## Contents

## Part

| 1. Ma   | aterials Science ······                                                                                | 1  |
|---------|--------------------------------------------------------------------------------------------------------|----|
| P1-1    | Functional Polymer Research Project · · · · · · · Leader : Yasunari Maekawa                            | 2  |
| P1-2    | Advanced Catalyst Research Project · · · · · Leader : Tetsuya Yamaki                                   | 3  |
| P1-3    | Positron Nano-Science Research Project·····  Leader : Atsuo Kawasuso                                   | 4  |
| P1-4    | Semiconductor Analysis and Radiation Effects Research Project · · · · · · · · Leader : Takeshi Ohshima | 5  |
| P1-5    | Biocompatible Materials Research Project · · · · · Leader : Mitsumasa Taguchi                          | 6  |
| P1-6    | Environmental Polymer Research Project · · · · · Leader : Noriaki Seko                                 | 7  |
| P1-7    | Element Separation and Analysis Research Project · · · · · Leader : Hironori Ohba                      | 8  |
| 2. Life | e Science · · · · · · · · · · · · · · · · · · ·                                                        | 9  |
| P2-1    | Ion Beam Mutagenesis Research Project · · · · · Leader : Yutaka Oono                                   | 10 |
| P2-2    | Microbeam Radiation Biology Research Project · · · · · Leader : Tomoo Funayama                         | 11 |
| P2-3    | Medical Radioisotope Application Research Project · · · · · · Leader : Noriko S. Ishioka               | 12 |
| P2-4    | Accelerator-Neutron-Generated Radioisotope Research Project · · · · · · · Leader : Kazuyuki Hashimoto  | 13 |
| P2-5    | Radiotracer Imaging Research Project · · · · · Leader : Naoki Kawachi                                  | 14 |
| P2-6    | Radiation and Biomolecular Science Research Project · · · · · · Leader : Akinari Yokoya                | 15 |
| P2-7    | Biomolecular Function Research Project · · · · · · Leader : Motoyasu Adachi                            | 16 |
| P2-8    | Biomolecular Structure and Dynamics Research Project · · · · · Leader : Taro Tamada                    | 17 |
| 3. Ad   | dvanced Quantum-Beam Technology · · · · · · · · · · · · · · · · · · ·                                  | 19 |
| P3-1    | Laser Compton Scatterring g-ray Research Project · · · · · Leader : Ryoichi Hajima                     | 20 |
| P3-2    | Beam Engineering Section · · · · · · · · · · · · · · · · · · ·                                         | 22 |

## Part

| 1. Ma | terials Science · · · · · · · · · · · · · · · · · · ·                                                                                                                   | 23 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1-01  | Quantification of Interface Traps with g-ray, X-ray, and e-Beams for Devices with Low Internal Power Dissipation · · · · · · · · · · · · · · · · · · ·                  | 27 |
| 1-02  | An Evaluation of Single Event Effect by Heavy Ion Irradiation on Atom Switch Memory and Field Programmable Gate Array · · · · · · · · · · · · · · · · · · ·             | 28 |
| 1-03  | Radiation Degradation Characteristics of InGaP, GaAs and InGaAs Solar Cells Irradiated with 1 MeV Electrons ····································                        | 29 |
| 1-04  | Development of Fluorescent Nuclear Track Detector Based on Diamond Crystal · · · · · ·                                                                                  | 30 |
| 1-05  | Fabrication of Array of Shallow Single NV Centers in Diamond for Quantum Sensing Applications · · · · · · · · · · · · · · · · · · ·                                     | 31 |
| 1-06  | Preparation of Carbonized Layer on Polyimide Ion-track Membranes Using Ar-ion Implantation · · · · · · · · · · · · · · · · · · ·                                        | 32 |
| 1-07  | Platinum Nanocones Electrodeposited in Ion-track Membranes of Different Materials · · ·                                                                                 | 33 |
| 1-08  | Prediction of Scintillation Light Yield Based on Sub-micrometer Radiation Transport Calculation and Förster Effect                                                      | 34 |
| 1-09  | Preparation of Nano-structure Controlled Ion-exchange Membranes by Ion Beams and Their Application to Seawater Concentration · · · · · · · · · · · · · · · · · · ·      | 35 |
| 1-10  | How Does Ion-beam-irradiated Carbon Support Improve the Activity of Platinum Nanoparticle Catalysts?                                                                    | 36 |
