Contents

1. Sp	ace, Nuclear and Energy Engineering · · · · · · · · · · · · · · · · · · ·	1
1-01	Evaluation of Radiation Hardened Logic Circuits by Using 90 nm CMOS	
1 02	Technology Development of Transient Ion Beam Induced Current System with	5
1-02	High-energy Focused Microbeams · · · · · · · · · · · · · · · · · · ·	6
1-03	Dependence on Irradiation Energy of Soft Error Rates in Bulk and	U
1 00	SOI SRAMs · · · · · · · · · · · · · · · · · · ·	7
1-04	Heavy-ion Induced Gate Current in SOI Devices · · · · · · · · · · · · · · · · · · ·	8
1-05	Development of Transient Ion Beam Induced Current System with	
	High-energy Focused Microbeams · · · · · · · · · · · · · · · · · · ·	9
1-06	Simulated Space Degradation of Transparent Film for Thin-film	
	Space Solar Cells · · · · · · · · · · · · · · · · · ·	10
1-07	Hydrogen Observation of Ion-Irradiated a-Si:H Thin Films by	
	Using In-Situ ERD System · · · · · · · · · · · · · · · · · · ·	11
1-08	\mathcal{C}	
	AlGaN/GaN HEMT · · · · · · · · · · · · · · · · · · ·	12
1-09	Damage Factors of Charge Collection Efficiency in SiC for Gamma-rays,	
	Electrons and Protons · · · · · · · · · · · · · · · · · · ·	13
1-10	Mechanisms of Reduction in Hole Concentration in Al-doped 4H-SiC by	
	200 keV Electron Irradiation	14
1-11	EPR Identification of Dicarbon Antisite Defect in	1.5
1 12	Electron-irradiated <i>n</i> -Type 4 <i>H</i> -SiC · · · · · · · · · · · · · · · · · · ·	15
1-12	Development and Test of Internal Charge Measurement System for Satellite · · · · · · · · · · · · · · · · · · ·	16
1-13	Gamma-Ray and Electron Irradiation Tests of Quartz Optical Fiber	10
1-13	Transmission Line for Commercially Available Multi-kW High Power	
	Yb-doped Fiber Lasers · · · · · · · · · · · · · · · · · · ·	17
1-14	Radiation Resistance of Optical Fibers for Laser Transmission · · · · · · · · · · · · · · · · · · ·	18
	Performance Test of AC Servo Motor for ITER Blanket Remote Robot	10
1 10	under High Gamma Ray Radiation · · · · · · · · · · · · · · · · · · ·	19
1-16	Gamma-Ray Irradiation Test to Investigate Acceptable Total Dose of	
	Amplifier Circuit for Strain Gauge Using Rad-Hard Operational Amplifier	
	for Remote Maintenance System of ITER · · · · · · · · · · · · · · · · · · ·	20
1-17	Gamma-Ray Irradiation Test of Centrifugal Contactor with	
	Magnetic Bearing System · · · · · · · · · · · · · · · · · · ·	21
1-18	Gamma-Ray Irradiation on Electric Cables Used in	
	Nuclear Fuel Fabrication Plants · · · · · · · · · · · · · · · · · · ·	22
1-19	Gamma-ray Irradiation Durability of Silica Based TRPEN Adsorbents for	
	the Extraction Chromatography · · · · · · · · · · · · · · · · · · ·	23

1-20	Study on Stability of Cs·Sr Solvent Impregnated Resin against Gamma Irradiation	2.4
1 21		24
1-21		2526
	Alpha-radiolysis of Organic Extractants for Separation of Actinides · · · · · · · · · Effect of Electron Beam and Gamma-ray Irradiation to	20
1-23	Anion Exchange Membrane on Efficiency of its Nitrate Ion Permeation · · · · · · ·	27
1-24	-	21
1-24	Glove Box for Plutonium Powder Treatment · · · · · · · · · · · · · · · · · · ·	28
1 25	Research on Radiation Resistant of Heat-resistant Rubber Materials · · · · · · · · ·	29
1-25		<i>29</i>
1-20	Barrier Materials for Geological Disposal of Radioactive Waste · · · · · · · · · · · · · · · · · · ·	30
1_27	Interaction between <i>Paramecium bursaria</i> and Heavy Elements · · · · · · · · · · · · · · · · · · ·	31
