次世代放射光

ナノ光電子分光ワークショップ 2019

講演集

日時: 2019 年 10 月 2 日(水) 場所:東京大学本郷キャンパス山上会館大会議室 主催:量子科学技術研究開発機構量子ビーム科学部門次世代放射光整備開発センター 協賛:日本放射光学会、日本表面真空学会

次世代放射光 ナノ光電子分光ワークショップ2019

- 1.場所:東大本郷キャンパス山上会館2F大会議室
 2.日時:2019年10月2日(水)13時~17時
 3.参加費:無料
 4.主催:量子科学技術研究開発機構(QST)
 - 次世代放射光施設整備開発センタ 5. 協賛: 日本表面真空学会、日本放射光学会

プログラム

- 13:00~ Opening Address: WS趣旨説明
- 13:10~ 高輝度3GeV放射光の特徴と光源性能

(東大・尾嶋正治)

(QST·高橋正光)

- 13:30~ ナノスピン分解電子状態解析:サイエンスとビームライン提案 (東北大・佐藤宇史、KEK・堀場弘司)
- 14:20~ スピン分解光電子分光の動向
- 14:50~ ナノARPESの研究動向

(広大・岩澤英明)

(広大・奥田太一)

- 15:20~ 休憩
- 15:40~ QSTにおけるスピントロニクス材料研究の展開

(QST高崎·境誠司)

16:10~ レーザー光電子分光によるトポロジカル物性の開拓

(東大物性研・近藤猛)

- 16:40~パネル討論
- 16:55~ Concluding Remarks

次世代放射光施設のイメージ図

本件連絡先:加道雅孝 (QST次世代センター) 3GeV-info@qst.go.jp

WS 趣旨説明

東京大学·尾嶋正治 1

高輝度 3GeV 放射光の特徴と光源性能

量子科学技術研究開発機構·高橋正光 6

ナノスピン分解電子状態解析:サイエンスとビームライン提案

- 東北大学·佐藤宇史 17
- 高エネルギー加速器機構・堀場弘司 27

スピン分解光電子分光の動向

広島大学·奥田太一 33

ナノARPES の研究動向

広島大学·岩澤英明 49

QST におけるスピントロニクス材料研究の展開

量子科学技術研究開発機構·境誠司 60

レーザー光電子分光によるトポロジカル物性の開拓

東京大学物性研究所·近藤猛 74

ミラーナノ集光系に対する準備

東京大学物性研究所·松田勲 106

資料

WS 趣旨説明 東京大学·尾嶋正治

2019年10月2日@東大山上会館2F大会議室(120席)

次世代放射光 ナノ光電子分光ワークショップ2019

QSTナノ光電子分光WG主査 尾嶋正治(東京大学物性研)

次世代放射光施設QSTビームライン ナノ光電子分光

-									
	RI -VIII	878+788768	ADDI F.FIN	USE 7	0.05-10 keV (左右円)	E/aE=10.000-30.000	50 000 10 000	A 2. ナノ全電子状態解析(ナノスピン分解光電子分光) 2. ナノ電子状態解析(ナノ光電子分光)	1.ナノスピントロニクス 2.量デコンピューター
R (UR)	01.10	Nano-ARPES	A PECCOT	and a	0.05-1.0 keV (微直直線)	Cat-time show		B 1.電子状態解析(マイクロ量光角度分解光電子分光) 2.光電子調測鏡	3. 兴体物理学
IN (JURD	BL-IX	exa+/alige XMCD	APPLE-SX Hared (segmented)	月28년7	0.18-2 keV (九右円) 0.13-2 keV (水石円) 0.18-2 keV (水平面間) 0.18-2 keV (後面面間)	E/aE>10.000	50 nm-10 µm	 ハイスループット2028 (X線線及分光、X線線2月二色性、 X線線25線二色性、X線線二色性) ス 2 ズイナミカス129 (X線線2位月間) ス 2 ズイナミカス129 (X線線2位月間) ス 7 必要でメージング(線線20月二色性) 第2 X線線方線二色性) 第2 X線線方線二色性 第2 X線線方案一合使) 	1. 宿石村村 2. 教理性村村 3. 福定記録村村 4. スピントロニクス 5. 部分価質学
					[編光高速切替]			B 1.その場磁気分割(X線装取分見、X線磁気内二色性。 X線磁気線二色性、X線線二色性)	
	BL-X	examente of the Address of the Addre	APPLE-SX	何新藥子	025-10 keV (左右門) 025-10 keV (水平面線) 025-10 keV (衛星面線)	E/AE>150.000	< 500 nm	 総務管金属子び等制所(道高合報総共電兵等付大編数点) 近後小素加起解析(道高合解総共電兵等付大編数点) 近済・田気界由丘之解析(道高合解総共電兵等付大編数点) オック構造・電子状態向目解析(数末線兵弾付出所) 	しエレクトロニクス 2 初転勝 3 浜体物理学 4 熱理 5 電池