| 1-11  | Ion Track Etching of PVDF Films Irradiated with Fast C <sub>60</sub> <sup>+</sup> Cluster Ions ····································                                     | 37 |
| 1-12  | Electro-electrodialysis Performance of Radiation-grafted Cation-exchange Membranes with Different Graft Chains                                                          | 38 |
| 1-13  | Durability of Cation Exchange Membranes for the Membrane Bunsen Reaction in the Hydrogen Production IS Process · · · · · · · · · · · · · · · · · ·                      | 39 |
| 1-14  | Design and Fabrication of Near-perfect Optical Absorbers Having Micro-structured Surface Using Etched Ion Tracks · · · · · · · · · · · · · · · · · · ·                  | 40 |
| 1-15  | Formation Mechanism of (111)-oriented Ti <sub>1-x</sub> Al <sub>x</sub> N Thin Films on Monocrystalline AlN by Reactive CVD                                             | 41 |
| 1-16  | Development of Hydrogen Permselective Membranes by Radiation-induced Graft Polymerization into Porous PVDF Membranes · · · · · · · · · · · · · · · · · · ·              | 42 |
| 1-17  | Using Small Angle Scattering Method to Reveal the Required Structure for Anion Exchange Fuel Cell Membranes with High Performance · · · · · · · · · · · · · · · · · · · | 43 |
| 1-18  | Preparation of Novel Bipolar Membranes by an Asymmetric Radiation Grafting  Method                                                                                      | 44 |

| 1-19 | Electrolyte Membranes by Radiation-induced Graft Polymerization                                                                                                                     | 45 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1-20 | Preparation of Nitrogen-doped Carbon-based Catalysts by Electron-beam Irradiation Method: Effect of NH3 Concentration in Irradiation Atmosphere · · · · · · · · · · · · · · · · · · | 46 |
| 1-21 | Utilization of Ion Implantation for Synthesis of Nitrogen-doped Carbon Material with Catalytic Activity (2) · · · · · · · · · · · · · · · · · · ·                                   | 47 |
| 1-22 | Preparation of Orientation-controlled CeO <sub>2</sub> Films on Sapphire Substrates by Sputtering · · · · · · · · · · · · · · · · · · ·                                             | 48 |
| 1-23 | Fiber-optic Remote Laser-induced Breakdown Spectroscopy in Environment of High-Dose Radiation (1) · · · · · · · · · · · · · · · · · · ·                                             | 49 |
| 1-24 | Configuration Change Analysis of Ion-irradiated SiC Nanotube Using In-situ TEM Observation · · · · · · · · · · · · · · · · · · ·                                                    | 50 |
| 1-25 | Electrical Properties of CNTFET with $Al_2O_3$ Passivation Layer for Gamma Irradiation $\cdots$                                                                                     | 51 |
| 1-26 | Electrochemical Hydrogen Absorbing Properties of Surface on LaNi Based Alloys by O <sup>+</sup> Irradiation · · · · · · · · · · · · · · · · · · ·                                   | 52 |
| 1-27 | Positron Annihilation Study of Ion-Beam Synthesized $\beta\text{-FeSi}_2 \cdot \cdot \cdot \cdot \cdot$                                                                             | 53 |
| 1-28 | Effect of Electron Beam Irradiation on the Luminescence Property of Titanium Oxide Powder · · · · · · · · · · · · · · · · · · ·                                                     | 54 |
| 1-29 | Study on Irradiation-Enhanced Precipitation in FeCu Alloy by Using Energetic Ion Irradiation and EXAFS Measurement · · · · · · · · · · · · · · · · · · ·                            | 55 |
| 1-30 | Synergetic Effect of He, H and Displacement Damages on the Void Swelling of F82H · · ·                                                                                              | 56 |
| 1-31 | Irradiation Effects of ADS Target Window Materials on Corrosion in liquid Metal · · · · · · · ·                                                                                     | 57 |
| 1-32 | Property Change of Oxygen Sensor Used in Liquid Metal under Gamma-ray Irradiation · · · · · · · · · · · · · · · · · · ·                                                             | 58 |
| 1-33 | Evaluation of Irradiation Resistance of ODS Ferritic Steel for Fast Reactor Application · · · · · · · · · · · · · · · · · · ·                                                       | 59 |
| 1-34 | Ion Beam Induced Luminescence of CMPO-HDEHP/SiO <sub>2</sub> -P Adsorbent · · · · · · · · · · · · · · · · · · ·                                                                     | 60 |