	Effect of Groundwater Radiolysis on the Disposal System of	31
1-20	High-Level Radioactive Waste · · · · · · · · · · · · · · · · · · ·	32
1_29	Damage Level Dependence of Irradiation Hardening of α-Fe Alloys and	34
1-27	a Reduced Activation Steel F82H · · · · · · · · · · · · · · · · · · ·	33
1-30	Effects of Microstructual Evolution in Low-alloy Steels for	55
1-30	Radiation Hardening under Electron Irradiation · · · · · · · · · · · · · · · · · · ·	34
1-31	Irradiation Simulation of Neutron Damage Microstructure in	<i>J</i> 1
1-31	· · · · · · · · · · · · · · · · · · ·	35
1-32	Evaluation of Microstructure Change in Extra High Purity	55
1 32	Austenitic Stainless Steel under BWR Condition Simulated by	
	Triple Ion Irradiation · · · · · · · · · · · · · · · · · · ·	36
1-33	-	37
1-34	High-sensitivity Chemical Etching for Preparation of	υ,
13.		38
1-35	Improvement of Chemical Stability of Grafted Electrolyte Membranes by	
		39
1-36	Preparation of Poly(ether ether ketone)-based Polymer Electrolytes for	
	Fuel Cell Membranes Using Grafting Technique · · · · · · · · · · · · · · · · · · ·	40
1-37	A Breakthrough in Development of High-temperature Polymer	
	Electrolyte Membrane Fuel Cells · · · · · · · · · · · · · · · · · ·	41
1-38		
	Electrolyte Membranes · · · · · · · · · · · · · · · · · · ·	42
2. En	vironmental Conservation and Resource Security · · · · · · · · · · · · · · · · · · ·	43
4. 1211	minimization consci ration and resource security	.5
2-01	Improvement of Heat Stability of Poly(L-lactic acid) by	
	Radiation-induced Crosslinking and Post-processing · · · · · · · · · · · · · · · · · · ·	45
2-02	Effects of Molar Mass of CMC on Mechanical Properties of	
	CMC-Acid Gel · · · · · · · · · · · · · · · · · · ·	46
2-03	Development of Low Shrinking Echizen Japanese Paper with CMC Gel · · · · · ·	47

2-04	Preparation and Characterization of DNA-BSA Hybrid Hydrogels	
	Using γ-ray Irradiation · · · · · · · · · · · · · · · · · · ·	48
2-05	Preparation of Hydrogels for a Simple Identification of Fe (II) Content · · · · · · ·	49
2-06		50
2-07	Synthesis of Fibrous Catalyst for Biodiesel Production · · · · · · · · · · · · · · · · · · ·	51
2-08	Effect of Irradiation on Chitin Fiber · · · · · · · · · · · · · · · · · · ·	52
2-09	Characterization of γ-Irradiated Konjac Glucomannan by	
	Light Scattering Probe Microscope · · · · · · · · · · · · · · · · · · ·	53
2-10	Determination of the Concentration of OH Radicals in EB-irradiated	
	Humid Gases Using Oxidation of CO · · · · · · · · · · · · · · · · · ·	54
2-11	Decomposition of Persistent Pharmaceuticals by Ionizing Radiation · · · · · · · · ·	55
2-12	Chemical and Biological Assays of γ-ray Irradiated Aqueous	
	Chlorophenol Solutions · · · · · · · · · · · · · · · · · · ·	56
3. Bi	otechnology and Medical Application · · · · · · · · · · · · · · · · · · ·	57
3-01	Quantitative Analyses of DNA Damage Induced by ¹² C ⁵⁺ and ⁴ He ²⁺ Ion	
5-01	Beams Using a Renewal Dosimetry System at TC1 Port · · · · · · · · · · · · · · · · · · ·	63
3-02	Lethal and Mutagenic Effects of He Ion Particles in <i>Escherichia coli</i> · · · · · · · · · · · · · · · · · · ·	
3-03	SMAP2 Protein Potentially Mediates the Response to Synthetic Auxin,	01
5 05	2,4-D, in <i>Arabidopsis thaliana</i> ···································	65
