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Based on the finite volume - spectral method, we present new dis-
cretization formulae for the spatial differential operators in the full sys-
tem of the compressible MHD equations. In this approach, the cell-
centered finite volume method is adopted in a bounded plane (poloidal
plane), while the spectral method is applied to the differential with
respect to the periodic direction perpendicular to the poloidal plane
(toroidal direction). Here, an unstructured grid system composed of
the arbitrary triangular elements is utilized for constructing the cell-
centered finite volume method. In order to maintain the divergence free
constraint of the magnetic field numerically, only the poloidal compo-
nent of the rotation is denned at three edges of the triangular element.
This poloidal component is evaluated under the assumption that the
toroidal component of the operated vector times the radius, RA^, is lin-
early distributed in the element. The present method will be applied to
the nonlinear MHD dynamics in an realistic torus geometry without the
numerical singularities.
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1. Introduction

The magnetohydrodynamics (MHD), which describes a macroscopic plasma dynamics accom-
panied with the global magnetic activity, has been deeply studied in various research fields such
as fusion, space, or astrophysical plasma researches. Especially, in order to clarify the complex
dynamics of the nonlinear MHD, the MHD simulations have been performed for the last few
decades. In space plasma researches, for instance, the global MHD simulations of the planetary
magnetosphere (e.g., for the Earth's magnetosphere [1], or for the Jovian magnetosphere [2])
were performed as a powerful means of studying the global structure and dynamics of the solar
wind - magnetosphere interaction. Also, in fusion plasma researches, the nonlinear MHD sim-
ulations were presented to illuminate the dynamic activities in various fusion devices; collapse
events in the tokamak [3-5], the self-reversal process in the reversed field pinch (RFP) [6], the
internal reconnection event in the spherical tokamak (ST) [7], and so on. The approaches of
those simulations are roughly classified into two types as follows: One type is that the equations
are discretized on the grid aligned with the circular or the concentric flux coordinate. There-
fore, a realistic machine geometry as well as a separatrix configuration cannot be treated in the
numerical simulation though the higher-order accuracy is realized by the spectral method for
both the toroidal and the poloidal directions. Also, even when we consider an ideal concentric
configuration, the violent nonlinear dynamics of the non-ideal MHD largely shifts the magnetic
field from the initial flux coordinate, and as a result, breaks the calculation. On the other hand,
in the other type, a finite difference method on the cartesian grid is applied in the rectangular
poloidal plane. Thus, the violent MHD phenomena in the fusion reactor may be simulated
without numerical instabilities if we choose proper numerical scheme. However, this approach
leads to less accuracy than the above spectral method. It is also natural that this is inadequate
for the simulation in a realistic geometry.

In the research fields of the fluid mechanics, large scale computer simulations have greatly
progressed in a frontier field as the computational fluid dynamics (CFD). Especially, in the view
point of a design on airplane, automobile, and so on, the simulations on the unstructured grid,
which is composed of various geometric elements, have been developed to a high degree in the
CFD to fit the complicated boundary geometry. The other advantage of the simulations on
the unstructured grid is that, due to the absence of the regularity for the grid structure, the
elements can be readily concentrated on desirable locations where the finer structures appear.
On this unstructured grid, we can construct a numerical scheme based on the alternative of the
finite element method, where the equations cannot be discretized not by a variational principle
but by the method of weighted residuals in general, or the finite volume method, in which the
integral form of the conservation laws are discretized directly. Quite recently, also for the MHD
researches, these two approaches, the finite element method [8,9] and the finite volume method
[10], were introduced separately in order to simulate the nonlinear dynamics of torus plasma.
Here we note that, for both approaches, the spectral method is applied to the toroidal direction
due to the periodicity of the torus geometry. The compressible MHD simulation by means
of those numerical techniques becomes quite important to comprehend the mechanism of the
violent dynamics in high beta torus plasmas within the realistic geometry.