| 1-35 | Application of Ferrite Process to Radioactive Waste -Study of Ferrite Product Stability by Micro-PIXE Analysis                                                                      | 61 |
| 1-36 | Investigation of Hydrogen Gas Generation by Radiolysis for Cement-solidified Products of Used Adsorbents for Water Decontamination · · · · · · · · · · · · · · · · · · ·            | 62 |
| 1-37 | Characterization of Phosphate Cement Irradiated by g-ray During Dehydration · · · · · · · ·                                                                                         | 63 |
| 1-38 | Effect of Damage Depth Profile on Hydrogen Isotopes Dynamics in W · · · · · · · · · · · · · · · · · ·                                                                               | 64 |
| 1-39 | Effects on Displacement Damage on Electrical Properties of Silicon Carbide · · · · · · · · ·                                                                                        | 65 |

| 1-40    | Irradiation Tests of Radiation Hard Components and Materials for ITER Blanket Remote Handling System · · · · · · · · · · · · · · · · · · ·                                                                                         | 66 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1-41    | Development of Luminescence Profile Monitor for High Intensity Proton Accelerator Facility · · · · · · · · · · · · · · · · · · ·                                                                                                   | 67 |
| 1-42    | Development of Information Acquisition Device in Light Water Reactor under Specific Environment · · · · · · · · · · · · · · · · · · ·                                                                                              | 68 |
| 1-43    | Study on Hydrogen Generation from Cement Solidified Products Loading Low-radioactive Liquid Wastes at Tokai Reprocessing Plant · · · · · · · · · · · · · · · · · · ·                                                               | 69 |
| 1-44    | Radiolytic Hydrogen Absorption Behavior of Explosive Bonded Zr/Ta/R-SUS304ULC Joint · · · · · · · · · · · · · · · · · · ·                                                                                                          | 70 |
| 1-45    | Effects of the Inhibitors Against the Corrosion of Carbon Steel in the Diluted Seawater under Irradiation Conditions                                                                                                               | 71 |
| 1-46    | Effect of Particle Size of the Zircaloy-4 Oxidation Product on the Hydrogen Generation in Water Radiolysis · · · · · · · · · · · · · · · · · ·                                                                                     | 72 |
| 1-47    | Rust and Corrosion Mechanism of Carbon Steel in Dilute Chloride Solution at Low Dose Rates · · · · · · · · · · · · · · · · · · ·                                                                                                   | 73 |
| 1-48    | Gamma Radiolysis of an Extractant for Minor Actinides, HONTA, in Dodecane  Diluent                                                                                                                                                 | 74 |
| 1-49    | Radiation-induced Crosslinking of Polyamide11 in Presence of Triallylisocyanurate · · · · ·                                                                                                                                        | 75 |
| 1-50    | Biodiesel Fuel Production from Mixed Oil consisting of Triglyceride/Free Fatty Acid using Radiation-grafted Fibrous Catalysts · · · · · · · · · · · · · · · · · ·                                                                  | 76 |
| 1-51    | Development of Novel Mass Production Method of Fibrous Grafted Adsorbent · · · · · · · · ·                                                                                                                                         | 77 |
| 1-52    | Surface Modification of PA66 by Radiation Grafting · · · · · · · · · · · · · · · · · · ·                                                                                                                                           | 78 |
| 1-53    | Development of Radiation-grafted Fibrous Adsorbent for Trivalent and Hexavalent Chromium Removal · · · · · · · · · · · · · · · · · · ·                                                                                             | 79 |
