxexp[i(ki — km)x] x

\i-o — r}s \- + bas I Lo
s ADs

- {1 - Io(b's)exp(-b's)} (119)

where the notation for k' is changed as ki, C^^X^) are elements of the complex matrix

C(oj), \2
Ds = Ts/(47rnso?s), and 5 denotes the particle species. Thus, the linear stability

problem of low frequency micro-instabilities in the sheared magnetic field is formulated as

the integral eigenvalue equation. Since our interest is not only in the ITG mode, but also

in the short wavelength ETG mode, we have used the general dielectric tensor including

the electron kinetic effects in Eq. (119).

The matrix form of the integral eigenvalue equation, Eq. (118), can be reduced to the

problem of finding eigenvalues, {jJi}i=i,N, of the complex matrix £, which satisfy

de t£ (^ ) = 0. (120)

In finding a root of Eq. (120), first, we plot the contour lines of Re(det£) = 0 and

Im(det £) = 0 in a complex u-plane, and obtain guesses for the eigenfrequencies, {ci}i=i...7v,
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in a region where the eigenfrequency with the maximum growth rate exists. We then refine

guesses using a method based on the algorithm developed by Davies [74]. Although the

original algorithm can treat multiple roots simultaneously, we apply the algorithm only for

a single root case. Let us set a closed positively oriented contour, C : \u — Ci\ = ti, so that

there exists a single root, u>i, in the region limited by C. Applying the residue theorem,

the eigenfrequency, Ui, is written by the following integral:

, (121)f ^
c g(u)

where g(u>) = det£(u;). In order to avoid the numerical calculation of g'(u>), we use

integration by parts to estimate Eq. (121). Since ln[g] is not single-valued along the

contour, C, we rewrite the integral, Eq. (121), in the following form:

1 I
2m Jc

G'(u)
c G{u)

i ln[G(o;)]dw + ct (122)7T i
2TXI JC

where G(UJ) = g(u)/(u — Q) , and ln[C] is single-valued along the contour, C. The integral,

Eq. (122), is evaluated using a numerical quadrature to obtain the eigenfrequency, u%.

Finally, the corresponding eigenfunction is solved using the usual inverse iterative method.

As a benchmark test, we have calculated the dispersion relations of micro-instabilities,

which were obtained in the other gyrokinetic or Vlasov integral eigenvalue code. And, we

have confirmed that our gyrokinetic integral eigenvalue code recovers the eigenfunction and

the dispersion relation of the normal-sheared slab ITG mode [75] and the normal-sheared

slab ETG mode (the /? = 0 case in Ref. [27]).

3.3 Analytic solutions

Before showing numerical results of the gyrokinetic integral eigenvalue code, we provide

analytical results of the differential eigenmode equation [76, 77] in order to show qualitative

characteristics of the NS-ITG mode.

We try to obtain analytical solutions of the gyrokinetic Vlasov-Maxwell system under

the ordering for the phase velocity, vti < |Re(u;)/A;||| <C vte. The differential eigenmode

equation is obtained from the quasi-neutrality condition with the gyrokinetic ion response

and the adiabatic electron response. We apply a long perpendicular wavelength approxi-

mation, bi ~ ty <C 1, to the ion gyrokinetic response, Eq. (117). We then have the second

order ordinary differential equation,

Q{x)4> = 0, (123)

~k2+ T + ! + fr + V" ~ Vi/imMZi + (rn/mUl + &Zj)
y {r + i/n + ifc/(2n)Kz + fa/n^i + szo ' l ;
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where r = Te/Ti, ps — \/rpu, and each variables are normalized as follows: f2 = uj/u>*;

x = x/ps; ky = kyps; and <f> = e<p/Te. In this normalization, radial variation of the

temperature within an analysis domain is assumed to be weak, T ~ T, even for a finite

7], where T is an average temperature. This assumption is valid for a case with relatively

weak density and temperature gradients. Using the asymptotic expansion for the plasma

dispersion function, Zi ~ — ff1 — |£,~3 — |£~5 — • • •, under the fluid limit, & > 1, we have

a reduced form of the eigenmode equation [77],

dx2
l « ^ = 0. (125)

For the normal shear case with q'o =£ 0 or the model magnetic field, Eq.(105), the

eigenmode equation is rewritten in a form of the well-known Weber equation:

- (e - C )<f> = 0, (126)

w h e r e

1/4

( = ax, a= l - ^ f r I , e = a- 2 -K

In Eq. (126), A;̂  is set to zero, because kz does not affect the stability but just shift the

mode-rational surface from x = 0. Prom the bounded solution in the ( space and the

corresponding quantization condition for e, we have the eigenfunction and the dispersion

relation as follows,

(127)

e = 21 + 1, (128)

where / denotes a radial mode number, Hi is the l-th order Hermite polynomials, and

the eigenfunction, Eq. (127), is normalized as f \<fci\2dx = 1. If we assume that the

eigenfrequency satisfies |Re(f2)| 3> |Im(f2)|, a potential of the Weber equation, Eq. (126),

is recognized as a parabolic potential hill and the eigenfunction, Eq. (127), shows an

oscillatory feature in the x space. The asymptotic solution of Eq. (126) is then given as

lim 4> = CeXpUM-xA, (129)

where C is a constant. By comparing Eq. (129) with an eikonal form of WKB solution,

exp(Jkxdx), the group velocity is evaluated as

vg = ̂  = \Mx. (130)
OKX K

The asymptotic solution, Eq. (129), behaves as the outgoing wave which takes a wave

energy away from an unstable region around the mode-rational surface to a stable region
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where the wave energy is absorbed by the ion Landau damping. This stabilizing mechanism

is the shear convective damping [78].

For the negative shear case with q'o = 0 or the model magnetic field, Eq. (106), the

eigenmode equation becomes

+ (e - C2 - ocC)4> = 0, (131)

where

e = a

By considering a as a perturbation parameter, the perturbation theory [79] can be applied

to Eq. (131). Solving the perturbed eigenfunction 4>\ and the perturbed energy level e[

yields the eigenfunction,

0j = a/ f VTT2 /!J HI{C,) exp(—£ /2), (133)

i 7(0) / ,n l>

W) m<Pi ' (134)

and the dispersion relation,

,(0) i (1) 1̂ or\

e[0) - 2/ + 1, (136)
(!) /"K 0 )* / -4 l (0 )7 - /'1Q'7^

where 0JO denotes a complex conjugate of $ . Equation (132) involves two characteristic

solutions depending on a relative sign between kz and ky.

When fcz > 0 (and ky > 0), the configuration has two mode-rational surfaces. Again,

assuming the case satisfying |Re(Q)| ^> |Im(J7)|, a potential in Eq. (131) is recognized

as a parabolic potential well with a fourth order perturbation, and the eigenfunction, Eq.

(132), becomes basically a bounded solution in the x space. The linear stability problem

of the NS-ITG mode with the double mode-rational surfaces is recognized as a harmonic

oscillator perturbed by a fourth order potential. In the negative shear configuration with

two neighboring mode-rational surfaces at xr± = ±ykz/kyLns, a potential well is formed

between these mode-rational surfaces, xr- < x < xr+. From Eq. (132), the width of

the eigenfunction is evaluated as Ax ~ a"1. From a comparison between the width of the

eigenfunction and that of the potential well, we obtain a relation, h.x/(xr+—xrJ) — y/a < 1,

i.e., the eigenfunction, Eq. (132), becomes localized within the potential well. Therefore,
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the stabilizing effect of shear convective damping does not work for the Double NS-ITG

mode.

On the other hand, when kz < 0 (and ky > 0), the configuration has no mode-rational

surface. For the eigenfrequency with |Re(fi)| 3> |Im(f2)|, a potential function in the eigen-

mode equation behaves as a parabolic potential hill with a fourth order perturbation. In

this case, the eigenfunction, Eq. (132), corresponds to an oscillatory solution. For an

unstable mode, the asymptotic solution is written as [70]

(138)lim 0 = Cexp [-i-k^lxF ]
|i|-*oo \ 3L2 Q I

This solution has the group velocity of the outgoing wave:

- Ix|- (139)

In the nonresonant case, we expect a stabilizing effect of shear convective damping as seen

in the conventional slab ITG mode.

3.4 Numerical solutions

Using the gyrokinetic integral eigenvalue code, we have analyzed the ITG modes both

in the normal shear case and in the negative shear case. Use of the gyrokinetic integral

eigenvalue code enable us to analyze an eigenmode with a long radial correlation length,

kxpti < 1, as well as a short perpendicular wavelength mode with k±pti > 1, where the full

FLR effect becomes significant.

Major radius

gmin-surface (qmin = 2)

Magnetic field

Density

Density gradient

Electron temperature

Ion temperature

Electron Larmor radius

Ion Larmor radius

Ion cycrotron frequency

Electron Debye length

R =

ro =

Bo =

ne =

Te =

fi =

Pte =

Pti =

a =

2.6m

0.3m

4.6T

fii = 2x 1019m-3

Lni = 0.38m

3.91keV

12.8keV

0.0325mm

2.52mm

440MHz

0.104mm

Table 1: Description of TFTR-like parameters used in analyses. • denotes a quantity

averaged over the region of the <7mjn-surface.

Parameters studied in this section are shown in Table 1. The model magnetic configura-

tion is given with Ls = 2.78m(Lni/Ls = 0.167) for the normal shear case, and Lns = 0.883m
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for the negative shear case. In the present analysis, the non-adiabatic electron response is

included for completeness, and its effect on the ITG modes in a high-fcy region is exam-

ined. As for a numerical resolution, in order to exclude spurious solutions, we have used

128 modes for the kx spectrum corresponding to the system size of Lx — 60.3pu, the grid

size of Ax ~ 0.471pti, and the wavenumber of kxpu < 7. We have adopted a sine series

expansion to satisfy the conducting wall boundary condition in the x-direction.

In Fig. 1, typical eigenfunctions of the slab ITG modes are plotted for r)i = r)e = 5,

which corresponds to Lti — Lte = 0.076m. Although this temperature gradient parameter

seems to be relatively higher than that observed in the experiment, we have chosen a steep

temperature gradient profile in order to clearly see the characteristics of the slab ITG

modes. We will discuss about the ^-dependence of the linear stability later. In the figure,

the mode-rational surface, xr, the ion resonance point, Xj, and the electron resonance point,

xe, are defined as fc||(zr) = 0, |Re(u;)/A;||(xi)| = vti, and |Re(ti;)/fc||(xe)| = vte, respectively.

Figure l(a) shows the eigenfunction of the I — 0 branch of the conventional slab ITG mode,

which gives the radial correlation length of Ax ~ 4.92pti. Here, the radial correlation length

is defined as

Ax = (fcx/27r) 1 = (140)
kx

Figure l(b) and l(c) show the eigenfunctions of the Single NS-ITG modes for kypti — 0.9

and kypti ~ 0.348, respectively. Since the linear stability of the slab ITG mode does not

depend on the sign of the magnetic shear, this case corresponds to the weak shear limit

of the normal shear case. In the weak magnetic shear region around the 5min-surface, an

unstable region of the Single NS-ITG mode satisfying vt% < \Re(u)/k\\\ <C vte is separated

into two regions, which appear in both sides of the g^in-surface, and two different types of

asymmetric modes are destabilized in these regions. Since the ion Larmor radius and the

corresponding FLR effect vary significantly in these regions under the steep ion temperature

profile, the Single mode which is destabilized in the low-Tj (high-Tj) side of the 9m;n-surface

becomes unstable in the high-A^ (low-fcy) region. The eigenfunctions of both modes show an

oscillatory feature, and give the almost equal radial correlation lengths, Ax ~ 4.51pti for the

low-Tj mode and Ax ~ 4.32pti for the high-Tj mode. Figure l(d) shows the eigenfunction

of the Double NS-ITG mode for kypti ~ 1.5 and kzpH ~ 8.49 x 10~4 (kz ~ (q0R)-1). In

this case, the ion resonance point does not appear in the qmin side of the two mode-rational

surfaces, because of a weak magnetic shear around the gmin-surface, and a broad unstable

region satisfying vti < |Re(o;)/A;||| «C vte appears in this region. Accordingly, the Double

NS-ITG mode, which becomes a bounded solution, has an extremely broad eigenmode

structure with Ax ~ 15.0pt,. It is noted that for the NS-ITG modes which are analyzed

in this section, the ratio of the radial correlation length Ax to the scale length of an ion

temperature gradient Lti reaches at Ax/La ~ 0.5 and, therefore, the WKB procedure may

not be appropriate for the analysis of this mode. Figure l(e) shows the eigenfunction of

the Nonresonant NS-ITG mode for kypu — 1.5 and kzpu — —8.49 x 10~4. As is predicted
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Figure 1: Typical eigenfunctions of the normal-sheared slab ITG modes are plotted for

rji = rje = 5. (a) shows the / = 0 branch of the slab ITG mode for kypu ^ 0.4 and

Lni/Ls = 0.167. (b) and (c) show the high-Tj and low-7; branches of the Single NS-ITG

mode for kypu ^ 0.9 and kypti ~ 0.348, respectively, (d) shows the / = 0 branch of the

Double NS-ITG mode for kypti ~ 1.5 and kzpti ~ 8.49 x 10~4. (e) shows the / = 0 branch of

the Nonresonant NS-ITG mode for kypti ~ 1.5 and kzpu cz —8.49 x 10~4. The Nonresonant

NS-ITG mode shows a oscillatory feature. For the negative shear case, a scale length of the

magnetic shear has been chosen as Lni/Lna = 0.43, and the (7min-surface is at x = 30.2pti.