ビームライン検討委員会(有馬委員会)報告書より

tentativeだがすでに2本ブランチに なっている。

次世代放射光施設QSTビームライン ナノ光電子分光関係で2件応募提案

P-01

次世代放射光施設ビームラインに関する意見提出 様式1(ビームライン提案用)

	平成 31 年 2月 15日	
提案ビームライン タイトル	ナノ集光スピン分解ARPES実験ステーション	
提案者名称 (個人または組織名)		2019年7月30日
	氏名:細場弘司 堀場弘司(KEK)	第1回ナノ光電子分
	所属(身分):高エネルギー加速器研究機構物質構造科学研究所(准教授)	光WGで議論
次世代友	数射光施設ビームラインに関する意見提出 様式1 (ビームライン提案用) 平成 31 年 2 月 15 日	
提案ビームライン タイトル	午成 31 年 2 月 13 日 先端材料開発のためのナノスピン電子状態解析ビームライン	提案者(堀場氏、佐
提案者名称 (個人または組織名)		藤氏)が話し合って
	た際空中(東北大)	「シの捉来とする」
	氏名:佐藤宇史 「江がや丁文(木石」へ)	
	氏名:佐藤 宇史 上川秋 丁 义 (米 小 レ 八) 所属(身分):東北大学 大学院理学研究科 物理学専攻(教授)	とを「水

-		4140	PA.8.4	27.4	APRIL INC.	公開報	5-6945	23%手法例:	想定される利用分野
	8L-1	X# ## #>¥∲£	NU	SEAA-V-R	2-20 keV (A. T (000)	E/AE=7.000	100 nm	 オペランド電子状態解析(大気圧X線洗電子会差。 大気圧X線集体な商加構造会差) 物質内が電子状態(線X線光電子会光) 	1.形態 2.電圧 3.水車エキルゲー 4.エレクトロニタス 5.ナノ材料 6.エネルギー材料
		X線オペラン	ドイ					8 1. 松晶構造解析(メールインX線回貨)	1 888. Miller 1 Miller 3 Miller
1					2-20 key (水平面明) - タル解析 4-30 key (水平面明)	E/AE=7.000 E/AE=7.000	50 µm 80 µm	A 1. 化学に取イメージング(メールイン主要型透過X環境用用) A 2. 構造板体(XIIIネル版法、XIIIに加加点)	1.秋晴 2 電圧 3.水量エオルギー モエレクトロニアス 5 グル 6 液晶 7 ポリマー 5 アモルファス 9 駅内 10 新華
	BL-II	X線構造•電	₩	###### ######				1. オイキンド化学以降の持ら影解系(決選お解集の定導部編集会)た、エネルギーの数 数式編成の定計編構会)た) 2. 化学校整解系(ノールイン注意2種集合注意影響機会)た、エネルギーの数型次接術 な定計編集成のた)	1 88 2 89 1 482168- 121710273
	BL-48 BL-1V	X接电影的接击和 目	MPW	^{用工まム∜→用} 二和品で王田 解析				L キルフォロジー解剖(施設・信格イメージング) A 2. 元素・化学が整分をマップ(正素型原義施設な(メージング) 3. 元素・化学状態分をマップ(正素型原素施設な(メージング)	1. 秋晴 2 電池 3 安川 4 島村 5 パイオテラメロジー 5 米島エネルギー 7. エレラトロニウス 8 文化運用 9 陽晴 10. ウィルス 11 考点学 12 目所
		X線階層的	普造					8 2. 病高級者(xx前前者・数点、変充X線でルグラフィー) 2. 病高級者解約(xx前前十 数点)	1.形成 2.電池 3.水車エトルギー 4.エレクトロニス 5.アモルファス 6.肥内 7.創業
-+		X線コヒーレントイメージング NU	NU		3.3-20 keV (3.4,1 ⁴)) 2-20 keV (水平首編) 3.3-20 keV (新聞編)	E/AE=7.000	50 µm(計1811年) 100 mm(第188年)	1. 火業・包字状態マップ A. (タイコグラウェーX線板目前崩壊造分支、空団分解脱く5 nm) 2. タイコグラウィー (原団分解脱く5 nm)	1. 秋田 2.エレラトロニウス 3 構成文物 4 構成日
		X線コヒーレ	シト	1 1-				5 1. 構造解析(コヒーレント川谷イメージング、空間公解胞(5nm)	2. 構造学術 2. ナメマシン 3. ナメ約約 4. バイオキウノロジー
	BL-V	RX845.(3-5)7	APPLE-SX		0-18-12 keV (A-GPD 0-13-2 keV (A-GPD	E/aE=10.000-30.000	< 50 nm	1. 構造解析(10日イメージンガ) 2. 元単、七学規模イメージンガ(注重型道道県羽イメージンガ) 3. 元単、七学規模イメージング(注重型道法マスメージンガ) 4. 個式(メージンガ)(織羽))に合称、空田(小和) 5. 生命務(男イベージンガ)(二合称)	しスピントロニウス 2.熟練 3.電池 4.食料 5.希校 をパイオやウノロジー 7.水素エキルギー 5.エレクトロニウス 5.健康 11.営学
		軟X線磁気-	イメ-	ジンク	0.23-2 keV (B.B.B.B)			日 一般原境所予報告今年 日本総理成功・合作、実験地気化学カーが来) 2、ナノ空間成功会有(国家実験成功パー合作、原用実験地気化一合作、原用実験地気 文学カーは来)	1. 低化料料: 2. 軟磁性材料: 3. 磁気空静材料 4. スピントロニクス: 5. 副体物理学
									1 ナノキナノロジー 2 東イコンピューター
	BL-VI	EXAMP / HERE 軟X線電子	APPLE-EUV 大能	解析	0.05-10 keV (水平直) 0.05-10 keV (動道面)	E/aE=10.000-30.000	~< 50 nm	санарта с во славана (дела на запада) 2. Бода на се умана (дела на запада) 3. Пара на на се из се на	1.秋晴 2.電池 1.バイヤチウノムジー 4.貴品
	BL-VI	RXBR4.4>>F-JR	APPLE-SX	nes?	0.13-2 keV (A 1700000) 0.23-2 keV (B 00000000)	E/AE=10.000-30.000	< 50 nm		MM 2 MR 3 AB2847- 1-710272