| 1-54    | Polymerization in ETFE films and in Chloromethylstyrene Solution under Gamma Ray Simultaneous Irradiation · · · · · · · · · · · · · · · · · · ·                                                                                    | 80 |
| 2. Life | Science ·····                                                                                                                                                                                                                      | 81 |
| 2-01    | Target Irradiation of Individual Cells Using Focusing Heavy-ion Microbeam of QST-Takasaki (VII): Utilization of Polypropylene Film Dish for Analyzing Heavy-ion Hit Effect of Irradiated Cells · · · · · · · · · · · · · · · · · · | 84 |
| 2-02    | Apoptosis Was Markedly Induced in Human Neural Stem Cells but not in Glioblastoma Cells after Gamma-ray and Carbon-ion Irradiation · · · · · · · · · · · · · · · · · · ·                                                           | 85 |
| 2-03    | Epigenetic Modifier as a Potential Radiosensitizer for Heavy-ion Therapy on Malignancy (V) · · · · · · · · · · · · · · · · · · ·                                                                                                   | 86 |
| 2-04    | Analysis of Biological Effect on the 3D Cultured Tissue Induced by Heavy-ion                                                                                                                                                       | 87 |

| 2-05 | Bystander Mutagenic Effect via Secreted Factor(s) in Normal Human Fibroblasts Induced by Heavy Ions · · · · · · · · · · · · · · · · · · ·                | 88  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2-06 | Application of ESR method for Frozen Raw Bovine Livers under Practical Irradiation Condition · · · · · · · · · · · · · · · · · · ·                       | 89  |
| 2-07 | Observation of Oxidative Damage in DNA Sheet Generated Along Ion Beam Track · · · · ·                                                                    | 90  |
| 2-08 | Detection of Initiator Caspase, Bm Dronc Protein in the Heavy-ion Irradiated Silkworm Egg During Early Development · · · · · · · · · · · · · · · · · · · | 91  |
| 2-09 | Establishment of Irradiation Protocol of Carbon-ion Microbeam to Adult Japanese Medaka, <i>Oryzias latipes</i> ····································      | 92  |
| 2-10 | Screening of Rice Mutants to Sophisticate Ion-beam Breeding Technology for Next Generation Agriculture · · · · · · · · · · · · · · · · · · ·             | 93  |
| 2-11 | Analysis of Radiation-induced Mutation by Focusing on Plant Pigment Synthesis Genes · · · · · · · · · · · · · · · · · · ·                                | 94  |
| 2-12 | Breeding of the Oil-producing Algae by Heavy Ion beam Irradiation · · · · · · · · · · · · · · · · · · ·                                                  | 95  |
| 2-13 | Characterization of <i>Sinorhizobium</i> Mutants Showing High Salt Tolerant Using the Ion Beam Mutation Breeding · · · · · · · · · · · · · · · · · · ·   | 96  |
| 2-14 | Screening of Mutants Generated by Heavy Ion Beam for Identification of Genes Involved in Bacterial Interaction · · · · · · · · · · · · · · · · · · ·     | 97  |
| 2-15 | Improvement of Autumn-flowering Spray-type Chrysanthemum Cultivar 'Kyura Syusa' by Ion Beam Irradiation · · · · · · · · · · · · · · · · · · ·            | 98  |
| 2-16 | Ion Beam Breeding of Rice for the Mutation Breeding Project of the Forum for Nuclear Cooperation in Asia (FNCA) · · · · · · · · · · · · · · · · · · ·    | 99  |
| 2-17 | Determination of Ion Beam Irradiation Conditions for Callus of Tulip -the Second Report                                                                  | 100 |
| 2-18 | Study on the Genetic Consequence of Low Dose Rate Gamma Irradiation in Plants · · · ·                                                                    | 101 |
| 2-19 | Molecular Analysis of Carbon and Neon Ion Induced Mutations in Budding Yeast  S. cerevisiae · · · · · · · · · · · · · · · · · · ·                        | 102 |
| 2-20 | Biological Effects of Cluster Ion Beams in Bacillus Subtilis · · · · · · · · · · · · · · · · · · ·                                                       | 103 |
| 2-21 | The Lethal Effect of Ion Beams and Gamma Rays on Bacillus Subtilis Spores · · · · · · · · · · · · · · · · · · ·                                          | 104 |
| 2-22 | Low Cesium-accumulating Mutants of <i>Rhodococcus Erythropolis</i> CS98 Generated by Ion Beam Breeding                                                   | 105 |
| 2-23 | Effect of dnaE2 Knockout and Overexpression in the Radioresistant Bacterium  Deinococcus Grandis · · · · · · · · · · · · · · · · · · ·                   | 106 |