In all figures, positions of the mode-rational surface, x r, the ion resonance point, Xi, and

the electron resonance point, xe are also indicated by arrows.
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by the analytical solution, the eigenfunction, which is limited by two ion resonance points,

shows an oscillatory behavior. Because of this oscillatory nature, the radial correlation

length of the Nonresonant NS-ITG mode, Ax ~ 8.59pu, becomes much shorter than that

of the Double NS-ITG mode.

Figure 2 shows the dispersion relation of the slab ITG modes corresponding to the

modes shown in Fig. 1. It is seen that the unstable regions of the low-T, (high-Tj) branch

of the Single NS-ITG mode peaks in the high-fcv (low-fc )̂ region. The Double NS-ITG

mode and the Nonresonant NS-ITG mode show similar dispersive characteristics in both

the real frequency and the growth rate. These two modes have relatively large growth rates

compared with other three branches, and the unstable regions spread up to a significantly

high-A^ region with kypti ~ 10. In order to explain this unique feature of the NS-ITG

modes, we have analyzed the ^-dependence, Fig. 3(a), and the k\\-dependence, Fig. 3(b),

of the local dispersion relation for the shearless slab ITG mode at the gmin-surface. As

shown in Fig. 3(b), the ITG mode is basically the ion sound wave which is modified by

the density and temperature gradients, and its stability is very sensitive to k\\. Whereas,

in Fig. 3(a), we see that with a constant k\\, the A^-dependence of the growth rate is weak

for kypu > 1. It is noted that the non-adiabatic ion response contributes to the stability

of the ITG mode in the high-A;y limit, while the contribution vanishes exponentially in

the high-fcj. or kx limit. This is because the non-adiabatic part of the ion response, Eq.

(117), is proportional to kypuToib) or kyptiTi(b), and in the high-A ,̂ limit, these functions

are approximated [80] as VbT0(b) ~ 0.399 + 0.01336"1, and VbT^b) ~ 0.399 - 0.0399ft-1,

respectively. What is significant in stabilizing the ITG mode is not the variation of ky

but the variation of k\\, which produces the ion Landau damping in a high-feu region. In

the sheared slab geometry, ky and fey are closely related by the magnetic shear. If the

magnetic shear exists in an unstable region, k\\ increases along with the increase of ky, and

the mode is then stabilized by the ion Landau damping for kypu > 1. This is the kinetic

stabilizing mechanism of the normal-sheared slab ITG mode and the Single NS-ITG mode.

However, if the mode arises in a low magnetic shear region around the <7min-surface, which

corresponds to the Double and Nonresonant NS-ITG modes, k\\ is independent of ky and

the fcy-dependence of the stability is almost determined by the local stability of the slab

ITG mode which is shown in Fig. 3(a). In this case, an unstable region with kypti > 1 is

allowed for the Double and Nonresonant NS-ITG modes.

The destabilizing effect on the Nonresonant mode is explained from a point of view of

the kinetic theory. In Fig. 4, we plot resonance conditions of these two modes, correspond-

ing to Figs. l(d) and l(e). In the figure, it is considered that both modes are in a similar

situation with respect to the local stability condition around the <7min-surface, because al-

most the same resonance region with vu < |Re(a;)/fc||| <C vte is seen. Since the linear

stability is essentially determined by the local resonance condition around the gmin-surface,

both the Double and Nonresonant NS-ITG modes show similar behavior in the dispersion

relation. However, the Nonresonant NS-ITG mode gives a slightly lower growth rate than
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Figure 2: (a) Real frequency and (b) growth rate are plotted for the I = 0 branch of the
normal-sheared slab ITG mode (crosses), the high-Ti (open triangles) and low-Tj (closed
triangles) branches of the Single NS-ITG mode, the / = 0 branch of the Double NS-ITG
mode (open circles), and the / = 0 branch of the Nonresonant NS-ITG mode (closed circles).
Equilibrium parameters are the same as in Fig. 1.
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Figure 3: (a) ^-dependence and (b) ^-dependence of the local dispersion relation of

the shearless slab ITG mode are plotted under conditions with (a) kxpu ^ 0.4, kzpu ^

8.49 x 10~4 and (b) kxpti = kypti ~ 0.4, and r)i = rje.



36 Gyrokinelie Analysis of Micro-instabilities in Negative Shear Tokamaks JAERI 1341

1000

1
— 100

Nonresonant (Ion
Nonresonant (Electron

Double (Ion
Double (Electron)

Figure 4: |fc|||t;ti/|Re(a;)| and |A;|||ute/|Re(u;)| are plotted as a function ofx/pu for the I = 0

branch of the Double and Nonresonant NS-ITG modes, which correspond to cases shown

in Figs. l(d) and l(e). The behavior of resonance, which determines the local stability, is

similar around the qmin-surface at x — 30.2ptj for both cases.

that of the Double NS-ITG mode, because of a stabilizing effect of the shear convective

dumping.

In Fig. 5, the /^-dependence of the growth rate spectrum is shown for the Double and

Nonresonant NS-ITG modes. Since the local stability does not depend on the sign of kz,

both spectrums, which follow the local dispersion shown in Fig. 3(b), are approximately

symmetric about kz — 0.

In Fig. 6, the ^''-dependence of the growth rate is shown for the Double and Non-

resonant NS-ITG modes. As the magnetic shear becomes weak, the growth rate slightly

increases for both modes. However, in the weak magnetic shear limit, the behavior is dif-

ferent between the Double and Nonresonant NS-ITG modes. In the weak magnetic shear

configuration, the unstable region, where the fluid limit approximation is valid, becomes

larger, and the stabilizing (destabilizing) effect due to the oscillatory (bounded) solution

and its asymptotic behavior strongly affects the growth rate.

Figure 7 shows the growth rates of the / = 0 Double NS-ITG mode which are calculated

with the adiabatic electron response and the non-adiabatic electron response. Since the

unstable region in the case with the adiabatic electron response also spreads over a high-fe^

region, the mode has basically the feature of ion mode even in the high-A^ region. We see

an increase of the growth rate due to the non-adiabatic electron response in the high-A^

region, where the electron FLR effect is also finite, kypte < 0.1. In the figure, we also see

that an unstable region exists in the considerably high-fcj, region with kypti ~ 10. This
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branch of the Double NS-ITG mode with kypn ~ 1.5 and kzpu ^ 8.49 x 10~4 (open circle)

and the I = 0 branch of the Nonresonant NS-ITG mode kypu — 1.5 and kzpu — — 8.49x 10~4

(closed circle). Parameters used are the same as in Fig. 1. The magnetic configuration

used in Fig. 1 corresponds to Lni/Lns = 0.43.
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is the unique feature of the NS-ITG mode. In the high-fcy region with kypti ~ 10, the

ETG mode also becomes important. A quantitative discussion on the growth rate or the

unstable ky region of the ETG mode will be given in Section 4.

3.5 Discussion

In this section, we have analyzed the NS-ITG modes using the gyrokinetic integral eigen-

value code. In the negative shear configuration, several types of ITG modes exist due

to the peculiar properties of the magnetic configuration: the magnetic shear is very weak

around the gmin-surface; and the configuration is determined by q^, which forms an effective

potential well (hill) in the Weber type differential eigenmode equation. Depending on the

number of the mode-rational surfaces, the NS-ITG mode is classified into three types: the

Single mode, the Double mode, and the Nonresonant mode.

In the single mode-rational surface case with kz = 0, two separate unstable regions,

which widely spread in both sides of the mode-rational surface, appear because of a very

weak magnetic shear around the ^min-surface. In both the high-Tj and low-Tj regions, inde-

pendent asymmetric modes are excited. Since the ion temperature and the corresponding

FLR effect vary considerably in these regions, the high-T; (low-Tj) mode has an unstable

region in the low-fcy (high-/cy) side.

We have shown both the analytic and numerical solutions for the Double and Nonres-

onant NS-ITG modes. In an analytical treatment using the Weber type differential eigen-
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mode equation, the Double (Nonresonant) NS-ITG mode is characterized by an parabolic

potential well (hill) perturbed by a fourth order potential hill, in which a bounded (oscil-

latory) solution is obtained around the gmin-surface. Since the asymptotic behavior of the

NS-ITG mode becomes the outgoing wave, a stabilizing effect of shear convective damping

works for the Nonresonant NS-ITG mode, and this mode gives a slightly lower growth rate

than that of the Double NS-ITG mode. These solutions are also obtained from the gyroki-

netic integral eigenvalue code. These analyses have shown that a broad unstable region

between the two mode-rational surfaces or ion resonance points. Thus, the NS-ITG modes

have an extremely broad radial eigenmode structure compared with that of the normal-

sheared slab ITG mode. It should be noted that for the analysis of this kind of modes, which

have a long radial correlation length, the WKB approximation or the ballooning represen-

tation seems inappropriate, because the scale length ordering, Ax/Lni ~ A.x/Lt ~ O(e),

does not hold for the steep density and temperature profiles. Another particular feature of

theses modes are that the unstable region spreads over the high-fc^ region with kypti ~ 10.

Unlike the conventional slab ITG modes and the Single NS-ITG modes, these modes are

excited in a weak magnetic shear region around the r/min-surface, where h\\ becomes inde-

pendent of ky. Hence, the A^-dependence of the growth rate is essentially determined locally

at the (7min-surface. In the high-fcy region, the non-adiabatic electron response is impor-

tant to sustain the instability. These numerical results may explain the short wavelength

fluctuation with kgpu ~ 5, based on the NS-ITG mode, which was observed in the TFTR

enhanced reversed shear (ERS) experiment [81]. In order to identify this short wavelength

fluctuation, a comparison with the ETG mode will be given in Section 4.
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4 Slab electron temperature gradient driven mode

4.1 Introduction

The ETG mode is considered as a candidate for the anomalous electron transport in the ITB

of negative shear tokamaks. Although a correspondence between the observed temperature

gradient parameter and its critical value for the ETG mode has been shown for the DIII-

D negative shear experiment [30] using the kinetic ballooning code [17], the level of the

electron anomalous transport induced by the ETG mode has not been estimated. For an

estimation of a transport coefficient based on the mixing length theory, it is necessary

to know a radial eigenmode structure or a radial correlation length, which is not given by

kinetic ballooning calculations. An integral eigenmode analysis is also required for the ETG

mode. In Section 3, we have shown that the NS-ITG mode becomes strongly unstable in

a region of the gmin-surface, using a gyrokinetic integral eigenvalue code. This result imply

an importance of the slab drift mode in the negative shear configuration. Since eigenmode

equations have a similar form for both the ITG and ETG modes, the slab ETG mode is

also supposed to become strongly unstable in the negative shear configuration.

In this section, we will discuss properties of the slab ETG modes in the negative shear

configuration. In the numerical results obtained from the gyrokinetic integral eigenvalue

code, the negative-sheared slab ETG (NS-ETG) modes [61] are classified into three types

as in the NS-ITG modes: the Single mode, the Double mode, and the Nonresonant mode.

In Section 3.3, we have already discussed the properties of the NS-ITG modes based on

analytic solutions obtained from the Weber type differential eigenmode equation. The

Double (Nonresonant) NS-ITG mode has a bounded (oscillatory) solution. According to

the conventional discussion for the ETG mode [10], the eigenmode equation of the slab

ETG mode is equivalent to that of the slab ITG mode, if electron quantities are replaced

with ion quantities, and similar analytic solutions are expected for both cases. However, the

numerical results show that the ETG mode has a relatively long scale length compared with

p te, and its behavior is different from the corresponding solution of the slab ITG mode. An

analytical estimation shows that this difference comes from a consistency condition. When

\2
De <§: ple, the quasineutrality condition is imposed by the electron polarization effect, and

the ETG mode is described by an almost identical eigenmode equation as that for the ITG

mode, where Xne is the electron Debye length. But, for typical fusion plasma parameters or

the TFTR like parameters shown in Table 1, another limit, X2
De » p^e, becomes valid, and

a consistency condition is dominated by the Debye shielding effect. Under this condition,

we have formulated a new eigenmode equation with retaining the Debye shielding effect.

The analytic solutions obtained from this new eigenmode equation qualitatively show a

good agreement with the numerical solutions, and their scale length is characterized by
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4.2 Analytic solutions

In Section 3.3, we have derived analytic solutions of the Double and Nonresonant NS-ITG

modes. The same solutions are also obtained for the slab ETG mode provided that the

quasineutrality condition is imposed under \2
De <§: p2

e. However, when the Debye shielding

is dominant or X2
De > p2

e, a new eigenmode equation, which is essentially different from the

eigenmode equation for the slab ITG mode, is obtained with retaining the Debye shielding

effect. Consequently, characteristics of solutions for the slab ETG modes become different

from the slab ITG modes. We will discuss qualitative features of these solutions particularly

for the negative shear configuration.

The linear stability problem of the slab ETG mode has been discussed by several

authors [10, 27], using a similar eigenmode equation to that of the slab ITG mode. For

the short wavelength ETG modes, the kinetic ion response decreases exponentially because

klpti ^ 1) a n d the adiabatic response can be assumed for the ion perturbed density. Again,

if we assume the phase velocity and the perpendicular wavelength as Vte < |Re(u;)/fc||| and

k\p2
e <§C 1, difference between the eigenmode equations for the slab ITG and ETG modes

results in only modification for the particle species. However, it should be noted that

a validity of the quasineutrality condition is not trivial for the short wavelength ETG

mode, and that the above discussion is valid provided that the consistency condition is

dominated by the electron polarization shielding effect rather than the Debye shielding

effect, or for \2
De <C p2

e. For the parameters used in the present analysis (see Table 1),

this condition is violated, and it is necessary to consider the opposite limit, A|,e 3> p2
e.