ビームライン検討委員会(有馬委員会)報告書より

BL-8ナノ光電子分光ビームライン(叩き台)

基本的考え方(私見)

- 1. スピン分解ARPESは1台で十分
- 2. High-throughputマイクロARPES(オペランド化:外場依存バンド分散解析)
- 3. 集光系は回転楕円ミラー(東大院工・三村研)の開発待ち?
- 4. フォトンエネルギー範囲:30eVまでは困難⇒50eV~1keVにする

「東大、高精度な回転楕円ミラーを用いた軟X線集光 システムを開発」:2019年6月18日新聞発表

雑誌名:「Applied Physics Letters」(オンライン版:6月17日) 論文タイトル: Broadband nano-focusing of high-order harmonics in soft X-ray region with 三村 秀和准教授(東大 ellipsoidal mirror 院工精密工学専攻) 二次元強度プロファイル(例) 回転楕円ミラー 焦点 首位置 強度 高次高調波 低 水平位置 1.0 **進度(任意スケール)** 0.8 SPring-8 BL25SU 350(19) nm 0.6 で150nm達成? 0.4 0.2 0.0 水平位置(µm) 水平方向に計測した集光ビーム 実験に使用した回転楕円ミラー の強度プロファイル

次世代放射光 ナノ光電子分光ワークショップ2019

- 1. 場所:東大本郷キャンパス山上会館2F大会議室
- 2. 日時:2019年10月2日(水)13時~17時
- 3. 参加費:無料
- 4. 主催:量子科学技術研究開発機構(QST)次世代放射光施設整備開発センター
- 5. 協賛:日本放射光学会、日本表面真空学会

プログラム	
13:00~ Opening Address: WS趣旨説明	(東大·尾嶋正治)
13:10~ 高輝度3GeV放射光の特徴と光源性能	(QST ·高橋正光)
13:30~ ナノスピン分解電子状態解析:サイエンスとビームライン	提案
(東北大	•佐藤宇史、KEK•堀場弘司)
14:20~ スピン分解光電子分光の動向	(広大・奥田太一)
14:50~ ナノARPESの研究動向	(広大・岩澤英明)
15:20~ 休憩	
15:40~ QSTにおけるスピントロニクス材料研究の展開	(QST 高崎・境誠 司)
16:10~ レーザー光電子分光によるトポロジカル物性の開拓	(東大物性研・近藤猛)
16:40~ 総合討論とまとめ	