| 2-24 | Investigation of Conditions to Isolate Non-urea Producing Gunma Sake Yeasts which are Suitable for Export · · · · · · · · · · · · · · · · · · ·          | 107 |
| 2-25 | Mutational Breeding of Salt-resistant Chlamydomonas sp. Strains Reveals Salinity Stress-activated Starch-to-lipid Biosynthesis Switching                 | 108 |

| 2-26   | Evaluation of Radiation Effects Focusing on Body Posture in Caenorhabditis elegans · · ·                                                                                               | 109 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2-27   | Effects of Hyperoxia and <sup>60</sup> Co g-ray Irradiation on Lifespan in the Nematode C. elegans · · · · · · · · · · · · · · · · · · ·                                               | 110 |
| 2-28   | Estimation of Damage Localization in DNA Irradiated with <sup>12</sup> C <sup>5+</sup> and <sup>60</sup> Co g-rays in the Solid State · · · · · · · · · · · · · · · · · · ·            | 111 |
| 2-29   | Visualization of Boron within Cultured Glioma Cells Using Micro Particle Induced Gamma-ray Emission · · · · · · · · · · · · · · · · · · ·                                              | 112 |
| 2-30   | Fluorine Distribution from Fluoride-containing Luting Materials to Dentin · · · · · · · · · · · · · · · · · · ·                                                                        | 113 |
| 2-31   | Demineralize Prevention of Dentin With Fluoride Varnish via Automatic pH-cycling · · · · ·                                                                                             | 114 |
| 2-32   | Elemental and Immunohistochemical Analysis of the Lungs and Hilar Lymph Node in a Patient with Asbestos Exposure, A Pilot Study · · · · · · · · · · · · · · · · · · ·                  | 115 |
| 2-33   | Releasing of Carboplatin from Protamine-hyaluronic Acid Particles, Encapsulated in Lipid Nanocapsules · · · · · · · · · · · · · · · · · · ·                                            | 116 |
| 2-34   | Distribution Changes of Trace Elements in Rats Lung Microvascular Endothelial Cells Treated with Nicotine or Wakosil by In-Air Micro-PIXE Analysis · · · · · · · · · · · · · · · · · · | 117 |
| 2-35   | Analysis of Trace Elements in Multiple Myeloma Cell Line Using In-Air Micro-PIXE · · · · ·                                                                                             | 118 |
| 2-36   | Iron Localization in Root Tips of Lotus Japonicus Using Micro-PIXE · · · · · · · · · · · · · · · · · · ·                                                                               | 119 |
| 2-37   | Effects Of Chloride Ions On Cadmium Behaviors in Sorghum Plants · · · · · · · · · · · · · · · · · · ·                                                                                  | 120 |
| 2-38   | A Simulation Study on Imaging of a Proton Beam Using a Pinhole Camera Measuring Low-energy Photons                                                                                     | 121 |
| 2-39   | Estimation of the Kinetics of Nutrient Uptake Using Positron Imaging Data · · · · · · · · · · · · · · · · · ·                                                                          | 122 |
| 2-40   | Application of <sup>67</sup> Cu Produced with Accele rator Neutrons to the Biodistribution Study · · · ·                                                                               | 123 |
| 2-41   | Purification by Resin Method of High Radionuclidic Purity <sup>89</sup> Zr Produced by Cyclotron · · ·                                                                                 | 124 |
| 3. Adv | vanced Quantum-Beam Technology · · · · · · · · · · · · · · · · · · ·                                                                                                                   | 125 |
| 3-01   | Development of Wavelength Dispersive IBIL Detector Based on Multichannel Photomultipliers · · · · · · · · · · · · · · · · · · ·                                                        | 128 |
| 3-02   | RBS and FTIR Studies of Significant Fe Diffusion Assisted by Phase Transition · · · · · · · · ·                                                                                        | 129 |
| 3-03   | Neutron Measurements with the Bonner Sphere Spectrometer for the low Energy Region in the TIARA Neutron Field · · · · · · · · · · · · · · · · · · ·                                    | 130 |
| 3-04   | Vacancy-induced Magnetism in GaN Film Probed by Spin-polarized Positron Beam · · · ·                                                                                                   | 131 |