Through the one of those approaches, the finite volume method [10], we can naturally in-
troduce the discretization which satisfy the divergence free condition of the magnetic filed.
Therefore, in this paper, we present a variant of discretization formulae for the whole first-order
differential operator appearing in the full system of the compressible MHD equations based on
the finite volume - spectral method. The finite volume method is adopted in a two dimensional
plane while the spectral method is applied to the one dimensional periodic direction perpendic-
ular to that plane. The higher-order differential operators related to the dissipative term in the
MHD equations are evaluated from the first-order operators in this study. Particularly, in order

- 1 -



JAERI-Research 2000-023

to simulate the dynamics of high beta plasma in fusion reactors, we present a suitable form of
the compressible MHD equations for such problems in sections 2. In section 3, every differential
operator appearing in the MHD equations is discretized explicitly. The boundary condition for
the present discretization is mentioned in section4. Finally, we summarize the results of this
paper in section 5.

2. Basic Equations

The full system of the compressible MHD equations as well as the compressible Navier-Stokes
equations can be written in the conservative form. Therefore, the integral form of these equa-
tions may have the discontinuous solutions. Indeed, it has been well known from the MHD
studies of the planetary magnetosphere that discontinuities such as the bow shock and the
magnetopause appear in the sun side of the magnetosphere due to the interaction with the
supersonic solar wind. In order to capture such discontinuities numerically, the conservative
form of the MHD equations has been directly discretized in which the numerical fluxes at the
cell boundary are estimated by the upwind-weighted fluxes for instance [2]. However, the dis-
cretization for the conservative form of the compressible MHD equations, particularly in the low
beta situation, may produce large numerical errors in the energy equation and lead an incorrect
Lorentz force toward the magnetic field in the momentum equation. In the incompressible MHD
simulations such as the studies for the MHD turbulence, on the other hand, the flux function -
stream function form in two dimensions [11] or the non-conservative form in three dimensions
[12] was often used as the discretized form of the MHD equations, where the pressure is deter-
mined to satisfy the divergence free constraint of the velocity field. Also, tokamak simulations
have been performed under the reduced MHD approximation where the flux function - stream
function form is discretized by some manners [13].

Recently, as an effective approach for the global MHD simulation of the Earth's magne-
tosphere, the direct discretization for the semi-conservative form of the compressible MHD
equations was proposed to simulate the dynamics of both extremely high and low beta plasmas
in the magnetospheric system [14]. Similarly, in order to clarify the dynamics of high beta
fusion plasmas that is appropriate for the middle range of beta in the global magnetospheric
simulation, we discretize the semi-conservative form of the compressible MHD equations as
follows:

| (1)

n ) + J x B , (2)

^ n - V ] + J . E , (3)

f - -VXE, (4)

where p, V, ep, B, P, II, J, E, and I denote the plasma density, the bulk velocity, the fluid
energy density, the magnetic field, the plasma pressure, the viscous tensor, the current density,
the electric field, and the unit matrix, respectively. The relations between the time dependent
variables at the left-hand side of the above equations and other variables can be written as

n = ^(v-v)i-vv-'(vv)], (6)
E = - V x B + i/J, (7)
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J = J-VxB, (8)

where 7, v, 77, and /to indicate the adiabatic constant, the viscosity, the resistivity, and the
permeability, respectively. Here the viscous tensor is obtained under the collision-dominated
assumption. The fluid equations from (1) to (3) are written by the conservative form of the
fluid components with the the electromagnetic terms as the source terms. From these equations,
we can construct a numerical scheme based on the finite volume method such that the volume
integral of the density, the momentum and the energy density are exactly conserved without
the source terms. Also, a scheme which conserves the total magnetic flux can be constructed.