高輝度 3GeV 放射光の特徴と光源性能 量子科学技術研究開発機構・高橋正光

高輝度放射光の特徴と光源性能

量子科学技術研究開発機構 次世代放射光施設整備開発センター 高橋正光

- 1. 次世代放射光施設計画の経緯
- 2. 次世代放射光施設の特徴
 - 基本建屋
 - 加速器
 - 光源
- 3. 今後のスケジュール

次世代放射光の位置付け

これまでの経緯

年月	E	東北
2011		東北放射光施設検討会有志による放射光施設構想の趣意書
2014		東北放射光施設推進協議会設立 名称:SLiT-J
2016.6		SLiT-J国際評価委員会
11	文科省第1回「量子ビーム利用推進小 委員会」	
12		光科学イノベーションセンター設立
2017. 2	量子ビーム小委員会中間的整理	
4		建設地選定諮問委員会が「東北大学青葉山新キャンパス」を最 適地であると光科学イノベーションセンターに答申
7	量研を「計画案の検討を行う」主体候 補」に認定	
2018. 1	量子ビーム小委員会最終報告書、 パートナー提案募集開始	パートナー公募に応募
8	光科学イノベーションセンター(代表 ナーとして選定	長機関)、宮城県、仙台市、東北大学、東経連がパート
9	量研と光科学イノベーションセンター	ーが、連携協力協定締結
12	政府予算案に整備費計上	
2019. 3	量研を「整備・運用を進める国の主	体」に指名
東北	LのSLiT-J計画から、官民地域パ	ートナーシップによる次世代放射光施設計画へ

官民地域パートナーシッフ。整備役割分担

項目	内訳	試算額	役割分担
加速器	ライナック、蓄積リング、輸送 系、制御・安全	約170億円 程度	国において整備
ビームライン	当初10本 (パートナーは最大7本)	約60億円 程度 (パートナーは最大約40億 円程度)	国及びパートナーが分担
用地整備 および建屋	建物·附属設備	約130億円 程度	パートナーが整備

総額:約370億円(国負担:約200億円、パートナー負担:約170億円)

官民地域パートナーシップ。整備役割分担

項目	内訳	試算額	役割分担
加速器	ライナック、蓄積リング、輸送 系、制御・安全	約170億円 程度	国において整備
ビームライン	当初10本 (パートナーは最大7本)	約60億円 程度 (パートナーは最大約40億 円程度)	国及びパートナーが分担
用地整備 および建屋	建物·附属設備	約130億円 程度	パートナーが整備

総額:約370億円(国負担:約200億円、パートナー負担:約170億円)

第1期整備ビームライン決定まで

年月	E	東北
2016.11		東北放射光施設計画(SLiT-J)エンドステー ション・デザインコンペ公開シンポジウム
2017. 7		東北放射光施設計画(SLiT-J)エンドステー ション・デザインコンペ答申
12	高輝度放射光源とその利用に係 る整備運用計画案	
2018. 1	新たな軟X 線向け高輝度3GeV 級放射光源の整備等について (量子ビーム小委員会報告書)	
8		ビームライン構想委員会 (委員長 有馬孝尚 東京大学教授)
12	ビームライン検討委員会(委員	員長 有馬孝尚 東京大学教授)
2019.6	次世代放射光施設ビームラ ー第1期整備ビームライン https://www.3gev.qst.go.jp/	イン検討委員会報告書(1) ラインアップー

第1期整備ビームライン

7

「ビームライン構想委員会」(PhoSIC)、「次世代放射光施設利用研究検討委員会」(QST) において、今後、各ビームラインにおける利用研究の詳細やエンドステーションの仕様等を検討すると ともに、ビームラインの基本設計を開始する。

次世代放射光施設の立地

次世代放射光施設の概要

実験ホールの概要

蓄積リングのパラメータ

Lattice parameter		次世代放射 光施設	MAX-IV	TPS	NSLS-II	DIAMOND
Beam energy	E (GeV)	3	3	3	3	3
Lattice structure		4BA	7BA	DBA	DBA	DBA
Circumference	C (m)	348.8	528	518.4	792	561.6
Number of cells	N _s	16	20	24	30	24
Long straight section	(m)	5.44 × 16	4.6 × 19	12 × 6	9.3 × 15	8 × 4
Short straight section	(m)	1.64 × 16		7 × 18	6.6 × 15	5 × 18
Natural horizontal emittance	(nmrad)	1.14	0.2-0.33	1.6	0.55	3.17
RF frequency	(MHz)	508.759	99.931	499.654	500	500
Harmonic number	h	592	176	864	1320	936
Beam size at long straight section	σ_x/σ_y	121 / 5.8	42-54 / 2-4	165.1 / 9.8	99 / 5.5	110-190 / 3-7