In order to analyze the slab ETG mode under this condition, we have derived a Weber

type differential eigenmode equation with retaining the Debye shielding effect (without

using the quasineutrality condition). Under the approximation of the long perpendicular

wavelength, be <C 1, we can reduce the integral eigenmode equation into the following

second order ordinary differential equation,

^ i + Q{x)4> = 0, (141)

O(x) = -~k2 + r + 1 + {1 ~ 1 /^ + Ve/(2V)KeZe - (r,e/Q)ee(l + ZeZe)
} y \2 + { i i / ^ V / ( 2 h ) H Z ( V / n ) e ( i + ^ z ) ' { }

where A = Aoe/pte and the normalizations are taken to be the same as for Eq. (124), except

for the unit length, x = x/pte and ky = kypte- By applying the fluid limit approximation,

£e ^> 1, the plasma dispersion function is written in a form of the asymptotic expansion,

Ze ~ — ̂ T1 — |£e~3 — |£~5 — • • •. We then have a reduced form of the eigenmode equation

as

' " i = 0, (143)
dx2 ~~k,, H ~—^ — • I -=- — 1 I - „ -

v

where the lowest order terms are retained by assuming A2 = X2
De/p

2
e ~^> 1. In Eq. (143),

we see one salient feature in the potential term, which comes from the third term in square
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parenthesis. Since the sign of this potential term, which characterizes the potential hill (or
well) structure, becomes negative for a typical case with Q < 1 (and Cl > 0 for an electron
mode), we expect that solutions of the slab ETG mode show a different feature from the
slab ITG modes.

For the normal shear case, Eq. (143) is again written in a standard form of the Weber
equation, and the eigenfunction and the dispersion relation are respectively given by Eqs.
(127) and (128), except for the definitions of variables:

1/4

£ = ax, e — a
- 2 1+rf i

Unlike the slab ITG mode, the normal-sheared slab ETG mode becomes a bounded solution,
and a stabilizing effect of shear convective damping is not expected.

For the negative shear configuration, the eigenfunction and the dispersion relation,
which are again described by Eqs. (132)-(137), respectively, are obtained with the following
definitions:

ky \n ) vjt-
3/2 ,

= ax, a =

1
-.1/2

e = a
- 2

For the eigenfrequency with |Re(fi)| 3> |Im(fi)|, Eq. (132) gives an oscillatory solution in
the double mode-rational surface case with kz > 0. For ETG modes with Re(fi) > 0, the
asymptotic solution is obtained as

lim <̂> = C e x p - x - -V x (144)

For the eigenfrequency with |Re(Q)| » |Im(Q)|, Eq. (144) gives a damped solution. Thus,
although the eigenfunction, Eq. (132), shows an oscillatory feature, a stabilizing effect of
shear convective damping is expected to be weak. For the nonresonant case with kz < 0,
Eq. (132) becomes basically a bounded solution. Since the bounded solution gives a
relatively longer radial correlation length compared with the oscillatory solution, the Non-
resonant NS-ETG mode is likely to give a significant contribution to the electron anomalous
transport.

4.3 Numerical solutions

With the gyrokinetic integral eigenvalue code, we analyze the slab ETG mode in the neg-
ative shear model configuration. As in the NS-ITG modes shown in Section 3.4, the NS-
ETG modes are also classified into three types: the Single mode, the Double mode, and the
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Nonresonant mode. However, as shown in Section 4.2, the properties of these modes are

different from the corresponding ITG modes, because of the Debye shielding effect. Prom a

quantitative comparison between calculations with and without the Debye shielding term,

we will discuss effects of the Debye shielding term on the scale length and eigenfrequency

of the ETG mode.

The TFTR like parameters shown in Table 1 are used also in the study of the ETG

mode. It is noted that these parameters correspond to the case where the quasineutrality

condition is violated for the short wavelength ETG mode, since \%e/pje ~ 10. The model

magnetic configuration is also the same as in Section 3.4: Ls = 2.78m for the normal

shear case and Lns = 0.883m for the negative shear case. As is mentioned in the previous

section, the adiabatic electron response is often used for analyses of the ITG mode and,

on the contrary, the adiabatic ion response is used for the ETG mode. Instead of these

assumptions, in the present analysis, we have retained the full kinetic responses both for

ions and for electrons, in order to make a rigorous comparison between the ITG and ETG

modes under the same conditions. In the code, 128 ~ 256 modes are used for the kx

spectrum in order to obtain a good convergence for the short wavelength ETG mode.

Figure 8 shows the eigenfunctions of the slab ETG modes, where the same temperature

gradient parameter, La = Lte = 0.076m (rji = r/e = 5), as in Fig. 1 is adopted. In Fig.

8(al), the eigenfunction of the / = 0 branch of the normal-sheared slab ETG mode for

kyPte — 0.235 is plotted. For this eigenfunction, the radial correlation length is evaluated

as Ax ~ 0.213pij(~ 16.5pte ~ 5.16Ar>e), where Ax is given by Eq. (140). It seems that

the characteristic scale length of the mode structure is determined basically by the Debye

shielding effect, since kx\oe ~ 27rA£>e/Ax ~ 1.2. In order to confirm characteristics which

are predicted in the analytical solution, the eigenfunction of the same branch which is

calculated by imposing the quasineutrality condition is also shown for kypte — 0.476 in Fig.

8(a2). In this case, the radial correlation length, Ax ~ 0.135ptj, is much smaller than that

in Fig. 8(al). Since the eigenmode equation becomes similar to that of the slab ITG mode,

an oscillatory solution is expected for this case. However, such an oscillatory feature of

the eigenfunction is not so clear in Figs. l(a) and 8(a2), because both eigenfunctions are

limited in a narrow region between the two kinetic resonance points, where the fluid limit

approximation is violated. Figures 8(b) and 8(c) show the eigenfunctions of the Single

NS-ETG mode for kypte ~ 0.347. In this case, two unstable regions with vte < |Re(u;)/A;|||

exist in both sides of the (jmin-surface, and the similar eigenfunctions as seen for the Single

NS-ITG mode in Figs. l(b) and l(c) are obtained. For both branches of the Single NS-ETG

mode in Figs. 8(b) and 8(c), the radial correlation lengths are estimated as Ax ~ 0.167ptt.

Figure 8(d) shows the eigenfunction of the I = 0 branch of the Double NS-ETG mode

for kyPte — 0.284 (and kzpti ~ 8.49 x 10~4). The radial correlation length becomes larger

than above two cases [see Figs. 8(a)-8(c)], Ax ~ 1.20pti, and the eigenfunction shows

an oscillatory feature as is predicted by the analytical solution. Figure 8(e) shows the

eigenfunction of the / = 0 branch of the Nonresonant NS-ETG mode for kypte — 0.284 (and
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Figure 8: Typical eigenfunctions of the slab ETG modes are plotted for rji = r)e — 5.

(al) shows the / = 0 branch of the normal-sheared slab ETG mode for kypte — 0.235.

(a2) shows the same branch, which is obtained with the quasineutrality condition, for

kypte ^ 0.476. (b) and (c) show the high-Te and low-Te branches of the Single NS-ETG

modes for kypte — 0.347. (d) shows the I = 0 branch of the Double NS-ETG mode for

kypte — 0.284 and kzpu ^ 8.49 x 10~4. (e) shows the / = 0 branch of the Nonresonant

NS-ETG mode for kypte ^ 0.284 and kzpu ~ -8.49 x 10~4. In all cases, the equilibrium

configuration is the same as is used in Fig. 1.
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kzpti cz —8.49 x 10~4). Since the Nonresonant NS-ETG mode has a bounded solution, its

radial correlation length, Ax ~ 1.64ptj, is larger than that of the Double NS-ETG mode.

In order to see a difference which comes from the Debye shielding effect, we plot the dis-

persion relations of the normal-sheared slab ETG mode obtained with the Poisson equation

[see Fig. 8(al)] and with the quasineutrality condition [see Fig. 8(a2)] in Fig. 9. Because

of a difference in the consistency condition, an unstable ky region becomes different be-

tween these two cases, and the case with the quasineutrality condition becomes unstable for

kyXoe > 1, while the case with the Poisson equation has an unstable region for ky\oe < 1-

Also, the real frequency and the growth rate of the case with the quasineutrality condi-

tion are very large compared with the case with the Poisson equation, because in a high

ky region, a corresponding a;* also becomes large. It is considered that analyses with the

quasineutrality condition overestimate a real frequency and a growth rate of short wave-

length micro-instabilities. It is noted that Lee et al. analyzed the slab ETG mode using

a Vlasov integral eigenvalue code with retaining the Debye shielding effect [27]. However,

since they adopted parameters with £l2
e/J^e — 1, i.e, \\j' p\e — 1, their numerical results

showed the unstable ky region of the slab ETG mode for kypte < 1, and the characteristic

scale length of ~ pte, where upe is the electron plasma frequency.

Figure 10 shows the dispersion relation of the slab ETG modes corresponding to the

five branches shown in Fig. 8. Compared with the dispersion relation of the slab ITG

mode, several qualitative differences are seen in this dispersion relation. Firstly, for the

high-Te and low-Te branches of the Single NS-ETG modes, a separation of unstable regions

in the ky space is not seen. It is considered that for a mode whose scale length is determined

mainly by the Debye shielding effect, the electron FLR effect is weak, k\p\t ~ Ptel^be. ^ 1-

Secondly, the Double NS-ETG mode and the Nonresonant NS-ETG mode give the almost

equal real frequency and growth rate. This is understood from that the stabilizing effect

due to shear convective damping does not work for the Double NS-ETG mode. Also, the

unstable regions of these two types of ETG modes are limited for kypte < 1, while the

Double NS-ITG mode and the Nonresonant NS-ITG mode are unstable for kypti 3> 1.

Since the unstable ky regions are characterized by the Debye shielding effect, peaks of the

growth rates of these modes are at ky ~ 0.3/J^1 ~ A#e> where the electron FLR effect is

not significant.

Figures 11 and 12 show the ^-dependence and ^''-dependence of the growth rate for

the Double and Nonresonant NS-ETG modes. As is discussed above, both modes show a

similar behavior because of an absence of a stabilizing effect due to the shear convective

damping.

4.4 Comparison between ETG mode and ITG mode

In Fig. 13, the /^-dependences of the growth rate for both the slab ITG and ETG modes,

which are taken from Figs. 2(b) and 9(b), are compared. Here, the conventional normal
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Figure 9: (a) Real frequency and (b) growth rate are plotted for the / = 0 branch of

the normal-sheared slab ETG mode, which are calculated by imposing the Poisson equa-

tion (crosses) and the quasineutrality condition (open circles). The eigenfunctions of these

branches are shown in Fig. 8(al) and 8(a2), respectively.
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Figure 10: (a) Real frequency and (b) growth rate are plotted for the / = 0 branch of the

normal-sheared slab ETG mode (crosses), the high-Te (open triangles) and low-Te (closed

triangles) branches of the Single NS-ETG mode, the 1 = 0 branch of the Double NS-ETG

mode with kzpu ^ 8.49 x 10~4 (open circles), and the I — 0 branch of the Nonresonant NS-

ETG mode with kzpu ^ —8.49 x 10~4(closed circles). Unlike the dispersion of the Single

NS-ITG mode, the unstable A:y-regions of the two Single NS-ETG modes are not separated.

Here, the Double NS-ETG mode and the Nonresonant NS-ETG mode give almost the same

frequency and growth rate. Equilibrium parameters are the same as in Fig. 8.
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Figure 12: Lns-dependence of the growth rate is plotted for the I — 0 branch of the Double

NS-ETG mode with kypte ^ 0.284 and kzpu ca 8.49 x 10~4 (open circle) and the I = 0

branch of the Nonresonant NS-ETG mode with kypti cz 0.284 and kzpti ~ -8.49 x 10~4

(closed circle). Parameters used are the same as in Fig. 8.
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shear case is plotted as a reference. For the negative shear case, the Double and Non-

resonant modes, which seem to give a significant contribution to the anomalous thermal

transport, are plotted. In Fig. 13, it is seen that relevant regimes of ky and Im(o;) for

each branch of the slab ETG modes are larger than those of the corresponding slab ITG

modes by the ratio of pu/^De ~ 24. While the Double NS-ITG mode and the Nonresonant

NS-ITG mode are unstable up to kypti ~ 10, the corresponding NS-ETG modes become

marginally stable at kyXoe ~ 3 (or kypte ~ 1). This difference comes from a treatment of

a consistency condition. For the ITG mode with k\X2
De <?C 1, the quasineutrality condition

is imposed due to the ion polarization effect, which appears as the ion polarization density

in the integral eigenmode equation, Eq. (118). In the description including the full FLR

effect, this term approaches to a constant, — eno4>/Ti, as ky increases. On the other hand,

the Debye shielding effect, which appears in the L.H.S. of the Poisson equation, Eq. (112),

continues to increase monotonically as ky increases, and, therefore, the slab ETG mode

with k±Xr)e 3> 1 becomes forbidden by the strong Debye shielding effect.
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Double (ETG)
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Figure 13: The growth rates are plotted as a function of ky for both the slab ITG and ETG

modes. For both modes, the growth rates of the double mode-rational surface negative-

sheared slab mode, the nonresonant negative-sheared slab mode, and the conventional slab

mode are plotted. All results are taken from Figs. 2(b) and 9(b).