3. Discretization of Differential Operators

As seen in the previous section, the operators in the full system of the compressible MHD
equations are given by the gradient of a scalar, the divergence of a vector, the divergence of a
tensor, and the rotation of a vector. Additionally, in order to estimate the viscous tensor, the
gradient of a vector must be considered. These differential operators will be discretized both by
the finite volume method in the poloidal plane and by the spectral method for the differential
with respect to the toroidal direction in the torus geometry as shown in Figure 1 or in the
general geometry periodic at least for one direction. Here, the poloidal plane is composed of the
arbitrary triangular elements as seen in Figure l(b) where the triangles are given by Delaunay
triangles, for example. Since we decompose a function / (or A for a vector function) into a
series of which f(R,<f>,z) = Yin f(R-> z)n^In^ (n: t n e toroidal mode number; I: the imaginary
unit), the differential of the scalar (vector) function to the toroidal direction is replaced by the
complex scalar (vector). As a result, the numerical scheme constructed here is regarded as the
two dimensional finite volume method for the complex MHD equations including the curvature
effect of the torus geometry. In the followings, we specify the discretization formulae for the
operators.

3.1. Gradient of Scalar (V/)

The averaged gradient of / in the volume element denoted by i is defined as

(V/)dV

A<j>

i5,-, (9)
71

where Si and Ri are the area of the triangular element, Js. dS, and R coordinate of the centroid
of the triangle, / s . RdS/Si, respectively. On the other hand, the alternative of the surface
integral formula of the gradient for the torus configuration can be written as

/ / / (RVf)dRdzd<p
Jo JzS) JRS)

rAd> r r f) f ft f
I I I I T> ^ J_ ^

Jo Jzs JRr OR d<j>
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= f U

- / / fndRdzeR + ln I
JzSi JRSJ Jz

f f ~ f
V Ju Js, Js

where n, ejt, and (RsuZSi) denote the unit vector outwardly normal to the edge, the unit vector
in ^-direction, and the coordinates in the area, respectively. Also, here, <ft • dl indicates the line
integral along the triangular edges turning as a left-handed screw to the toroidal direction, i.e.,
along the unit vector t = n X e^. Thus, the integral form of the gradient / can be discretized
as

4 > — 0

Here, subscript e shows the edge of the triangle as depicted in Figure 2, and then, /e)Tl indicates
the n mode numerical flux at the edge. By comparing the n mode component of equations (9)
and (10), one can obtain the following discretization formula for V / :

i _ \ ~ Xn ~

^ RfAl f + j
The toroidal effect appears in all terms at the right-hand side of the above equation. In the
limit of the large aspect ratio as Ro/a —> oo (a: the minor radius; RQ: the major radius),
Re/Ri, 1/Ri asymptotically approach 1, 0, respectively, and ln/Ri is replaced by In. Thus,
the formula without the toroidal effect is reduced as

(V/).,n = 4" E fe,nneAle + Inji,^, (12)

where the toroidal direction </> is replaced by y as a cartesian coordinate. This is equivalent to
the two dimensional finite volume method with a correction of adding the n mode term.

In this way, as found from equation (11) or (12), the gradient of a scalar function / in the
element i is evaluated both by the operated function /,-)7l itself and by the numerical fluxes
at the triangular edges /e ,n where /e,n = F(fiyn,fj,n,- • •)• Insofar as the property that /;,„ =
F(fi,nifi,n:'") 1S satisfied, one can choose the evaluated function F arbitrarily. Thus, for
instance, we can select the arithmetic mean between /,,„ and the neighbor one fjiU in the

element j as
~ 1 ~ ~
Je,n = ~Z\Ji,n T Jj,n)i

or the upwind-weighted evaluation to capture the strong shock. When the numerical fluxes are
evaluated by the simple arithmetic mean, the gradient of / is calculated only from the discrete
functions in and adjacent to the element i.

3.2. Divergence of Vector (V • A)

The divergence of a vector function A is also discretized by making a comparison between
the volume integral form and the surface integral form of the divergence of A. Thus, the
discretization formula for V • A is given by

^ •jn

( V ' A)«> = R

4 -
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In the absence of the toroidal effect, this formula is reduced as

3.3. Divergence of Tensor (V • T)

Following from above manners, the divergence of a tensor T is discretized as

( V T ) , . n = ^ T E R ^ • *e,nA/e + - ^ e * • T,-,n + i -e* x (e* • T t > ) . (15)

Also, in the straight limit, it is written as

(V~T) t = 1 2 ne • Te,nA/e + lney • Thn. (16)

It is found that the divergence of the uniform diagonal tensor as V • (/I) strictly corresponds
to the discretization formula for the gradient of / as presented in 3.1.