| 3-05   | Microbeam Formation of a 320 MeV <sup>12</sup> C <sup>6+</sup> Using the Focusing Magnet at HX Course · · ·                                                                            | 132 |

| 3-06 | Status Report on Technical Developments of the TIARA AVF Cyclotron · · · · · · · · · · · · · · · · · · ·                                                                      | 133 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3-07 | Status Report on Technical Developments of Electrostatic Accelerators · · · · · · · · · · · · · · · · · · ·                                                                   | 134 |
| 3-08 | Handy Determination of Ion-beam Relative Intensity Distribution Based on Gamma-ray Irradiation Response of Gafchromic Film · · · · · · · · · · · · · · · · · · ·              | 135 |
| 3-09 | Development of PIG Ion Source with Electric Magnet for Compact Ion Microbeam System · · · · · · · · · · · · · · · · · · ·                                                     | 136 |
| 3-10 | Development of Ion-beam Irradiation Techniques toward Mass Production of Ion-track Polymer Membranes · · · · · · · · · · · · · · · · · · ·                                    | 137 |
| 3-11 | Development of an Integrated Optical Switch Embedded in Thin PDMS Film Fabricated by Proton Beam Writing · · · · · · · · · · · · · · · · · · ·                                | 138 |
| 3-12 | Effects of Proton Beam Irradiation on Optical Properties of TiO <sub>2</sub> /polydimethylsiloxane Composite Material · · · · · · · · · · · · · · · · · · ·                   | 139 |
| 3-13 | Fabrication of Neutron Optics Devices Using PBW Technique · · · · · · · · · · · · · · · · · · ·                                                                               | 140 |
| 3-14 | Formation of Nano-porous Surface Structures by Fast C <sub>60</sub> Beam Bombardments······                                                                                   | 141 |
| 3-15 | Local Heating Induced by 0.72 MeV C <sub>60</sub> <sup>3+</sup> Ion Impacts ····································                                                              | 142 |
| 3-16 | Distribution of the Number of Secondary Ions Emitted by Sub MeV $C_{60}$ Ion Impacts $\cdots$                                                                                 | 143 |
| 3-17 | Thermal Stability of Irradiation-induced Non-equilibrium Lattice Structures of NiTi Intermetallic Compound · · · · · · · · · · · · · · · · · · ·                              | 144 |
| 3-18 | Optical Absorption due to Silver Nano-particles in Silica Glass Produced by 380keV-Ag Ion Implantation and Subsequent Energetic Heavy Ion Irradiation                         | 145 |
| 3-19 | Change in Magnetic Properties of FeRh by C <sub>60</sub> Cluster Ion Beam Irradiation · · · · · · · · · · · · · · · · · · ·                                                   | 146 |
| 3-20 | Shape Elongation of Embedded Metal Nanoparticles Induced by C <sub>60</sub> Cluster Ion Irradiation · · · · · · · · · · · · · · · · · · ·                                     | 147 |
| 3-21 | Development of Nanomaterials and Visualization of Ion Tracks through Interactions between Cluster Ion Beams and Organic Materials · · · · · · · · · · · · · · · · · · ·       | 148 |
| 3-22 | Production Yield of Swift MeV/atom Carbon Cluster Ions as a Function of Charge-changing Gas Pressure · · · · · · · · · · · · · · · · · · ·                                    | 149 |
| 3-23 | Study on Interaction of Swift Cluster Ion with Matter · · · · · · · · · · · · · · · · · · ·                                                                                   | 150 |
| 3-24 | Transmission Properties of a 6-MeV Fullerene Ion Beam through a Wedge-shaped Glass Channel · · · · · · · · · · · · · · · · · · ·                                              | 151 |
| 3-25 | Analysis of Linear Energy Transfer Effects on the Scintillation Properties of a Bi <sub>4</sub> Ge <sub>3</sub> O <sub>12</sub> Crystal · · · · · · · · · · · · · · · · · · · | 152 |
| 3-26 | An Evaluation of Microbicidal Effectiveness of Low Energy Electron Beam with $D\mu$ Approach · · · · · · · · · · · · · · · · · · ·                                            | 153 |

| 3-27   | Optical Property of Tb-doped G9 Glass Material · · · · · · · · · · · · · · · · · · ·                                                                                                                                           | 154 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3-28   | Three-dimensional Elemental Analysis of Soil Sample by Particle Induced X-ray Emission-computed Tomography · · · · · · · · · · · · · · · · · · ·                                                                               | 155 |