Figure 14 shows the ??,(= ^-dependence of the growth rates of the slab ITG mode and

the slab ETG mode. For each mode, ky and kz are chosen so that a critical temperature

gradient parameter, 7y,-c(= r]ec), becomes the approximately minimum value. In the normal

shear case with Lne/Ls = 0.167, almost the same critical value around T]ic(= Vec) ~ 1-8 is

given for both the slab ITG and ETG modes. On the other hand, in the negative shear

case, the NS-ITG modes give a lower critical value r\ic ~ 1.5 than that in the normal shear
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Figure 14: The growth rates as a function of r)i(= r)e) for the / = 0 branch of the normal-

sheared slab ITG mode for kypu cz 0.4 (open circle), the / = 0 branch of the Double

NS-ITG mode for kypti ^ 1.06 and kzpu ^ 4.24 x 10~4 (open triangle), the I = 0 branch

of the Nonresonant NS-ITG mode for kypti ~ 1.06 and kzpu ~ 4.24 x 10~4 (open square),

the / = 0 branch of the slab ETG mode for kypte — 0.246 (closed circle), the / = 0

branch of the Double NS-ETG mode for kypte ~ 0.41 and kzpti ~ 4.24 x 10~4 (closed

triangle), and the / = 0 branch of the Nonresonant NS-ITG mode for kypte — 0.41 and

kzPu — 4.24 x 10~4 (closed square). The same equilibrium configuration as in Fig. 1 and 8

are used. Wavenumbers are chosen so that t]iC (= rjec) becomes the approximately minimum

value in the ky and kz space.
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case, while the NS-ETG modes give an almost the same critical value rfec ~ 1.8.
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Figure 15: 7ft (= 7/e)-dependence of the transport coefficient estimated with the mixing

length theory, Im(u;)A:r2, is plotted for both the ITG and ETG modes which are shown in

Fig. 14. For the ITG modes, the Double NS-ITG mode has a dominant contribution, while

for the ETG modes, the Nonresonant mode gives the largest contribution to the anomalous

transport.

Figure 15 shows the 7ft-dependence of the transport coefficient, Im(a>)A:r2, based on

the conventional mixing length theory. Parameters used in the calculations in Fig. 15 are

the same as those in Fig. 14. Hence, the transport coefficients are estimated for the modes

close to the marginal values of 7]ic. Since the radial correlation length occupies a significant

contribution to Im(u;)A:r2, the slab ITG modes give higher transport coefficients than the

corresponding slab ETG modes in both the normal and negative shear cases. For both the

slab ITG and ETG modes, order of magnitude higher transport coefficients are obtained

in the negative shear case compared with the normal shear case. As is predicted by the

analytic solution, the Double NS-ITG mode and the Nonresonant NS-ETG mode, which

have a bounded solution, give the largest transport coefficient in the negative shear case,

respectively. It should be noted that the transport coefficient of the Nonresonant NS-ETG

mode exceeds that of the normal-sheared slab ITG mode. This remarkable feature implies

that the electron anomalous transport arising from the slab ETG mode may become large

enough to suppress the electron temperature gradient, especially in the negative shear

configuration.
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4.5 Discussion

In this section, we have analyzed the slab ETG modes in the negative shear configuration.

In the numerical results obtained from the gyrokinetic integral eigenvalue code, the NS-

ETG mode also has three types of branches: the Single mode, the Double mode, and the

Nonresonant mode. For the Single mode, several independent branches are destabilized in

two unstable regions, which appear in both sides of the <7m;n-surface. Their unstable regions

are not separated in the ky space unlike the Single NS-ITG modes, because the FLR effect

is not significant in their unstable regions with kyXoe ~ 1 {kypte ~ 0.3). The Double mode

with a broad eigenfunction becomes unstable in an interior region between the two mode-

rational surfaces. The Nonresonant NS-ETG mode with a broad eigenfunction appears

in an unstable region between the two electron resonance points. Since both the Double

and Nonresonant modes are destabilized in a weak magnetic shear region around the qvn-

surface, their stability is basically determined by the local stability at the <7mjn-surface,

as in the NS-ITG modes. While the NS-ITG modes have a high-A^ unstable region for

kyPti < 10, their unstable regions are limited for kypte < 1. All these difference between

the ITG and ETG modes can be explained by the Debye shielding effect. From the mixing

length estimate of the transport coefficient, the Double and Nonresonant NS-ETG modes

seem to play an important role in the electron anomalous transport in the negative shear

configuration.

We have also shown analytic solutions of the slab ETG mode with the eigenmode

equation formulated for \%e/pte 3> 1, or with retaining the Debye shielding effect. Com-

pared to the conventional eigenmode equation, which is obtained by changing the particle

species from ions to electrons, the new eigenmode equation for the slab ETG modes has

qualitatively different properties: the potential term has the opposite sign, and the scale

length is characterized by the Debye length. Because of these characteristics, the solutions

are classified differently. The normal-sheared slab ETG mode has a bounded solution,

and, therefore, the stabilizing effect of shear convective damping is not expected. In the

negative shear case, the Double NS-ETG mode has an oscillatory solution, and the Non-

resonant NS-ETG mode has a bounded solution. Unlike the ITG modes, the stabilizing

effect does not appear in the oscillatory solution of the Double NS-ETG mode, since the

asymptotic behavior is determined by a damped solution. All these properties predicted

in the analytical calculations have been proved in the numerical results.

In the TFTR enhanced reversed shear experiment, Wong et al. observed short wave-

length ion mode fluctuations with a typical wavenumber of kypti ~ 5 and a frequency of

u ~ 0.08a;* [81]. From a comparison of the dispersion relation with these results, we see

that at kyp~ti ~ 5, the unstable regions of the NS-ITG mode and the NS-ETG mode overlap

each other. Their frequency regimes are separated by the ratio of pu/^De- At kypu ~ 5,

their frequencies are estimated as u ~ 0.03a)* for the NS-ITG mode and u ~ —0.74a;* for

the NS-ETG mode. Therefore, the observed short wavelength fluctuation may be explained

by the NS-ITG mode.
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As for the transport coefficient based on the mixing length theory, a significant en-

hancement of the coefficient is observed in the negative shear configuration, because of a

large radial correlation length which is produced by a weak magnetic shear around the

<Zmin-surface. Since the scale lengths of the slab ITG and ETG modes disparate by the

ratio of pu/Xoe, the slab ITG modes give much larger transport coefficients compared with

the corresponding ETG modes. However, it is remarkable that the transport coefficients of

the NS-ETG modes exceed that of the normal-sheared slab ITG mode. This large trans-

port coefficient indicates the electron anomalous transport due to the ETG mode, which

is enough for explaining the experimental data.

In the present analysis, we have considered a plasma with \2
De/ p%, 3> 1. For the

toroidal magnetic field of BQ ~ 4.6T in TFTR, this condition does not breaks down until

the electron density increases up to UQ ~ 2 x 102Om~3, where A|,e/p£, ~ 1. This condition

seems to be valid for usual experimental parameters.
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5 Nonlinear simulation of ETG turbulence

5.1 Introduction

In Section 4, we have shown that the mixing length estimate for the slab ETG mode in the

negative shear configuration gives an order of magnitude larger transport coefficient than

that for the conventional normal-sheared slab ETG mode. In recent Vlasov simulation

of the ETG turbulence [62], it has been reported that the electron thermal transport is

greatly enhanced by radially elongated vortices (or streamers). These results may support

the transport data analysis for the DIII-D negative shear discharges [30], in which the

electron temperature gradient is limited by the stability of the ETG mode. The ETG

turbulence is a recent topic, and its nonlinear properties are of interest for understanding

the electron anomalous transport in tokamaks.

In this section, the ETG turbulence in a sheared slab configuration modeling the nega-

tive shear tokamak is studied using a gyrokinetic PIC simulation. Our previous gyrokinetic

PIC code [59] is modified into a finite element PIC method [33], which is stable for the

numerical instability reported in Ref. [82]. Numerical simulations with a two-and-a-half

dimensional slab model are performed for the Nonresonant NS-ETG mode, because this

mode gives a significant contribution to the electron thermal transport with the mixing

length estimate shown in Section 4.4. In a linear growth phase of the simulation, the eigen-

mode structure is characterized by radially elongated vortices, which is consistent with the

linear eigenmode structure in Section 4.2. A quasi-steady phase after a nonlinear satura-

tion of the unstable ETG mode is characterized by a wave energy cascade in a wavenumber

space and a resulting generation of Er x B zonal flows, where Er is the radial electric field.

A spontaneous generation of the turbulent driven Er x B zonal flows has been seen also in

recent global (gyrokinetic) particle simulations of the electrostatic ITG turbulence [35, 83].

If we assume an adiabatic ion (electron) response for the ETG (ITG) turbulence, the gov-

erning gyrokinetic equations become similar for both the ETG and ITG turbulence. The

generation of Er x B zonal flows may be a common feature of the drift-wave turbulence.

As is discussed in Sec. 1, generation and damping mechanisms of turbulent driven

Erx B shear flows are critical issues for understanding the transport properties of negative

shear tokamaks, because it is believed that the improved energy confinement is provided

from the suppression of micro-instabilities by flow shear. Although several flow generation

mechanisms such as the self-organization of a magnetized plasma [52] or the turbulent

driven Reynolds stress [54] have been proposed, a stability of spontaneously generated

Erx B shear flows has not been discussed so far. In this section, we will study the stability

of the Er x B zonal flows observed in the simulations of the ETG turbulence, based on the

linear theory of the Kelvin-Helmholtz (K-H) mode [56].

As is shown by the Rayleigh necessary condition for instability, in a two-dimensional

plasma or a magnetized plasma with a uniform background field, the K-H mode is unstable

for ErxB shear flows which have an inflection point of flow shear, provided that the system
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size Lx is sufficiently large compared with a scale length of flow shear Lv, Lv/Lx < 1. For

sustaining quasi-steady Er x B zonal flows, some stabilizing effect on the K-H mode is

required. Satyanarayana et al. have shown a stability condition due to the parallel electron

dynamics for the electrostatic K-H mode in a three-dimensional collisionless plasma [84].

This condition was confirmed with a particle simulation [85]. We derive a similar stability

condition of the K-H mode for the gyrokinetic Vlasov-Maxwell system describing the ETG

turbulence. In a sheared slab configuration, the parallel electron dynamics or k\\ is produced

by the magnetic shear, and the linear stability of the K-H mode is related to the (/-profile.

A linear stability analysis of the electrostatic K-H mode is performed for the negative shear

configuration with a gyrokinetic integral eigenvalue code [60], which is extended to include

the equilibrium Er x B shear flow.

A correspondence between the stability condition for the K-H mode and the flow veloc-

ity profile of spontaneously generated Erx B zonal flows is found in the simulation results.

It is shown that the K-H mode becomes unstable by changing the ^-profile to reduce the

magnetic shear. An onset of the K-H mode may correspond to a collisionless damping of

quasi-steady Er x B zonal flows. A possibility of controlling Er x B zonal flows and a

resulting plasma confinement property is discussed from a point of view of the K-H mode.

5.2 Gyrokinetic finite element PIC code

In this section, we will provide a method for solving a nonlinear gyrokinetic Vlasov-Maxwell

system as an initial value problem using a gyrokinetic PIC simulation.

In the present study, we use a sheared slab geometry modeling the negative-sheared

magnetic configuration with qmin ~ 2 for studying single helicity electrostatic perturbations

(or a two-and-a-half dimensional model). In this model configuration, the ^-direction

corresponds to the radial direction, the ^-direction is chosen in the direction of the ambient

magnetic field at the q = 2 surface, and the ^-direction is chosen to be perpendicular to

both the x- and z-directions. We assume the periodic boundary condition in the y- (and z-)

direction, and the fixed boundary condition in the ^-direction. By expanding the g-profile

around the gm;n-surface at x = 0, we write the ^-profile as q(x) = qo + q'ox + \q'^x2 + • • •,

where q0 = 2 + 5qo, and Sqo, q'o and q'o' are evaluated at x = 0. We give the corresponding

model magnetic field configuration for the negative shear configuration with q'o — 0 as

B(ar) = BQ[ez - {A + {x/Lns)
2}ey}, (145)

where A = (Sqoro)l(qlR), Lns = y(2qoR)/(q'0'ro), R is the major radius of a toroidal

plasma, and TQ is the minor radius at the gmjn-surface. In the model magnetic configuration,

Eq. (145), the resonance condition for the m/n — 2 mode is changed from a nonresonant

case to a single or double mode-rational surface case by varying Sqo from a positive to

negative value, where m and n are poloidal and toroidal mode numbers, respectively.