3-04	Efficient Induction of Flower-Color Mutants by Ion Beam Irradiation in	
	Petunia Seedlings Treated with High Sucrose Concentration · · · · · · · · · · · · · · · · · · ·	66
3-05	Mutation Spectrum Induced by γ -rays and Carbon Ion Beams in Plant · · · · · · · ·	67
	Production of Visibly Altered Mutants by Ion Beam Irradiation	
	in Soybean · · · · · · · · · · · · · · · · · · ·	68
3-07	New Type Flower Colored Petunia Obtained by Ion Beam Irradiation at	
	JAEA-TIARA · · · · · · · · · · · · · · · · · ·	69
3-08	Generating New Ornamental Plant Varieties Using Ion Beams · · · · · · · · · · · · · · · · · · ·	70
3-09	Mutation induction in Lavandin: Plant Regeneration from	
	¹² C ⁶⁺ Beam Irradiated-lateral Meristems and -isolated Cultured Cells · · · · · · · ·	71
3-10	Selection of Salinity Tolerant Lines in Strawberry	
	$(Fragaria \times ananassa)$ Irradiated with Helium Ion Beam · · · · · · · · · · · · · · · · · · ·	72
3-11	Development of Commercial Variety of Osteospermum by	
	a Stepwise Mutagenesis by Ion Beam Irradiation · · · · · · · · · · · · · · · · · · ·	73
3-12	Mutants Induced by Ion Beam Irradiation in Delphinium 'Momoka' · · · · · · · · ·	74
3-13	Molecular Analysis of Carbon Ion Induced Mutations in the	
	Yeast ogg1 and msh2 Mutants · · · · · · · · · · · · · · · · · · ·	75
3-14	Effects of Heavy Ion beam Irradiation in Citrus · · · · · · · · · · · · · · · · · · ·	76
	Mutation Induction in Asclepias Using Ion Beam Irradiation · · · · · · · · · · · · · · · · · · ·	77
3-16	Producing New Gene Resources in Fig by Using Ion-beam Irradiation · · · · · · · ·	78

3-17	Ion Beam Breeding of Summer-to-Autumn Flowering Chrysanthemum 'Floral-Yuka' · · · · · · · · · · · · · · · · · · ·	79
3-18	Dose Response of Ion Beam Irradiation in Strawberry	1)
	(Fragaria ×ananassa) Leaf Explants · · · · · · · · · · · · · · · · · · ·	80
3-19	Development of <i>Deinococcus grandis/Escherichia coli</i> Shuttle Vector · · · · · · · ·	81
	Analysis of Mutagenic Effect Induced by Ion Beams for Breeding of	
	Aspergillus oryzae · · · · · · · · · · · · · · · · · · ·	82
3-21	Mutation Breeding of Zygosaccharomyces rouxii Induced by Ion Beams · · · · ·	83
3-22	Ion Beam Breeding of "Sake Yeast"	84
3-23	Detection Method for Irradiated Garlic Using ESR · · · · · · · · · · · · · · · · · · ·	85
3-24	ESR Method for Detecting Irradiated Fresh Mangoes · · · · · · · · · · · · · · · · · · ·	86
	Combined Treatment of Human Tumor Cells with Carbon-ion	
	Irradiation and the Telomerase Inhibitor · · · · · · · · · · · · · · · · · · ·	87
3-26	Comparative Study of Several Behaviors in Caenorhabditis elegans	
	following High-LET Radiation Exposure · · · · · · · · · · · · · · · · · · ·	88
3-27	Development of New Cell Targeting System for Collimating Heavy-ion	
	Microbeam System · · · · · · · · · · · · · · · · · · ·	89
3-28	Bcl-2 as a Potential Target for Heavy-ion Therapy · · · · · · · · · · · · · · · · · · ·	90
3-29	Biological Effect of High Linear Enegy Transfer Charged Particle and	
	X-ray on Human Brain Cancers · · · · · · · · · · · · · · · · · · ·	91
3-30	Analysis of Molecular Mechanisms for Radiation-Induced	
	Bystander Effects Using Heavy Ion Microbeams · · · · · · · · · · · · · · · · · · ·	92
3-31	Irradiated Culture Medium Mediated Bystander Cell-killing	
	Effect Induced by Carbon-ion Microbeams · · · · · · · · · · · · · · · · · · ·	93