3.4. Gradient of Vector (VA)

In addition to the operators discretized above, the gradient of a vector must be also discretized
to evaluate the viscous tensor which includes the non-diagonal components for the compressible
MHD equations. The formula for the torus version is derived as

. i _ 1 ~ Xn ~ 1 ~

( V A \> = -^-g. J2 Re^Ae,nAle - — eRAi7n + -j^A,-,„ + Ye^Gz x A l>)' (17)

while that for the straight version is reduced as

(VA), „ = f E neAe,nA/e + lneyAl>n. (18)

In the latter case, the discretization formula seems to be simple extension of the formula for the
gradient of a scalar (12) into a vector.

3.5. Rotation of Vector (V x A)

In the previous discretization, the cell-centered finite volume method where the physical
quantities are denned at the centroid of the volume element is applied in the poloidal plane.
Although one can also construct such formulae for the rotation operator, the divergence free
condition of the rotation as V-Vx = 0 cannot be satisfied numerically. Therefore, we introduce
another discretization of the finite volume method only for the rotation operator.

For the direct finite difference discretization of the incompressible Navier-Stokes equations,
the variables are often defined at a non-collocated grid in order to maintain the divergence free
condition of the continuity equation (e.g., well-known MAC method on the staggered grid).
Also, in the MHD simulation, a numerical scheme with non-collocated variables, e.g., the con-
strained transport (CT) scheme [15], has been adopted as a proposed scheme to avoid the
generation of the numerical magnetic monopole. Therefore, also in our approach, instead of
the volume integral as manipulated in section 3.1, the surface integral is introduced to evaluate
the discretized rotation at the centroid or the edges of the element, i.e., at a non-collocated
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grid. The discretization formulae for the toroidal component, the normal and the tangential
components to the triangular edge are separately presented in the following subsections.

3.5.1. Toroidal Component

The surface integral for the toroidal component ((^-component) of the rotation in the element
i is given by

J (V x A)

= f
Jz

and thus, the discretized formula for the surface integral is written by

/ (V X A) • e+dS =~Y1 ^^ E Ae,n • te,nA/e, (19)
•'S> n e

where the unit vector tangent to the edge te = ne X e^. Here, we approximate the averaged
rotation in the element as

/ (V x A) • e+dS = £ e^CV A)^. Jt. (20)

Therefore, from equations (19) and (20), the toroidal component of the rotation is discretized
a s __ 1

(VxA),.>B = --X;A e ,B-t eA/ e . (21)

As you find the derivation and the form of equation (21), the toroidal component of the rotation
is evaluated without the effect of the torus geometry. Therefore, in the straight limit, the
evaluation of this component will not be transformed.

3.5.2. Poloidal Component (Normal Component)

In order to maintain the divergence free condition, the poloidal component of the rotation is
defined at the edge of the triangular element. Thus, the rotation normal to the edge is integrated
within the curved surface formed by the A<f> rotation of the edge, as shown in Figure 3 sketched
by the shaded area:

/ (V x A) • ndSR
JSne

= Jo L
9A R

= E ±4> £{nR(InA,n - %*££) + n z ( ^ l - InTRn)}dl

n + tzAzn)dl - J°\tRjji + tzf-z)(RAK

e,n • teA/e - r d{RtK)dl)

( ^ ) ( l ^ i B } , (22)

6 —
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where e+ and e— are the forward (te-direction) and the backward (—te-direction) vertices to
the edge e, respectively. Similarly to the previous procedure, the normal component of the
rotation is averaged out on the surface as

f ( V x A ) - n ^ n = ^A^ e (v7A) n e i I i AI e , (23)
JSne n

and therefore, by comparing (22) with (23), we obtain the discretization for the normal compo-
nent of the rotation as

( V x A ) n e | 7 l - ^ A e , n te ^ ^ . (24)