Basic equations used in our simulation are the gyrokinetic Vlasov-Maxwell system, Eqs.
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(56), (60) and (61),

£j \ • V f t ( 0 ) ^ = 0, (146)

n,(x, *) = / ^»(R. *>*> ^> O^dR- + P.] -

[l - Io(k2
±pl) exp(-klpl)] <j>k exp(ik • x), (147)

0 = 4?r / ^ ^a?is(xj, (148)
s

where s denotes the particle species. As is discussed in Section 2, using the gyrokinetic

formalism, we can efficiently describe low frequency micro-instabilities in tokamak plas-

mas. In solving the gyrokinetic Vlasov-Maxwell system, Eqs. (146)-(148), we adopt the

conventional nonlinear characteristic 5f method [86]. We write the distribution function

as

F3 = Fs0 + 6FS, (149)

where Fso and 6FS are the equilibrium and perturbed part of the distribution function,

respectively. It is assumed that Fso is a local Maxwellian (59). Marker particles are

assigned only for 5FS and the evolution of SFS is solved along the nonlinear characteristics

of the gyrokinetic equation (146):

^ | ^ B , (150)
at DQ JDQ

where the gyro-average for the equilibrium magnetic field is ignored because of the scale

length ordering, p/Lns ~ O(e), and the gyro-average for the electrostatic potential is

approximated by a four-point averaging method [49], which is sufficient for perturbations

with k\p^e <C 1. The time integration of the nonlinear characteristics is executed by using

a predictor-corrector method. A discrete distribution function of marker particles is given

as

GB(R,vz, M,t) = 22S(R ~ Rj)$(vz - vzj)S(M - Mj). (152)
3

Defining the particle weight of j - th particle, Waj, as

Ws = ^ , (153)
(-r* z=Zj

we write 8FS as

<5FS(R, vz, M,t) = J2 Wsj8(R - Rj)5(vz - vzj)S(M - Mj). (154)
3
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Substituting Eqs. (149), (152), (153) and (154) into the gyrokinetic equation (146), the

nonlinear evolution equation of the particle weight, Waj, is obtained as

dWsj ^ (Fs0

dt { G,Z=Z3(t=0)
- W •

V o F s 0 dvz 1 dFa[

dt F,o dt \Z=Zj(t)

The first factor in Eq. (155) reduces to (1 — Wsj) provided that the initial marker particle

distribution function is chosen to be the same as the unperturbed distribution function

Fs0. In our code, uniform particle loading is adopted in order to keep the same numerical

resolution in the whole configuration space.

The consistency condition is imposed by the Poisson equation (148). Since we consider

relatively short wavelength perturbations with k^Xoe < 1, an ion response is assumed to

be adiabatic under the ordering of k\p\ 3> 1. It is noted that in Section 4, we have shown

that the ETG modes are unstable for kx\De < 1 (k±p% <C 1 for typical fusion plasma

parameters satisfying p\J\\,e <C 1). By applying the long wavelength approximation,

k\p\e <C 1, to the electron polarization density (the second term in Eq.(147)), we write the

electron density as

ne(x, t) = noe+j 6Fe(R, vz, M, t)5([R + pe] - *)De(P2 - V± • ̂ fcVrf. (156)

From Eqs. (148) and (156), we obtain the gyrokinetic Poisson equation for electron modes,

- (V2 +V x • ̂ -V^\<f>+^-<t>=-^e f6Fe{R,vz,M,t)S{[R + pe] - x J ^ ^ Z . (157)
V *De / ^Di J

While the electron adiabatic response for modes with ui/k\\ <C Vte- e.g., the ITG mode,

is produced by a fast passing motion of thermal electrons (see Section 2.4), the ion adia-

batic response for modes with k\p2
ti ^> 1 comes from the ion polarization density. Thus,

adiabatic ions also respond to ky — kz = 0 component of the electrostatic potential. The

gyrokinetic Poisson equation, Eq. (157) is solved using a finite element PIC method [33].

By introducing the finite elements, we write the electrostatic potential <f> and the perturbed

electron guiding-center density 6ge as

<t>{x,y) = 5>fcAfc0r,2/), (158)

6ge{x,y) = Y,S9ekhk(x,y), (159)
k

Ak{x,y) = Six{x)Siy(y), (160)

where k = ix + Ny(iy — 1), ix = 1 ~ Nx, iy = 1 ~ JVy, and Nx, Ny are the system size in

the x- and y-directions, respectively. For a two-dimensional basis (160), we use a quadratic

spline function, Six(x) and Siy(y). A matrix form of the gyrokinetic Poisson equation is

written as

= 8gel, (161)
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( 1 6 2 )

8gel = ZWej±JJAi(x,y)S([Rj + pej] - n)dxDed0, (163)
0

where the four-point averaging method is used also for the gyro-average in Eq.(163) so as

not to generate a self-force. It is noted that in this algorithm, point particles are used. In a

finite element PIC method, sub-grid-scale noises are suppressed by spline functions for the

two-dimensional basis A*, while in the standard PIC simulation, such a noise is excluded

by a form factor of finite-size-particles. In the code, the time independent linear operator

(162) is decomposed by using a Choleski decomposition in the initial time step. In each

time steps, <j>k is obtained efficiently by calculating a back-substitution.

As is shown in Section 2, the gyrokinetic Vlasov-Maxwell system is formulated so as

not to lose the inherent nature of the Hamiltonian system, and has the energy conservation

property, Eq. (104). For the reduced gyrokinetic Vlasov-Maxwell system, Eqs. (146)-(148),

an energy conservation law is given by,

d3x = 0. (164)
A2 I v -LVI i »2 lv

De ADi

In order to estimate the accuracy of the simulation, this energy conservation law is checked

by varying a number of marker particles.

5.3 Simulation results

In this section, we will show gyrokinetic PIC simulations of the ETG turbulence. In Section

4, we have already studied linear properties of the slab ETG mode. From an estimation

of the transport coefficient based on the mixing length theory, we have shown that the

negative-sheared slab ETG (NS-ETG) mode gives an order of magnitude larger transport

coefficient compared with that for the conventional normal-sheared slab ETG mode. It has

been shown that among several branches of the NS-ETG mode, the Nonresonant mode,

which has a bounded solution due to the magnetic shear, plays the most significant role

in the electron anomalous transport. In the present study, we limit ourselves to nonlinear

simulations of the Nonresonant mode in the negative shear configuration.

The TFTR like parameters shown in Table 1 are used also in this section. The model

magnetic configuration is given with Lns = 0.624 ~ 1.25m and A = 4x 10~5 (Sqo = 0.0022).

The system sizes in the x- and y-directions are Nx = 128 ~ 256 and Ny = 16 ~ 64,

respectively, with the unit length or the grid size of Ax = 1.43A£>e = 4.57pte. It is noted

that for the present plasma parameter, the scale length of the ETG mode is characterized

by the electron Debye length, since \\elPte ~ 10- And, this grid size Ax is sufficient for

resolving the ETG modes with k^Xoe ~ 1. The density and temperature profiles with

constant gradient parameters , Lne and Lte, are chosen as in Section 4.4,

, x nOe(Lx/Lne)exp[-(x - Lx/2)/Lne]
noe{x) = -(—z—j-j.—r , (165)

1 - exp( -L I /L n e )
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fOe(Lx/Lte) exp[-(i - Lx/2)/Lte]
1 - exp(-Lx/Lte)

where Lx = NxAx. In the simulations, a typical time step is chosen as At ~ 0.349Qjrl.

5.3.1 Linear theory and convergence
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Figure 16: ^-dependence of the growth rate spectrum of the / = 0 branch of the Nonres-

onant NS-ETG mode is plotted for the single-helicity configuration (k\\ — k • B / S ) with

ile = Vi = 5 and Lne/Lns = 0.430.

In Fig. 16, the fcy-dependence of the linear growth rate, which is obtained with a

gyrokinetic integral eigenvalue code, is plotted for the I = 0 branch of the Nonresonant

NS-ETG mode with r\e — r\i — 5 and Lne/Lns ~ 0.430. Since the shortest wavelength

included in the simulation system is kypte ~ 0.687, the grid size is sufficient for resolving

stable modes (or energy sink) in the ky spectrum of the ETG turbulence. It is noted that

the kx spectrum of the corresponding linear eigenfunction has an amplitude for kxpte < 0.2.

The system size in the x-direction is chosen so that the boundary condition does not affect

the simulation result. Figure 17 shows the r/e-dependence of the growth rate obtained from

both the gyrokinetic integral eigenvalue code and the gyrokinetic PIC code. Parameters

used in this comparison are Lne/Lns ~ 0.430, Nx x Ny = 128 x 16, and a marker particle

number of 512 particles par a cell. The growth rates of the fastest growing mode agree well

in both results.

Figure 18 shows a convergence check with respect to a volume averaged electron thermal

transport coefficient \e by changing a number of marker particle in a single cell for the

simulation with rye = f]i = 5, Lne/Lns ~ 0.430, and Nx x Ny = 256 x 16. Here, the flux
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Figure 17: ^-dependence of the linear growth rate of the Nonresonant NS-ETG modes

with kypte = 0.258 is compared between the gyrokinetic integral eigenvalue code and the

gyrokinetic PIC code.
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Figure 18: The volume averaged electron thermal transport coefficient Xe is plotted for the

simulations of the Nonresonant NS-ETG mode with a different number of marker particles.

Xe is converged with a particle number of > 512 particles par a cell.
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surface averaged electron thermal transport coefficient \e, the volume averaged electron

thermal transport coefficient Xe, and the electron heat flux Qe are defined as

Xe(x) = -j- [Qe/p'oedy, (167)
Ly J

Xe = -j^r [ [Qe/p'oJxdy, (168)

Qe(x,y) = ^2{SPekAk{x,y)}[-c/B0(j)k\/Ak{x,y)xb-ex}, (169)
k

~ J j Ai(x, y)S([RJ + pej] - x)dxDed9, (170)evzj/2 + Mjna)We

where poe. = fftoe^oe and Ly — NyAx. As the marker particles increase, Xe in the saturated

state approaches to Xe ~ 0.15vtepje/L, where L~l = L~* + L^1, and vtep$ejL corresponds

to 0.44m2/s for the present simulation parameters. It is noted that the absolute value

of Xe is different from Xe, because the linearly stable region with Xe ~ 0 is involved in

the simulation system with single-helicity perturbations. In this test, a particle number

of more than 512 particles par a cell is required for obtaining a convergence of Xe- Since

the maximum amplitude of the electrostatic potential in the saturated state is very small

e<fi/Te < 0.01, a simulation of the ETG turbulence is sensitive to the noise due to discrete

particles. Thus, an order of magnitude larger number of marker particles are required for a

good convergence than that in a gyrokinetic PIC simulation of the ITG turbulence [34, 35],

in which a marker particle number of less than 10 particles par a cell is usually used. In

the simulation results shown in the following, we have adopted a marker particle number

of 512 particles par a cell.

5.3.2 Nonlinear evolution of ETG turbulence

In Figs. 19(a)-19(d), contour plots of the electrostatic potential are shown for the simulation

of the Nonresonant NS-ETG mode with r\e — r^ = 5, Lne/Lns ~ 0.430, and Nx x Ny —

256x64. Figures 20(a) and 20(b) show time evolution of the ky spectrum of the electrostatic

field energy observed in a region around the f/min-surface (x/pte = —146.2 ~ 146.2) and in

a ET x B zonal flow region (x/pte ~ —361.1 ~ —287.9), respectively.

In the linear phase for tVti — 0 ~ 1100 [see Fig. 19(a)], the radially elongated vortex

structure appears. The ky spectrum in Fig. 20(a) peaks at kypte = 0.258 where the

maximum linear growth rate is given in Fig. 16. The broad radial eigenmode structure is

a characteristic feature of the NS-ETG modes which becomes unstable in a weak magnetic

shear region around the gmin-surface.

A saturation of the Nonresonant NS-ETG mode occurs around tfite ~ 1100. In the

initial saturation phase [see Fig. 19(b)], the radially elongated vortices are broken into

small scale and almost isotropic eddies. A destruction of the radially elongated vortices is

caused by E x B shear flows with ky ~ 0, which is generated by a local charge separation

arising from the electron particle transport. This process is recognized as a normal cascade
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Figure 19: Contour plots of 4> at tild = 802,1185,1917, 3067 are shown for the simulation of

the Nonresonant NS-ETG mode with rje — rjt = 5, Lne/Lns ~ 0.430, and NxxNv = 256x64.

The gmin-surface is x/pte = 0.
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Figure 20: Time histories of ky spectrum of [£,kx \Ek\2]1^2 observed in the simulation of

the Nonresonant NS-ETG mode shown in Fig. 19. The observation regions are set for (a)

x/pte - -146.2 - 146.2 and (b) x/ple = -361.1 - -287.9.
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in the kx space. In Fig. 20(a), we see an inverse cascade process in the ky space. These

properties of the wave energy cascade in a relatively long wavelength regime with k±pte < 1

are consistent with a picture of a self-organization process in the electrostatic drift-wave

turbulence, which was discussed based on the Hasegawa-Mima equation [87]. It is noted

that through the whole time evolution, a variation of the electron temperature is estimated

as 6Te/Toe < 0.005. A modification of the velocity distribution function due to a particle

trapping is weak, because of a small saturation amplitude with ecj)/Te < 0.003 in the initial

saturation phase. In the present simulation, the dominant nonlinear saturation mechanism

is not the quasi-linear relaxation of the background temperature profile or a flattening

of the velocity distribution function due to a particle trapping. An important saturation

mechanism is considered to be an inverse (normal) energy cascade process in the ky (kx)

space which generates E x B shear flows with ky ~ 0.

After the initial nonlinear saturation of the unstable ETG modes [see Fig. 19(c)], for

tili = 1200 ~ 2300, a low-ky secondary instability occurs in a linearly stable region in

both sides of the nonlinearly saturated region around the gmjn-surface. The wave number

of the secondary instability is estimated as kypte = 0.0859 in Fig. 20(b). This unstable

ky region can not be explained by the linear growth rate of the ETG mode which peaks

around ky\oe ~ 1 (kypte ~ 0.3). We will discuss about a mechanism of this instability

later. The ky spectrum shown in Fig. 20(b) also shows the inverse energy cascade during

the evolution of the secondary instability. This inverse energy cascade process leads to a

generation of strong ET x B zonal flows.

Finally, in the quasi-stationary phase after tfli ~ 2400 [see Fig. 19(d)], the wave energy

condenses into the ky — 0 mode, which means a formation of Er x B zonal flows. Then,

the expansion of the secondary instability region is suppressed.