3-32	Induction of Autophagy in C2C12 Myoblast by	
	Heavy-Ion Beam Irradiation · · · · · · · · · · · · · · · · · · ·	94
3-33	Analysis of Enhanced Lethal Effect Induced by Low Dose Ion Beams in	
	Glioma Cells · · · · · · · · · · · · · · · · · ·	95
3-34	The Expression of Glutathione Peroxidase and p53 of Human	
	Retinal Vascular Endothelial Cells Irradiated by Gamma Ray · · · · · · · · · · · · · · · · · · ·	96
3-35	Analyses of Effects of Heavy-ion Beam Irradiation on	
	Cellular and Viral Genes · · · · · · · · · · · · · · · · · · ·	97
	Effect of Heavy Ion Irradiation on the Lepidopteran Insect Cell Line, Sf9 · · · · · ·	98
3-37	Anhydrobiosis-Related Activity of Antioxidants as	
	a Possible Explanation of High Resistance of an	
	African Chironomid to Gamma-Ray Irradiation · · · · · · · · · · · · · · · · · · ·	99
3-38	Crosstalk between Signal Transduction Pathways in Response to	
	Irradiation of Radiation and Innate Immunity of <i>C. elegans</i> · · · · · · · · · · · · · · · · · · ·	100
3-39	Imaging for Carbon Translocation to a Fruit with ¹¹ CO ₂ and	
	Positron Emission Tomography · · · · · · · · · · · · · · · · · · ·	101
3-40	Kinetic Analysis of Cadmium Uptake in Oilseed Rape	
	Plants Using Positron Multi-Probe System · · · · · · · · · · · · · · · · · · ·	102

	Visualization of ¹⁰⁷ Cd translocation in Tobacco Plants · · · · · · · · · · · · · · · · · · ·
3-42	Cadmium Transport in Young Soybean Plant Using
	a Positron-emitting ¹⁰⁷ Cd · · · · · · · · · · · · · · · · · · ·
3-43	Analysis of Translocation and Distribution of Photoassimilates in
	Eggplant Fruit in Relation to Positions of the Source Leaves Using the
	Positron-emitting Tracer Imaging System · · · · · · · · · · · · · · · · · · ·
3-44	The Production of ¹³ N-labeled Nitrogen Gas Tracer and the Imaging of
2 45	Nitrogen Fixation in Soybean Nodules · · · · · · · · · · · · · · · · · · ·
3-45	⁷⁶ Br- <i>m</i> -Bromobenzylguanidine (⁷⁶ Br-MBBG) for <i>In vivo</i> Imaging of Neuroendcrine-tumor with PET · · · · · · · · · · · · · · · · · · ·
2.46	
3-40	Production of Radioisotopes for Nuclear Medicine Using Ion-beam Tasknalagy and Ita Utilization for both Therapoutic and
	Technology and Its Utilization for both Therapeutic and Diagnostic Application in Cancer
3-47	Production of Lu-177 Capable of Labeling Antibodies · · · · · · · · · · · · 109
3-47	
3-40	Minute Samples by Combination of In-Air Micro-PIXE and STIM · · · · · · · · 110
3_49	Measurement of Trace Metal in Methamphetamine Treated Mice Brain
5-47	Slices by In-Air Micro-PIXE · · · · · · · · · · · · · · · · · · ·
3-50	Direct Visualization and Quantification of Anticancer Agent
3 50	cis-diamminedichloro-platinum(II) in Human Lung Cancer Cells Using
	In-Air Micro-PIXE Analysis · · · · · · · · · · · · · · · · · ·
3-51	Measurement of Fluorine Distribution in Carious Enamel around
	Fluoride-containing Materials Using PIGE/PIXE System · · · · · · · · · · · · · · · · · · ·
3-52	Evaluation of Intracellular Trace Element in Response to
	Microenvironment in Esophageal Squamous Cell Carcinoma · · · · · · · 114
3-53	The Optimum Conditions in the Analysis of Boron Micro-Distribution in
	Tumor Cells Using PIGE · · · · · · · · · · · · · · · · · · ·
3-54	Kinetics of Radiosensitive Microcapsules through Radiation-Induced
	P-selectin Guided Accumulation · · · · · · · 116
3-55	
	Sertoli Cells Induced by Cadmium · · · · · · 117
