High Harmonic Generation and QED Effects Induced by Relativistic Oscillating Mirror

Y. J. Gu^{1, 2}, O. Klimo^{1, 3}, S. Weber¹, G. Korn¹, S. V. Bulanov^{1, 4, 5}

 ¹ Institute of Physics of the ASCR, ELI-Beamlines, Prague 18221, Czech Republic
² Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, Prague, Czech Republic
³ FNSPE, Czech Technical University in Prague, 11519 Prague, Czech Republic
⁴ Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
⁵ A. M. Prokorov Institute of General Physics, the Russian Academy of Sciences, Vavilova 38, 119991 Moscow, Russia

The laser-plasma interactions are dominated by the QED regime since intensities of the forthcoming laser facilities are approaching 10^{23-24} W/cm². Here we present the high brightness γ -photon emission and e⁺e⁻ pair creation accompanied with the high harmonic generation. Relativistic oscillating mirror reflects the incident intense laser field and generates the focused attosecond pulse with enhanced intensity. A large number of high energy photons are emitted by the collisions between the radiation trapped electrons and the high harmonic pulses. The corresponding photons are counter-propagating through the strong laser field which provides a large cross section for pair creation. Relativistic positron bunches are generated and further accelerated in the reflected laser field. The peak intensity of the γ -ray reaches 0.74 PW with the brilliance of 2×10^{24} s⁻¹mm⁻² mrad⁻² (0.1% BW)⁻¹ (at 58 MeV). A GeV positron beam is obtained with density of 4×10^{21} cm⁻³ and a particle number of 5.6×10^9 .

This work was supported by the project ELITAS (CZ.02.1.01/0.0/0.0/16_013/0001793) and by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15_003/0000449) both from European Regional Development Fund.

References:

[1] **Y. J. Gu**, O. Klimo, S. V. Bulanov, S. Weber, Brilliant gamma-ray beam and electron–positron pair production by enhanced attosecond pulses, Communications Physics, 1, 93 (2018)

[2] **Y. J. Gu**, S. Weber, Intense, directional and tunable γ -ray emission via relativistic oscillating plasma mirror, Opt. Express, 26, 19932 (2018).