5.3.3 Effects of E x B zonal flow on Xe

Figure 21 shows a time history of \e obtained from simulations with and without the ky = 0

mode or the Er x B zonal flows. The generation of the Er x B zonal flow greatly decreases

\e in the quasi-stationary phase, where the Er x B zonal flows are fairly strong. In the

initial saturation phase, both results show a similar behavior, because an important process

is not a generation of Er x B zonal flows with ky = 0 but an inverse energy cascade into

ky ~ 0 modes [see Fig. 20(a)].

Figures 22(a) and 22(b) show time histories of the radial distributions of the (ky = 0)

Erx B flow t)ErXfi(i) and the electron thermal transport coefficient Xe(#), respectively. At

the end of the linear growth phase at tfti ~ 1100, a large Xe region produced by the radially

elongated linear vortex structure is observed around the gmjn-surface at x = 0. After the

saturation of the Nonresonant NS-ETG mode, this large Xe region disappears, because the

radially elongated linear vortex structure is decorrelated due to the E x B shear flows with

ky ~ 0. Then, large Xe regions arising from the secondary instability propagates in the

radial direction for tQi = 1100 ~ 2300. A generation of the Er x B zonal flow is observed
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Figure 21: \e is plotted for the simulation of the Nonresonant NS-ETG mode with and

without ky = 0 component of the electrostatic potential (Er x B zonal flow). Simulation

parameters are the same as in Fig. 19.

during the nonlinear saturation of the secondary instability. The ErxB zonal flow velocity

has a large amplitude VETXB < 0.015^ in finite magnetic shear regions in both sides of the

^Wn-surface compared with that observed in a region of the 9mjn-surface VETXB < 0.002^.

After tili ~ 2400, the quasi-steady Er x B zonal flow pattern is sustained. It is noted

that in the present simulation model, a flow damping effect due to a dissipation such as

a Coulomb collision is not involved, because the growth time of the ETG mode is shorter

than that of the ITG mode. In the ky spectrum of the electrostatic potential fluctuation in

the large Er x B zonal flow region shown in Fig. 20(b), finite ky modes, which contributes

to the anomalous particle and heat fluxes, have relatively small amplitudes, because of an

inverse energy cascade into ky = 0 mode. An absence of finite ky modes corresponds to

a remarkable reduction of Xe in the large Er x B zonal flow region. This reduction of \e.

explains the difference of \e in the quasi-stationary phase between results obtained with

and without the ky = 0 mode or Er x B zonal flows [see Fig. 21].

The obtained radial profile of the quasi-steady Er x B zonal flow is non-uniform and

has a fairly large flow velocity in the small Xe region in both sides of the gmin-surface.

In a region of the gmjn-surface where the Nonresonant NS-ETG mode is unstable, such a

quasi-steady Er x B zonal flow is not seen. Although an inverse energy cascade in the

ky space is observed both in the region of the gmin-surface [see Fig.20(a)] and in the large

Er x B zonal flow region [see Fig.20(b)], the wave spectrum condensation into the ky = 0

mode occurs only in the latter region. In other words, it seems that the ky = 0 mode or

Er x B zonal flows can not be sustained in the former region. Since the main difference
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Figure 22: Time histories of the radial distributions of (a) the Er x B flow velocity vErXB

and (b) the electron thermal transport coefficient \e are plotted for the simulation of the

Nonresonant NS-ETG mode shown in Fig. 19. A generation of the quasi-steady ET x B

zonal flow and a remarkable reduction of Xe in the Er x B zonal flow region are observed.
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between these two regions is the magnetic shear, we suppose that the magnetic shear plays

a significant role for sustaining the Er x B zonal flows. In order to confirm this conjecture,

in the next section, we will discuss about a stability of the Er x B zonal flow from a point

of view of the K-H instability.

5.4 Stability of E x B zonal flow

In this section, we discuss a stability of the Er x B zonal flow. Using a gyrokinetic integral

eigenvalue code, we analyze a linear stability of the K-H mode for a model ErxB shear flow,

which is chosen based on Er x B zonal flows observed in the gyrokinetic PIC simulation.

Numerical results indicate a correlation between the observed Er x B zonal flow profile

and the K-H instability. An evidence of the K-H instability is seen in the gyrokinetic PIC

simulation, in which the equilibrium ^-profile is changed during the quasi-stationary phase

after the nonlinear saturation.

5.4.1 Linear theory of K-H mode

In order to analyze a slab plasma with the equilibrium Er x B flow, we extend the gy-

rokinetic Vlasov-Maxwell system, Eqs. (146)-(148), to include an equilibrium part of the

electrostatic potential $. Since an obtained amplitude of the electrostatic potential which

produces the quasi-steady Er x B zonal flow is very small e$/Te < 0.01, we treat an

equilibrium electrostatic potential $ as a quantity of the same order as the electrostatic

fluctuating potential <j>. Since the corresponding Er x B flow velocity is small compared

with the thermal velocity, VETXB ~ 0.015^, a correction to the definition of the mag-

netic moment is not needed in the present analysis. We then write a linear gyrokinetic

Vlasov-Maxwell system for gyrokinetic electrons and adiabatic ions as

wB • v ^ l e - F v
at o o

^ ^ = 0, (171)

n l e(x, t) = j Fle(R, vz, M, t)8([R + pe] - x)De(fZ - V ± • ̂ P ? e V±</>, (172)

- V V + ^-(j> = -47renle, (173)

where the gyro-average for $ and the electron polarization density arising from $ are

ignored because pte/Lv <§C 1, and Lv is a scale length of the Er x B flow velocity shear.

Equations (171)-(173) are derived using the same approximation as in the simulation system

in order to analyze an equilibrium configuration which is realized in a quasi-steady state

of the gyrokinetic PIC simulation. By eliminating F\e and nie in Eqs. (171)-(173), the

gyrokinetic integral eigenmode equation is derived as

. M ^ = ° (174)
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dxexp[i{ki - km)x]

, (175)

where the definitions of quantities are the same as in Eqs. (118) and (119) except for the

effect of the equilibrium ErxB flow, VETXB = — c/BoV$xb-eyi which appears as a Doppler

shift for an eigenfrequency, £e = [u - kyvETy.B]/(y/2\k\\\vte).

Before showing the numerical solution of the gyrokinetic integral eigenvalue code, we

shortly discuss the properties of the K-H mode analytically in the limit: k±pte —* 0,

Lne = oo, Lte = Lti —» oo, Lns —* oo, and n« —> 0. In this limit, the gyrokinetic

integral eigenmode equation reduces to a simple differential eigenmode equation,

= 0,
dx* UJ-kyVErxB

(176)

where the plasma dispersion function is approximated as Ze ~ — ê
 l — |£ e

 3 under the

fluid limit £e 3> 1. This eigenmode equation is mathematically identical to the well-known

Rayleigh equation describing the K-H mode in a weakly inhomogeneous neutral fluid in

a gravitational field [56]. In Eq. (176), the parallel electron dynamics (the third term

in square parenthesis), which comes from an effect of the magnetic shear, plays a role of

buoyancy in a neutral fluid under a gravitational field [84]. In Eq. (176), a non-dimensional

parameter corresponding to the Richardson number in a neutral fluid is given by

*} (W (177)

where VQ is a characteristic flow velocity. The marginal stability condition of the K-H mode

was analytically obtained for the flow shear profile of VETXB = votanh(x/Lu) as

J = k2
yLl(l - klLl).

Prom this relation, the unstable ky and k\\ regions are respectively written as

0 < kyLv < 1,

and

0 < ^ <

Prom the condition (180), the K-H mode is completely stabilized for

1 Vp/Vte
11 v

(178)

(179)

(180)

(181)
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In the limit of k\\ —• 0, we have recovered the growth rate spectrum of the electrostatic

K-H mode for VETXB = votanh(x/Lv) [89]. This branch is numerically traced by changing

various equilibrium parameters, and the electrostatic K-H mode is identified in the negative

shear configuration.

The equilibrium electron distribution function Feo is chosen as a local Maxwellian

(59). In a slab geometry, a local Maxwellian is an equilibrium solution of the gyrokinetic

Vlasov-Maxwell system including an equilibrium potential $(x), because the unperturbed

characteristics satisfy Rx = 0. The equilibrium density profile rioe(x) which is consistent

with $(x) is determined using the Poisson equation,

2 *

where noi is chosen as the same profile as Eq. (165), and we assume a deviation from the

original equilibrium profile (165) for the electron density noe as in the simulation. Although

the observed Er x B zonal flow has a global oscillatory profile with multiple periods, we

assume a model Er x B flow profile with a single period and analyze a relatively localized

mode in order to understand characteristics of the K-H mode. We write a model Er x B

flow profile as

VETXB(X) = vo[x - xc]/Lv exp{-([ar - xc]/Lv)
2/2 + 1/2}, (183)

where vo is a peak velocity and xc is a position of a neutral point of the Er x B flow. In

Fig. 23(a), a model Er x B flow (183) with Lv ~ 14.4/?te is plotted for a case with xc = 0,

where a scale length of flow shear Lv = n/(2kx) is chosen based on the kx spectrum of

the observed Er x B zonal flow which peaks at kxpte ~ 0.109. The corresponding electron

density profile calculated from Eq. (182) is plotted in Fig. 23(b). The other parameters

are chosen as the same as the simulation parameters given in Section 5.3.

First, we show the growth rates obtained for a shearless slab configuration and discuss

about basic properties of the K-H mode. Equilibrium parameters are the same as the

simulation parameters, and the model Er x B flow profile with Lv ~ 14.4p(e and xc — 0 is

used [see Fig. 23(a)]. Figure 24(a) shows the /^-dependence of the growth rate of the K-H

mode. In the growth rate spectrum, the marginally stable ky is estimated as kyLv ~ 1.15,

and the peak of the growth rate is lm(uj)Lv/vo ~ 0.0636. Figure 24(b) shows the in-

dependence of the growth rate of the K-H mode with kypte ~ 0.0580 (kyLv ~ 0.833). The

K-H mode is stable for k\\Lv < 5.42 x 10~5. These stability conditions are comparable with

the marginally stable conditions, kyLv = 1 and k\\Lv ~ 7.23 x 10~5, which are given by

Eqs. (179) and (180).

In Fig. 25, the fc^-dependence of the growth rate of the electrostatic K-H mode is

plotted for the model ErxB flow profile with Lv ~ 14.4pte and xc — 0 in the negative shear

configuration with Lne/Lns = 0.430. Here, k\\ and ky are related as fcy = k • B/B — kyBy/B

for the single helicity perturbations, where By — B0{A + (x/Lns)
2}. In the growth rate

spectrum, the marginally stable ky is estimated as kyLv ~ 2.05, and the peak of the growth
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Figure 23: (a) model equilibrium Er x B flows and (b) the corresponding electron density-

profiles used in a calculation of the electrostatic K-H mode are shown for Lv ~ 14.4pte, and
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Figure 24: (a) fcy-dependence and (b) k\\ -dependence of the growth rate spectrum of the

electrostatic K-H mode are plotted for k\\ = 0 and kypte = 0.0580, respectively. The

equilibrium parameters are chosen as Lne/Lns — 0, Lv ~ 14.4pte, VQ ~ 0.02^i, and xc = 0.

Other parameters are the same as the simulation parameter.
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0.05

Figure 25: ^-dependence of the growth rate spectrum of the electrostatic K-H mode is

plotted for the single-helicity configuration (k\\ = k • B/B) with Lne/Lns = 0.430. Other

equilibrium parameters are the same as in Figs. 24(a) and 24(b).

rate is lm(u)Lv/vo ~ 0.052. The enhancement of unstable ky region in Fig. 25 may be

explained by a driving effect due to density and temperature gradients which affect the

stability through the parallel electron dynamics or the Landau resonance.

In order to clearly see the K-H mode, we have chosen a system size as NxxNy = 256 x 16

in simulations shown in the following. In this system size, only the lowest wavenumber mode

with kypte ~ 0.0859 is involved in an unstable ky region of the K-H mode.

5.4.2 Magnetic shear stabilization of K-H mode

Since the linear stability of the K-H mode is sensitive to a variation of k\\, it is considered

that the Er x B zonal flow profile is related to the ^-profile. In Figs. 26(a)-26(d), we show

time histories of the Er x B zonal flow in simulations of the Nonresonant NS-ETG mode

with r]e = r)i — 5 and different (/-profiles.

In the simulation with Lne/Lns — 0 shown in Fig. 26(a), quasi-steady Er x B zonal

flows are not generated. Also for other three cases, the region without Er x B zonal flows

is observed near the gmin-surface. As is shown in Fig. 22(b), the reduction of Xe is small

in this region. Consequently, in a shearless case shown in Fig. 26(a), a difference of xe

between the simulations with and without the ErxB flows is small (~ 15%) compared with

that observed in a negative shear case shown in Fig. 26(c) (~ 75%). In Figs. 26(b)-26(d),

the Er x B zonal flows are generated in the finite magnetic shear regions in both side of the

<Zmin-surface, and a clear correlation between the Er x B zonal flow profile and the ^-profile
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Figure 26: Time histories of the radial distribution of vErXB are shown for the simulation of

the Nonresonant NS-ETG mode with (a) Lne/Lns = 0, (b) Lne/Lns = 0.304, (c)Lne/Lns =

0.430, and (d) Lne/Lns — 0.609. A correspondence between the g-profile and the Er x B

zonal flow region is observed.
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is observed.
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Figure 27: The critical Er x B flow velocity vOc of the K-H mode with kypte ~ 0.0859

is plotted for the negative shear configuration with Lne/Lns = 0.304 (open squares),

Lne/Lns = 0.430 (open circles), and Lne/Lns = 0.609 (open triangles). A position of

each plot corresponds to a neutral point xc of a model ET x B flow profile.