Here we note that quantities (RAtt,)e±,n at the vertices, those are derived from RA^ in neighbor
elements, are needed for the evaluation of the rotation. In this study, RA^ is assumed to be
linearly distributed in the element in order to keep the second-order accuracy. Therefore, the
contribution of (RA^j^ at the neighbor element j to (RA(j>)e±in is expressed as (RA$)j(e±^n —
{RA^)j<n + V(iZA^)j)n(re± — TjtTl). Subsequently, those of the adjacent elements to the vertex
are averaged out as

? • (re± - r,)}, (25)
ne±

where ne± indicates the number of the elements j adjoining the vertex e±. For the case without
the toroidal effect, these formulae are transformed as

( V A ) n e > n = 2nAe,n • te - ye+'nM
ye~in. (26)

where

^ ^ ^ ^ 'i)>- (27)

3.5.3. Poloidal Component (Tangential Component)

The poloidal component of the rotation consists of two independent components. Those
components were separately defined at a non-collocated grid as the normal components in the
previous non-collocated approaches, as sketched in Figure 4 for instance. Although, on the
cartesian grid or the structured grid in general, those types of the numerical scheme can be
constructed straightforwardly, the discretization by similar procedures cannot be applied in the
present triangular grid or the unstructured grid in general. Therefore, the other component in
the poloidal plane must be denned at the triangular edge as the tangential component, where
the normal component of the rotation is also defined.

Since we need to evaluate the tangential component of the rotation at the edge, the rotation
must be integrated within the surface normal to te. A simple idea occurs to us that the
integration may be executed on the surface formed by the line connected with the centroids
of the adjacent elements. However, though we can construct the polygons by connecting the
adjacent centroids each other, the edge of the polygon neither crosses at right angle with the
edge of the triangle nor intersects the triangular edge at a point of the center of both edges.
Thus, here we integrate the rotation on the surface bounded by unknown integral limits ±6ne

- 7 -



JAERI-Research 2000-023

as depicted by shaded area in Figure 5:

/ (V x A) • tdSt

JSte

J-8ne OZ OK

\ T + A)d+ I \nR — + nz — )(RAK)dn}
OJt OZOZ

r + Sne QIRXA, )
V , *n)dn}, (28)

J-Sne on

where —^ne and +£ne are assumed to be placed in the adjacent elements i and j , respectively.
Since the tangential rotation averaged on the surface is given by

(29)

we can partially discretize the toroidal component of the rotation as

In order to evaluate the rotation in the discretized system, the integral form of the last term
in equation (30) is replaced by the algebraic function of the discretized quantities in neighbor
elements. Here, since we approximate the distribution function of RA$ to the piecewise linear
function in each element, the limits of the integral is separated for each distribution function as
follows:

/ -
^dn

-Sn. On

i+o dn Jsne dn

Thus, for any <5ne, the integral term in equation (30) is simply replaced by the arithmetic mean
of the gradients at the adjacent elements i and j . Also, in higher-order evaluations, the integral
will be replaced by the mean of the gradients, those are evaluated more accurately than the
present, at least in the limit of <5ne —> 0. Finally, the tangential component of the rotation is
derived as _ ___

(V~AK . = -%• A . , . n. + n e . * ( « * ) * • + *(***)» ,

and similarly, the discretization formula for non-curved version is give by

VA +
(V X A)te?n = -InA e , n • ne + ne • "-&- ^ . (32)

- 8 -
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3.5.4- Divergence of Discretized Rotation

The divergence of the rotation is calculated from equations (21), (24), and (13) in the torus
geometry as follows:

(V.V~xA) t . n

• neA/e + g (

, n 1 A f
 I n ST 1 +A7

}A/e - _ ^ Ae,n • t eA/
^ A - t e } A / e ^

= 0

Thus, we can confirm the divergence free of the rotation at the triangular centroid i even
numerically. The application of this condition to equation (4) leads that the divergence free
constraint of the magnetic field is maintained throughout the simulation runs. Here we note
that the tangential component is not needed for the evaluation of the divergence at the centroid.
Also for the case without the toroidal effect, the divergence free condition of the rotation will
be readily confirmed from equations (21), (26), and (14).