| 3-29   | In-situ Measurement of Li Distribution in All Solid-state Li-ion Battery · · · · · · · · · · · · · · · · · · ·                                                                                                                 | 156 |
| 3-30   | Dynamic Behavior of Elements with Low Atomic Numbers in Lithium Oxide Ceramics under Irradiation · · · · · · · · · · · · · · · · · · ·                                                                                         | 157 |
| 3-31   | Improvement of Sample Holder for PIXE Tomography · · · · · · · · · · · · · · · · · · ·                                                                                                                                         | 158 |
| 3-32   | Mapping Analysis of Putative Microbial Fossils in Olivine Using Micro-PIXE · · · · · · · · · · · · · · · · · · ·                                                                                                               | 159 |
| 3-33   | Quantitative Valuation of Radiation-induced Defects in Mineral: The Alpha Effectiveness of the Dating ESR Signal in Hydrothermal Barite by He <sup>+</sup> -ion Implantation Experiments · · · · · · · · · · · · · · · · · · · | 160 |
| 3-34   | The Change in the Environment and Tectonics during Late Paleocene to Early Miocene in the Northeastern Tibetan Plateau · · · · · · · · · · · · · · · · · · ·                                                                   | 161 |
| 3-35   | ESR Dating of the Gomura Fault Distributed on Tango Peninsula Using Radiation  Defect Radical Centers                                                                                                                          | 162 |
| 4. Sta | tus of Quantum-Beam Facilities · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           | 163 |
| 4-01   | Utilization Status at TIARA Facility · · · · · · · · · · · · · · · · · · ·                                                                                                                                                     | 164 |
| 4-02   | Operation of the AVF Cyclotron · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           | 165 |
| 4-03   | Operation of Electrostatics Accelerators in TIARA · · · · · · · · · · · · · · · · · ·                                                                                                                                          | 166 |
| 4-04   | Operation of the Electron Accelerator and the Gamma-ray Irradiation Facilities · · · · · · · ·                                                                                                                                 | 167 |
| 4-05   | Utilization Status of the Electron Accelerator and the Gamma-ray Irradiation Facilities · · · · · · · · · · · · · · · · · · ·                                                                                                  | 168 |
| 4-06   | Radiation Monitoring in TIARA · · · · · · · · · · · · · · · · · ·                                                                                                                                                              | 169 |
| 4-07   | Radioactive Waste Management in TIARA · · · · · · · · · · · · · · · · · ·                                                                                                                                                      | 170 |
| 4-08   | Facility Use Program in Takasaki Advanced Radiation Research Institute (TARRI) · · · · ·                                                                                                                                       | 171 |
| Append | dices·····                                                                                                                                                                                                                     | 173 |
| Appen  | ndix 1 Publication list · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                  | 174 |
| Appen  | dix 2 Type of Research Collaboration and Facilities Used for Research · · · · · · · · · · · · · · · · · · ·                                                                                                                    | 191 |
| Appen  | dix 3 Examples of Typical Abbreviation Name for Organizations in National Institutes for Quantum and Radiological Science and Technology and Japan Atomic Energy Agency                                                        | 193 |