In order to show a correspondence between the observed Er x B zonal flow profile

and the K-H mode, the linear stability of the K-H mode is analyzed for the configurations

used for Figs. 26(b)-26(d). In Fig. 27, a critical Er x B flow velocity vOc to stabilize the

K-H mode is plotted for the model Er x B flow profiles with Lv ~ lAApte and various

neutral points xc, where vOc is the maximum flow velocity given by Eq. (183). The radial

distribution of i>Oc is closely related to the g-profile. This result explain the feature of the

Er x B zonal flow profile observed in the gyrokinetic PIC simulation qualitatively. The

observed quasi-steady state with Er x B zonal flows is considered as a stable equilibrium

solution of the gyrokinetic Vlasov-Maxwell system. It is noted that vOc in Fig. 27 is

relatively larger than the observed Er x B flow velocity of ~ 0.015^. One reason is that

the model Er x B flow profile given by Eq. (183) underestimates a free energy involved in

the ET x B zonal flows of multiple periods. Also, a nonlinear destabilization due to a mode

coupling with fluctuations may be effective in the simulation.

5.4.3 Onset of K-H mode

Although we have discussed about an existence of the quasi-steady Erx B zonal flow from a

point of view of the linear stability of the K-H mode, the saturated turbulent state realized

in a quasi-steady state of the nonlinear simulation is considered to be linearly stable for



JAERI 1341 5. Nonlinear simulation of ETG turbulence 75

tn, (a)

6000 -

4000

2000 -

eooo -

4000 -

2000

-200 200 400

Figure 28: Time histories of the radial distribution of •?;#,. XB are shown for the simulation

of the Nonresonant NS-ETG mode with Lne/Lns = 0.609. In a case (b), the g-profile is

changed from Lne/Lns = 0.609 to Lne/Lns = 0.304 at mt = 4183. The Er x B zonal flows

around xjpie, ~ ±200 decay because of an onset of the K-H mode.
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perturbations. In order to observe the K-H mode explicitly in the ETG turbulence, we make

a linearly unstable state by artificially changing the g-profile in the simulation. Figures

28(a) and 28(b) show time histories of the Er x B zonal flows in the simulation of the

Nonresonant NS-ETG mode with rje = r/; = 5, Lne/Lns ~ 0.609, and Nx x Ny = 256 x 16.

In Fig. 28(b), the g-profile is changed from Lne/Lns ~ 0.609 to Lne/Lns ~ 0.304 at

tQ,t ~ 4183. After a change in the (/-profile, the quasi-steady Er x B zonal flows around

x/pte ~ ±200 are destroyed, while such a change of the Er x B zonal flows is not observed

in Fig. 28(a). In Fig. 28(b), a new generation of the Er x B zonal flows is seen around

x/pte ~ ±400. In this region, before the generation of the Erx B zonal flows, the secondary

instability with kypte ~ 0.0859 is observed again. The new ET x B zonal flow region is

expanded in the radial direction, and the new quasi-steady ErxB zonal flow profile around

x/pte ~ ±400 is very similar to that observed in Fig. 26(b).

In Figs. 29(a) and 29(b), a time history of the electrostatic potential fluctuation ob-

served in the Er x B zonal flow region for x/pte = —233 ~ —183 in Fig. 28(b) is plotted for

ky — 0 and kypte ~ 0.0859 modes, respectively. After a change in the ^-profile at tVti ~ 4183,

the linear growth of the K-H mode (kypte ~ 0.0859 mode) is seen. The damping of the

ErxB zonal flow (ky = 0 mode) occurs after the K-H mode grows up to e<f>ky/Te ~ 0.0015.

Here, the observed growth rate of the K-H mode is Im(uj)kypte/uj* ~ 0.0199. Accordingly,

it is considered that the K-H mode works as a mechanism to destroy the Er x B zonal flow.

In Figs. 29(a) and 29(b), the linear growth {\m(uj)kypte/uj*e ~ 0.0642) of the secondary

instability followed by the generation of the quasi-steady Er x B zonal flow is observed

for the kypte ~ 0.0859 mode at tVti ~ 2000. Properties of the secondary instability are

summarized as follows: (a) the instability occurs in the neighborhood of the E x B shear

flow or Er x B zonal flow region, (b) the most unstable ky region of the instability around

kypte ~ 0.1 is much lower than that of the ETG mode around kypte ~ 0.3, (c) after

the saturation of the instability, the Er x B zonal flow is generated, provided that k\\ is

sufficiently large, and (d) the instability propagates only in the weak magnetic shear region

with k\\pte < 10~5. From these properties, it is considered that the secondary instability is

the K-H mode, which becomes unstable in a front of the E x B shear flow or ET x B zonal

flow region. The propagation of the secondary instability may correspond to an avalanche

process produced by a chain of the K-H instability and an associated generation of the

Er x B zonal flow.

Figure 30 shows a time history of \e in the simulation shown in Figs. 28(a) and 28(b).

After the change in the g-profile, we see a remarkable increase of \e due to an onset of the

K-H mode and the destruction of the Er x B zonal flow.

5.5 Linear stability of ITG mode in ETG turbulence

The last problem addressed in this section is an analysis of the ITG mode in the presence

of the ETG turbulence. As is seen in Fig. 13, the linear growth rate of the ETG mode is an
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Figure 29: (a) shows the time history of the ky spectrum of the electrostatic potential,

which is averaged over the Er x B zonal flow region for x/pte = —233 ~ —183 in Fig.

28(b). (b) shows a log scale plot of a kypte ~ 0.0859 mode.
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Figure 30: Time history of Xe is plotted for the simulations of the Nonresonant NS-ETG

mode shown in Fig. 28(a) and 28(b). After the onset of the K-H mode, \e increases from

Xe/(VtePi/L) ~ 0.1 tO Xe/(VteP2JL) ~ 0.3.

order of magnitude larger than that of the ITG mode. In studying the ITG turbulence, it

is necessary to consider effects of the ETG turbulence even for the linear stability. In this

section, we focus on an effect of the Er x B zonal flow which is generated from the ETG

turbulence. Since the simulation of the ETG turbulence is performed with the adiabatic

ions, the ITG mode is excluded artificially in the system. Here, we consider the gyrokinetic

ions under microscopic equilibrium Er x B zonal flows as a model configuration.

In the previous section, we have shown the gyrokinetic integral eigenmode equation

(175) including the equilibrium ET x B shear flows. In that case, the gyro-average for the

equilibrium Er x B shear flow is ignored under the ordering of pte/Lv ~ O(e). For the case

considered in this section, the scale length ordering is changed as pu/Lv ~ 0(1), and the

FLR effect becomes important also for the equilibrium ErxB shear flow. This treatment in

the gyrokinetic integral eigenvalue code becomes very complex because a velocity integral

of the plasma dispersion function requires an integration also about the magnetic moment

M. Thus, we have developed a new initial value code based on the gyrokinetic particle

simulation technique.

Since the gyrokinetic PIC code described in Section 5.2 is developed using the long

wavelength approximation k\p\e <C 1 and the four-point averaging method, the higher order

FLR effect for the microscopic Erx B zonal flow with pu/Lv ~ O{\) can not be expressed.

In order to treat the full FLR effect in the gyrokinetic particle simulation, we impose the

consistency condition in the Fourier space where the FLR effect is expressed analytically

with the zeroth order Bessel function JQ. We then write the nonlinear characteristics of
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the gyrokinetic equation as

k B ( E > (185)

(E)g = — 22 ik (0k + $k) exp(ik • R)Sk Jo(k±pi), (186)
k

where Su is the Gaussian form factor [45] of marker particles, and $ is the equilibrium
electrostatic potential which produces the ET x B shear flows. In the present analysis, we
assume microscopic Er x B zonal flows produced by the electron density profile as shown
in the simulations of the ETG turbulence. For the gyrokinetic ions and the adiabatic
electrons, the gyrokinetic Poisson equation including the full FLR effect is obtained as

—V2</> + —j- $2 1 ~ lo(k'jLPti) exP(~^iPti)j 0k exp(ik • x) + -ry-</>
ADi k De

= 47re / 6Fi(R, vz, M, t)6([R + p{] - x )D^Z. (187)

As in the gyrokinetic integral eigenvalue code, this linear equation is solved in the Fourier
space. A matrix form of the gyrokinetic Poisson equation (187) is written as

= S9ikm, (188)

1 rL*
Am,fcj = o—T~ I dxexp[i(ki - km)x]

OTTGL/X J—LX

x (kf + k2
y + k2

z) + - 3 - {1 - I0(bi) exp(-6i)} + i - , (189)
ADi ADe J

Sgfo = V) WijDiSu. exp(-«k • Rj) J0(fcxpij), (190)

where 6j = (fcf + ky)p^, and Wj is the particle weight of the nonlinear 6/ method. It is
noted that both in Eqs. (186) and (190), the gyro-average is evaluated analytically, and
this scheme makes the treatment of the full FLR effect possible for the electric field with an
arbitrary wavelength. Although we have developed a nonlinear gyrokinetic Fourier particle
code, we apply this code only to linear calculations in this section. Since the system is
symmetric in the y- and z-directions, ky and kz are specified by assuming a plane wave.

The calculation is performed for the / = 0 branch of the Double NS-ITG mode with
kypu ~ 0.833. The equilibrium parameters are chosen as the same as the analyses shown
in Figs. 1 and 2. For the linear analysis of the ITG mode with kypti < 1, the adiabatic
electron response is appropriate as discussed in Section 3.4. A model velocity profile of the
equilibrium Er x B zonal flow is chosen as the sinusoidal function,

VErxBix) = VO8UL([TT/2LV]X), (191)

where the flow shear parameter is chosen as Lv ~ 16.7pte (pu/Lv ~ 4.59) based on the
Er x B zonal flow profile observed in the simulation.
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Figure 31: (a) Real frequency and (b) growth rate of the / = 0 branch of the Double NS-

ITG mode with kypu — 0.833 are plotted against VQ/VU (open circles). The eigenfrequency

without the equilibrium zonal flow obtained from the gyrokinetic integral eigenvalue code

is shown for the comparison (broken line). The mode is stabilized by the sinusoidal Er x B

zonal flow with VQ/VU ~ 0.005.
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Figure 32: Resonance conditions with {VQ/VU = 0.004) and without (VQ = 0) the Er x B

zonal flow are compared. In the case with the Er x B zonal flow, the gyro-average is

evaluated for thermal ions with pi = pu.

Figures 31 (a) and 31 (b) show the ^-dependence of the real frequency and the growth

rate of the Double NS-ITG mode. While the real frequency is insensitive to a change in

vo, the microscopic Er x B zonal flow is remarkably effective for stabilizing the NS-ITG

mode, and the marginally stable condition is given in a very small Er x B flow velocity

with vo/vu ~ 0.005. In order to understand the stabilizing mechanism, the resonance

condition, \k\\\vti/\Re(uj) — ky(vErxB)e\, is plotted for the cases with and without the ErxB

zonal flow in Fig. 32, where the gyro-average is evaluated for thermal ions, (vErxB)e —

vosm([Tv/2Lv]x)Jo([iv/2Lv]pti). Since the real frequency is almost constant, the resonance

condition is not changed on average. However, in a wide range of the unstable region

around the gmjn-surface, the local resonance condition is shifted from the most unstable

condition due to the Doppler shift with the microscopic Er x B zonal flow. This property

that the resonance condition is shifted without changing the real frequency is a unique

stabilizing mechanism of the microscopic Er x B zonal flow. It is noted that such a change

in the resonance condition can not be expected for the global ET x B shear flow, because

the real frequency is also shifted to sustain the instability.

5.6 Discussion

In this section, we have studied nonlinear dynamics of the ETG turbulence using a gy-

rokinetic finite element PIC code. In a negative-sheared slab configuration, simulations are

performed for nonresonant single-helicity perturbations, because the Nonresonant NS-ETG
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mode is considered to play a significant role in the electron anomalous transport based on

the mixing length estimate. The principal results observed in the nonlinear simulation of

the Nonresonant NS-ETG mode are summarized as follows: (a) in the linear growth phase,

a radially elongated vortex structure predicted by the linear theory appears, (b) in the

initial saturation phase, a saturation of the ETG mode is produced by an inverse (normal)

wave energy cascade in the ky (kx) space, which tends to generate E x B shear flows, (c)

after the saturation of the ETG mode, the secondary instability followed by a generation

of the ErxB zonal flows occurs and the ErxB zonal flow region is expanded in the radial

direction, and (d) in the quasi-stationary phase, the quasi-steady ETxB zonal flows, which

are stable for the K-H mode, is sustained, and a remarkable reduction of \e is observed in

the Er x B zonal flow region.

In the quasi-steady state of the simulation, the electron thermal transport coefficient

is estimated as Xe ~ VtePte/L ~ 0.44m2/sec (xe ~ 0.3wteP2
e/£ ~ 0.13m2/sec), where

L"1 = L~l + LJe . This coefficient is apparently comparable with \e observed in the

ITB of the negative shear tokamaks [24, 30]. As was shown in the global gyrokinetic

PIC simulation of the ITG turbulence [35], the Er x B zonal flow generated by the ETG

turbulence is effective for a reduction of Xe- However, the mechanism of the reduction of

the anomalous transport is different. In our simulation, the reduction of Xe is explained

by a decay of finite ky modes due to a strong spectrum condensation into ky = 0 mode

which does not contribute to the anomalous Xe- On the other hand, the reduction of the

anomalous Xi w a s explained by suppression and decorrelation of large vortices due to Er x B

zonal flows in the ITG turbulence [35].