4. Boundary Conditions

In our method, the boundary grid is placed such that a face of the boundary element contacts
with the boundary as shown in Figure 6. Under this boundary grid, the temporal evolution
of the fluid components, p, pV, and ep in the boundary element are determined both by the
numerical fluxes for the fluid parts normal to each face including the boundary face and by
the electromagnetic terms evaluated at the centroid. If the plasmas cannot flow in and out
at the boundary wall, the fluid-related fluxes normal to the boundary are given as pVUeB = 0,
pVneBVReB + nReBPeB = nRiiBPeB, pVneBV^eB = 0, pVUeBVZeB + nZeBPeB = nZeBPeBy and (eFeB +
PeB)VneB = 0 for the continuity equation, the momentum equation of R-, <j>-, 2-components,
and the energy equation, respectively, as far as the viscosity is very small. In order to know the
rigid wall condition for the fluid-related fluxes completely, we must specify the pressure at the
boundary wall. When the viscous effect on the boundary can be neglected, the wall condition
gives the relation that neB • VP = neB • J x B. This relation is explicitly discretized as

Re2Pe2,n(ne2 ' nefi)A/e2 + -ReB-PeB,nA/efi} = n e B • (J X B)eBj

where (J x B)e£,n is extrapolated or evaluated from the adjacent elements. Thus, the pressure
at the boundary edge is determined.

We must also specify the boundary condition for the induction equation. The electric field
tangent to the boundary wall, E(f>eB± n and EteB,n, is fixed to be zero during a temporal evolution
when the boundary wall is assumed to be a perfect conductor. The normal component, EneB,
is evaluated from which EneB = -V<j,eBBteB + Vt^B^^, where the tangential components of
the velocity at the boundary wall is either extrapolated from the adjacent elements or specified
by zero as a no-slip condition.

5. Summary

We have presented new discretization formulae of the MHD equations based on both the finite
volume in the poloidal plane and the spectral method for the differential to the toroidal direction.

- 9 -
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In this approach, one can introduce the numerical scheme which constrains the divergence free
condition of the rotation straightforwardly if the poloidal component of the rotation is evaluated
at the triangular edges. Thus, we evaluated the poloidal component of the rotation at the edge
under the assumption that RA^ is the piecewise linear distribution function in each element.
Also, the advantage of this approach is that no singular behavior appears in the magnetic axis
or the separatrix without any special treatment. Indeed, as shown in Figure 7, plasmas flow
across the near axis without any difficulty, where the flow of n = 0 mode is accelerated by the
centrifugal force from the purely toroidal flow 1^=0 = Voexp{—' ~ojg

 z }. Here, the time
integration was operated by the fourth-order Runge-Kutta-Gill method. The present numerical
scheme will undergo more detail inspection on the accuracy of the numerical algorithm.

Now we are proceeding with the study for the linear and the nonlinear instabilities in high
beta torus plasmas.
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(b)

Figure 1: (a) The schematic diagram of the torus geometry where the
poloidal plane is composed of arbitrary triangular elements, (b) An
example of the unstructured grid composed of Delaunay triangles.
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e+

e-

Figure 2: The necessary notations for the discretization specified by both
the triangular element i and the relation with the adjacent element j .
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e-

Figure 3: The integral area for the normal component of the rotation
which is shown by a shaded region. The surface is formed by the locus
of the edge.
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o
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A

X

Figure 4: A non-collocated definition for each component of the rotation,
where only the normal component is denned at the corresponding edge.
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Figure 5: The integral area for the tangential component of the rotation
which is shown by a shaded region. The surface is formed by the locus
of the perpendicular line to the edge.
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Figure 6: The distribution of the triangular elements adjacent to the
boundary wall.
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1 1.2 1.4 1.6 1.8

Figure 7: The poloidal plasma flow across the magnetic axis in the torus
geometry with the aspect ratio Ro/a = 2.
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