3-56	In-Air Micro-PIXE Analysis on Contents and Distribution of Asbestos in
	Lung Tissue • • • • • • • • • • • • • • • • • • •
4 4 1	
4. Ad	lvanced Materials, Analysis and Novel Technology · · · · · · · · · · 119
4-01	Effects of Ion Irradiation on Gasochromism of Polycrystalline WO ₃ Films · · · · · 123
4-02	Multi-Functional Nanowires Based on Biomacromolecules by
	Single Particle Nano-fabrication Technique · · · · · · · 124
4-03	Formation of Hybrid Nano-structures by Ion Beam Irradiation to the
	Sol-Gel Film
4-04	Smart-Cut Processes for Nanopore Device Formation on SIMOX(100) · · · · · · · 126

4-05	Effects of Ion Irradiation on Photoluminescence of SiC Nanotubes · · · · · · · 127
4-06	Pd-folded Ceramic Nano Fiber Synthesis by Ion Beam Irradiation from
	Precursor Polymer Blend · · · · · · 128
4-07	Synthesis of a Novel Si-based Precursor for
	a Catalyst-Loaded SiC Material · · · · · · · 129
4-08	Hydrogen Selectivity of Silicon Carbide Membrane
	with Different Number of Coatings of SiC Film · · · · · · · 130
4-09	Au and Pt Nanoclusters Formed by Sputter Deposition on Graphite
	with and without Ion Irradiation · · · · · · · 131
4-10	Heating and Nitriding Processes of Ti Thin Films Grown on NaCl
	Substrates Held at Room Temperature · · · · · · · · · · · · · · · · · · ·
4-11	Electron Irradiation Effects on Boron-Doped Superconducting
	Diamond Thin Films · · · · · · · · · · · · · · · · · · ·
4-12	Submicron Structure Created in Oxide Ceramics Irradiated
1 12	with 10-MeV Ni · · · · · · · · · · · · · · · · · ·
4-13	Non-equilibrium Surface Modification of Metallic Glass by Various Chemical Natured Ions
<i>1</i> _1 <i>1</i>	Hardening of FeCu Alloys due to Electron-Irradiation
4-14	Induced Cu Precipitates · · · · · · · · · · · · · · · · · · ·
4-15	Effect of 10 MeV Iodine Irradiation on Lattice Structure of
1 13	FeRh Thin Films · · · · · · · · · · · · · · · · · · ·
4-16	Lattice Disorder of Full Heusler Alloy Fe ₂ MnSi Layer Epitaxially Grown
	on Ge(111) · · · · · · · 138
4-17	Sputtering Phenomena of Various Solid Materials Induced by
	Bi ⁺ Ion Bombardments · · · · · · · · · · · · · · · · · · ·
4-18	Effects of Electron/Ion Irradiation on Hydrogen Absorption Rate of
	La-Ni based Alloy · · · · · · 140
4-19	Effect of Ion Irradiation on the Magnetic Field Direction Dependence of
	Critical Current of YBCO Tapes Prepared by PLD Method · · · · · · · · · · · 141
4-20	Cathodoluminescence Characterization of Radiation-induced Halo in
	Feldspar (Sanidine and Albite) · · · · · · · · · · · · · · · · · · ·
	Photoluminescence from Fused-Silica Substrates Implanted with Si Ions · · · · · · 143
4-22	Characterization of the He Bubbles in Si Probed by a
4 22	Positron Annihilation Spectroscopy
4-23	Surface Plasmon Excitations from Al(111)-1×1 Surface studied by
4 24	Reflection High-Energy Positron Diffraction · · · · · · · · · · · · · · · · · · ·
4-24	Effect of Silica Addition on Kinetic Scheme of Radiation-induced Reduction of Dichromate Ion
1 25	Time Resolved Absorbance Measurement System with Pulsed Heavy Ion · · · · · 147
	LET Effect on Degradation of Hydroxymaleimide in N ₂ -saturated
+- ∠0	2-Propanol (2) · · · · · · · · · · · · · · · · · · ·
	2-1 Topulot (2)

4-27	Developing to the Single-Pulse Measurement of the Heavy Ion Beam
	Pulse Radiolysis Using Scintillator · · · · · · · · · · · · · · · · · · ·