The observed Er x B zonal flow profile has a large amplitude VEr*.B ~ 0.0151^ only in

finite magnetic shear regions in both sides of the gmin-surface, although an inverse energy

cascade in the ky space is observed also in a region of the <7min-surface. The ET x B zonal

flow profile is closely related to the ^-profile. From the linear stability analysis of the K-H

mode, the parallel electron dynamics, which comes from an effect of the magnetic shear,

has a stabilizing effect on the K-H mode. The observed Er x B zonal flow profile may

be explained by the local critical Er x B flow velocity due to the magnetic shear or k\\

stabilization. The K-H mode play a critical role in the underlying physics of the Er x B

zonal flow in the ETG turbulence.

In the simulation shown in Fig. 28(b), quasi-steady Er x B zonal flows decay by

changing the g-profile to reduce the magnetic shear. This result indicates that the K-H

mode works to destroy the Er x B zonal flow in a collisionless plasma. A quasi-steady

ErxB zonal flow is determined by a competition between a flow generation process due to

an inverse energy cascade in the ky space and a flow destruction due to the K-H mode. The

simulation results show a possibility of controlling the Er x B zonal flow and the resulting

confinement property by changing the (/-profile.

The linear stability analysis of the ITG mode in the presence of a microscopic model

ET x B flow has shown that the Er x B zonal flow with pu/Lv ~ O(\) is effective for
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stabilizing the ITG mode. If a generation of the microscopic ET x B zonal flow is a

universal property of the ETG turbulence in the negative shear configuration, this result

may explain the observation that Xi IS reduced to a level of the neoclassical transport in

the ITB region.



84 Gyrokinctic Analysis of Micro-instabilities in Negative Shear Tokamaks JA.ERI 1341

6 Conclusions

The gyrokinetic Vlasov-Maxwell system is the most rigorous kinetic description of the low

frequency dynamics in a collisionless high temperature tokamak plasmas. In this work,

we have analyzed linear and nonlinear properties of micro-instabilities particularly for the

negative shear configuration, based on the gyrokinetic theory.

In the gyrokinetic Vlasov-Maxwell system, low frequency phenomena in tokamak plas-

mas are described efficiently without losing important kinetic effects, such as the Landau

resonance and the FLR effect. In the gyrokinetics, a gyro-phase dependent part of per-

turbations, which is recognized as a non-secular perturbation in analyzing low frequency

waves, is removed from the Vlasov-Maxwell system using the action-variational Lie pertur-

bation method. Since an inherent nature of the Hamiltonian system is conserved due to

the area preserving property of the Lie transform, the gyrokinetic Vlasov-Maxwell system

is appropriate for studying nonlinear dynamics via a computer simulation. We have ap-

plied this technique also to the treatment of fast passing motion of high energy drift-kinetic

electrons, and the orbit-averaging model has been developed in the gyrokinetic simulation.

The model will be extended to include a bounce motion of trapped particles in a toroidal

plasma. Since a low cost simulation of low frequency waves with drift-kinetic electrons was

demonstrated [59], this model possesses a promising feature for future application of the

global gyrokinetic simulation to low frequency kinetic phenomena such as the collisionless

tearing mode [90], where electrons play a crucial role.

One of the goals in this work has been the linear analysis of micro-instabilities in a weak

magnetic shear region around the gmin-surface, where a WKB approach can not be used. To

this end, we have developed a gyrokinetic integral eigenvalue code. Numerical results have

shown that both the slab ITG mode and the slab ETG mode become strongly unstable

around the <7mjn-surface, and they have three types of branches depending on the number

of mode-rational surfaces: a single mode-rational surface (Single) mode, a double mode-

rational surface (Double) mode, and a Nonresonant mode. We have derived new analytic

solutions for the Double and Nonresonant modes, which have a significant contribution to

the anomalous transport based on the mixing length estimate. The properties of these

modes are summarized as follows:

NS-ITG mode

(a) The Double (Nonresonant) NS-ITG mode becomes a bounded (oscillatory) solution

around the gm;n-surface.

(b) Since this mode is excited in the weak magnetic shear region around the 9m;n-surface,

the stability is basically determined locally at the gmin-surface.

(c) The unstable ky region of the NS-ITG mode spreads up to kypu ~ 10 by following

the local dispersion, while that of the normal-sheared slab ITG mode is limited for
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u < 1.

(d) The eigenfunctions have a broad radial eigenmode structure around the ^mi

and their radial correlation lengths are several times larger than that of the normal-

sheared slab ITG mode.

NS-ETG mode

(a) For typical fusion plasma parameters with Pte/A|)e <C 1, the properties of the ETG

mode become different from the ITG mode, because of the Debye shielding effect.

(b) The Double (Nonresonant) NS-ETG mode becomes a oscillatory (bounded) solution

around the #min-surface.

(c) The stability is determined locally at the gmin-surface, but the unstable ky region is

limited for kypte < 1, because the scale length is characterized by \^e.

(d) The NS-ETG mode has an order of magnitude larger radial correlation length than

that of the conventional normal-sheared slab ETG mode.

These particular properties of the NS-ITG mode and the NS-ETG mode have been clarified

for the first time by the present analyses with the gyrokinetics. We have shown that several

approximations or assumptions used in the conventional stability theory are inappropriate

especially for the negative shear tokamaks. Although a reduced model such as the fluid

model is useful for understanding physics qualitatively from the obtained numerical re-

sults, the gyrokinetic model is indispensable for a complete description of the drift-wave

turbulence.

The main object in the study of the drift-wave turbulence is to investigate physics of

a plasma turbulence as well as an estimation of the transport coefficient. In the normal

shear case, the linearly unstable ky region of the ITG mode for kypti < 1 and that of

the ETG mode for ky\De < 1 are separated each other. This may imply that the ITG

turbulence is independent of the ETG turbulence, and that a simulation model of the

ITG turbulence assuming adiabatic electrons is usable for a conventional normal shear

configuration. In the negative shear case, their unstable regions overlap each other around

kypu ~ 10 (kyXoe ~ 0.4). In other words, in the wavenumber space, an energy source of the

ETG turbulence exists in an energy sink region of the ITG turbulence. Since the growth

rate of the ETG mode is an order of magnitude larger than that of the ITG mode, effects

of the ETG turbulence can not be ignored in studying the ITG turbulence. Therefore,

especially in the negative shear tokamaks, non-adiabatic electrons play a significant role in

a formation of the drift-wave turbulence.

Prom the conventional mixing length estimate, it is found that both the NS-ITG mode

and the NS-ETG mode give order of magnitude larger transport coefficients compared with

those in the normal shear cases. The obtained large transport coefficient of the NS-ITG
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mode seems to be inconsistent with an improved ion energy confinement in the negative

shear discharges with the ITB. The NS-ITG modes may be suppressed by other effects such

as the Er x B flow shear, as shown in Section 5.5. However, even if the Er x B shear flow

is considered, it may be insufficient to stabilize the NS-ETG modes, because it is difficult

to satisfy the stability condition, UJETXB > Im(o;). For the electron energy confinement,

the transport coefficient due to the NS-ETG mode may explain the residual anomalous

electron thermal transport in the ITB of the negative shear tokamaks.

Effects of Er x B shear flows on ITG modes were studied in the previous works [37, 39].

In their treatment of mean Er x B flows, an equilibrium electric field was imposed as

an external field. As shown in the linear theory of the K-H mode, if we consider the self-

consistent density profile in the ErxB shear flows, the K-H mode may become unstable. For

proper estimation of the stability limit including the K-H mode, a careful determination of

a radial electric field through the Poisson equation with both the ion and electron density

profiles is required, because the charge density (the electrostatic potential) in a plasma

corresponds to the vorticity (the stream function) in a neutral fluid.

In the present linear calculations, we have considered only the slab drift waves, which

are driven by the resonant interaction between transit particles and electrostatic waves.

The present results may not be sufficient for a quantitative comparison with tokamak

experiments, since the driving force due to the toroidal effects such as toroidal guiding

center drift, trapped particles, and the toroidal mode coupling is not included. However,

the toroidal effects tend to become weak for the negative shear configuration and the slab-

type drift waves are relevant to understand experimental results.

Another goal in this work has been understanding of nonlinear physics of the drift-wave

turbulence. Firstly, we have addressed the ETG mode whose growth time is much faster

than that of the ITG mode. In order to study nonlinear dynamics of the ETG turbulence,

we have developed a gyrokinetic finite element PIC code. In this work, we have applied

a two-and-a-half dimensional model to the negative shear configuration. Simulations are

performed particularly for the Nonresonant NS-ETG mode, because its contribution to

the electron anomalous transport based on the mixing length theory is the largest among

several branches of the NS-ETG modes. The principal results observed in the nonlinear

simulation of the Nonresonant NS-ETG mode are summarized as follows:

(a) In the linear growth phase, a radially elongated vortex structure predicted by the

linear theory is seen.

(b) In the initial saturation phase, a saturation of the ETG mode is produced by an

inverse (normal) wave energy cascade in the ky (kx) space, which tends to generate

the E x B shear flows.

(c) After the saturation of the ETG mode, the secondary instability followed by a gener-

ation of the Er x B zonal flows occurs and the Er x B zonal flow region is expanded

in the radial direction.
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(d) In the quasi-stationary phase, the quasi-steady Er x B zonal flows, which are stable

against the K-H mode, is sustained, and a remarkable reduction of \e is observed in

the Er x B zonal flow region.

Prom analyses of the simulation data, various new underlying physics in the ETG turbu-

lence has been revealed.

The electron thermal transport coefficient Xe ~ vtep1e/L ~ 0.44m2/sec observed in the

turbulent region around the gmin-surface is large enough for explaining Xe observed in the

ITB of the negative shear tokamaks [24, 30]. It is noted that this coefficient is much smaller

than that obtained from the mixing length estimate, since the linear eigenmode structure

is not sustained after the nonlinear saturation of the ETG mode. On the other hand, in the

ErxB zonal flow region, an electron heat flux is strongly suppressed, because of the strong

spectrum condensation into ky = 0 mode which does not contribute to the anomalous Xe-

From the Rayleigh necessary condition for instability, the K-H mode is basically unsta-

ble, if we consider a shear less slab configuration or a two-dimensional magnetized plasma.

In a sheared slab configuration, the parallel electron dynamics induced by the magnetic

shear has a stabilizing effect on the K-H mode. The linear stability analysis of the K-H

mode has shown a close correspondence between the stability limit of the K-H mode and

the ^-profile. This feature is qualitatively consistent with simulation results, where ET x B

zonal flows are generated only in the finite magnetic shear regions, although an inverse en-

ergy cascade in the ky space is also observed in the weak magnetic shear region. It has been

shown that quasi-steady Er x B zonal flows decay by changing the g-profile to reduce the

magnetic shear. The K-H mode play a critical role in the underlying physics of the Er x B

zonal flow in the ETG turbulence. It is considered that a quasi-steady Er x B zonal flow

is determined by a competition between a flow generation process due to an inverse energy

cascade in the ky space and a flow destruction due to the K-H mode. These results imply

a possibility of controlling the Er x B zonal flow and the resulting confinement property

by changing the ^-profile.

We have shown that the microscopic ErxB zonal flow with pu/Lv ~ O(l) has a strong

stabilizing effect on the ITG mode. If the generation of the microscopic ErxB zonal flow is

a universal feature of the ETG turbulence in the negative shear configuration, a suppression

of the ITG mode due to the ETG turbulence may be a plausible candidate for explaining a

reduction of Xi ^° a level of neoclassical transport in the ITB region of the negative shear

tokamaks. However, in the present work, the study of the ETG turbulence formed by

the Nonresonant NS-ETG mode has been limited within a two-and-a-half dimensional slab

model. For three-dimensional models, besides the Nonresonant NS-ETG mode, the Single

and Double NS-ETG modes become unstable. Also, the linear stability of the K-H mode

may be affected by multiple-helicity perturbations. In order to confirm the Er x B zonal

flow generation completely, three-dimensional simulations will be necessary in the future

work.

The anomalous transport process or plasma turbulence in high temperature fusion
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plasmas is characterized by various kinetic and fluid phenomena. The gyrokinetic integral

eigenvalue code and the gyrokinetic PIC simulation code are powerful tools in analyzing

linear and nonlinear properties of such a complex system. With the gyrokinetic integral

eigenvalue code, we have analyzed the ITG and ETG modes both in the normal shear

and negative shear configurations, and the K-H mode arising from quasi-steady Er x B

zonal flows. This code is applied to any kind of micro-instabilities in arbitrary equilibrium

configurations, provided that the gyrokinetic ordering is not violated. Also, this code is

useful as a tool for analyzing linear properties of a nonlinearly saturated state or a new

equilibrium state realized in a nonlinear simulation. However, nonlinear properties such

as a saturation mechanism of micro-instabilities and a generation mechanism of ET x B

shear flows are beyond linear calculations. It is thought that both the gyrokinetic integral

eigenvalue code and the gyrokinetic PIC code mutually play a complementary role in a

simulation study of tokamak plasmas. Future work will be an extension of these codes to

a toroidal geometry and an electromagnetic waves.
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6.58515 x 10

8.46233x10

1

R

3876

1

mmHg(Torr)

7.50062 x 101

735.559

760

1

51.7149

lbf/in'(psi)

145.038

14.2233

14.6959

1.93368 x 10"2

1

1 cal = 4.18605 J(JtKtt-)
18 = 4.184 J (Mt^)
19 - 4.1855 J (15 " O

" =4.1868J(HBSsSSl

" f±#-T> 1 PS (ikSb/l)

21 -75kgf-m/s

" = 735.499 W

£1 Sv

1

0.01

rem

100

1

(863:12 fl 26 B i t )