4-28	Development of Dose Monitoring System Applicable to Various Radiations · · · 150
4-29	Spectrum Measurement of Neutrons and Gamma-rays from
	Thick H ₂ ¹⁸ O Target Bombarded with 18 MeV Protons · · · · · · · · · · · · · · · · · 151
4-30	Development of a Transmission Type Fluence Monitor for
	Quasi-monoenergetic Neutron Calibration Fields of Several Tens of MeV · · · · · 152
4-31	Comparison of High Energy Neutron Fluence between TIARA and CYRIC · · · · 153
4-32	Development of Electronic Personal Dosemeter for High-energy Neutrons · · · · · 154
4-33	Properties of Blue Cellophane Film Dosimeter for ⁶⁰ Co Gamma-rays and
	Electron Beams · · · · · 155
4-34	Development of Electric Micro Filter Using Micro Structure by
	Proton Beam Writing · · · · · · 156
4-35	Energy Dependence for 2-Dimentional Nuclear Reaction
	Distribution of Boron Doped in Steel · · · · · · 157
4-36	Analysis of Emission Angle Distribution of C ₂ ⁺ Fragment Ions Exiting
	from Thin Carbon Foil · · · · · · · 158
4-37	Visualization of a Single Cluster Particle Track in Polymeric Materials · · · · · · 159
4-38	Vicinage Effect on Secondary-electron Emission from
	Amorphous Carbon Foils Induced by Swift C ₂ ⁺ Ions · · · · · · · · · · 160
	Raman Spectroscopy Measurement of TiO ₂ Irradiated with Cluster Ions · · · · · · · 161
	Luminescence from Sapphire Bombarded by Swift Cluster Ion Beams · · · · · · 162
4-41	Energy Dependence of Sputtering Yield of Si Induced by
	20-400 keV C ₆₀ Ions · · · · · 163
4-42	Positive Secondary Ion Emission from PMMA upon Medium Energy
	C ₆₀ Ion Impacts · · · · · · 164
4-43	First Single-Ion Hit System for Heavy-Ion Microbeam at
	TIARA Cyclotron (II) · · · · · 165
4-44	Uniform Irradiation of Ion Beams by Means of a Nonlinear
	Focusing Method · · · · · · 166
	Status Report on Technical Devlopments of the AVF Cyclotron · · · · · · · · · 167
4-46	Development of Beam Generation and Irradiation Techniques for
	Electrostatic Accelerators · · · · · · 168
4-47	Development of Irradiation Position Control Techniques for
	Ion Microsurgery Using an Ion Beam Induced Fluorescent Analysis · · · · · · · · 169

5. Sta	atus of Irradiation Facilities 2008 · · · · · · · · · · · · · · · · · ·
5-01	Safety Measures, Utilization Status and Distribution of Research Fields at
	TIARA Facility · · · · · 173
5-02	Operation of the AVF Cyclotron · · · · · · · · · · · · · · · · · · ·
5-03	Operation of the Electrostatic Accelerators · · · · · · · · · · · · · · · · · · ·
5-04	Operation of the Electron Accelerators and Gamma-ray
	Irradiation Facilities · · · · · · · 176
5-05	Utilization of the Electron Accelerator and Gamma-ray
	Irradiation Facilities · · · · · · 177
5-06	COMMON USE PROGRAM in Takasaki Advanced
	Radiation Research Institute · · · · · · · · · · · · · · · · · · ·
5-07	Radiation Control in TIARA · · · · · · 179
5-08	Radioactive Waste Management in TIARA · · · · · · 180
Appe	ndix · · · · · · 181
Append	lix 1 List of Publication · · · · · 183
Append	lix 2 List of Related Patents · · · · · · · · · · · · · · · · · · ·
Append	lix 3 List of Related Press-Release and TV Programs · · · · · · · · · · · 212
	lix 4 Type of Research Collaboration and Facilities Used for Research · · · · · 215 lix 5 A Typical Example of Abbreviation Name for Organizations
	in Japan Atomic Energy Agency (JAEA) · · · · · · · · · · · · · · · · · · ·