次世代放射光施設の特徴

- 1. コンパクトな加速器
- 2. コヒーレント比>10%@E=1keVを実現する低エミッタンス
- 3. SPring-8と同程度の長さの挿入光源

次世代放射光施設の蓄積リング

次世代放射光施設蓄積リングの試験ハーフセル(SPring-8実験ホールにて試験中)

挿入光源のラインアップ

- 必要とされる光の特性(光子エネルギー、偏光)
- 蓄積リングの電子ビーム軌道への影響
- 立ち上げ・運用の合理化とビームライン更新の円滑化

エネルギー 範囲	種類	偏光	周期長 (mm)	周期数
テンダーX線	真空封止 平面アンジュレータ	水平直線	22	190
軟X線 - VUV	APPLE-II	水平直線	56	75
		至百百秋 左右円 (準静的可変)	75	56
	クロスアンジュレータ (APPLE-II×4)	水平直線 垂直直線 左右円 (動的可変)	56	15
白色	多極ウィグラー	水平直線	120	5

次世代放射光源の輝度スペクトル

コヒーレント性

次世代放射光源のフラックススペクトル

エネルギーE<5keVの光子フラックス利用にも強み

直線偏光VUV領域の熱負荷

建設スケジュール

ナノスピン分解電子状態解析:サイエンスとビームライン提案 東北大学・佐藤宇史、高エネルギー加速器機構・堀場弘司 次世代放射光ナノ光電子分光ワークショップ2019 10/2@東大山上会館

ナノスピン分解電子状態解析 サイエンスとビームライン提案

東北大学材料科学高等研究所

佐藤宇史

Material science and ARPES

Advancing spectroscopies for material studies

Applicability of µ/nano-ARPES: Domain selection

Applicability of µ/nano-ARPES: Target samples

Applicability of μ/nano-ARPES: Target samples

Applicability of µ/nano-ARPES: Target samples

Applicability of μ/nano-ARPES: Target samples

Applicability of µ/nano-ARPES: Device analysis

Applicability of µ/nano-ARPES: Multiple conditions

Combining spin, time, and spatially resolved ARPES

2019年10月2日 次世代放射光ナノ光電子ワークショップ 東京大学本郷キャンパス 山上会館

ナノスピン分解電子状態解析 ~ビームライン提案~

KEK物構研 堀場 弘司

次世代放射光施設ビームライン検討委員会報告書 ービームラインリストー

所業	BL备号	名称	挿入光源	分光器	エネルギー (偏光)	分解版	ビームサイズ	軒至于法例	想定される利用分野
	BL-I	X線オペランド分光	IVU	修工ネルギー用 二結晶分光器	2-20 keV (水平直線)	E/4E-7,000	100 mm	1.オペランド電子状態解析(大気圧X線光電子分光、 大気圧X線亮切描描細構造分光) 2.物質内部電子状態(線X線大電子分光)	1.触媒 2.電池 3.水素エネルギー 4.エレクトロニクス 5.ナノ材料 6.エネルギー材料
26-4 7-				Constant of				B L 結晶構造解析 (メールインX線開新)	1. 創業、構造生物 2. 構造材 3. 新材料
								A 1. 化学状態イメージング(メールイン北倉型造造X線開設調) 2. 構造解析(X線小角軟乱、X線広角散乱)	1.触媒 2.電池 3.水麦エネルギー 4.エレクトロニクス 5.ゲル 6.液晶 7.ポリマー 6.アキルファス 9.駅内 10.創業
	BL-II	X線構造・電子状態トータル線析	MPW	信エネルギー用 二雑量分光器	2-20 keV (木平重線)	E/4E=7,000	50 µm	1.オペランド化学状態の時分割解析(迅速X線県収速機能構造分光、エネルギーの 数な線电な効率構成分化) 2.化学状態解析(メールイン迅速X線电気増振振構造分光、エネルギー分数数X線 収定物解集構造分光)	教 1. 勝風 2 電池 1 米麦エネルギー 4 エレクトロニクス
	8L-11	X線展開的機造解析	MPW	高エネルギー用	4.4-30 keV (水平面線)	E/aE-7.000	50 µm	 王モルフォロジー 擬折 (現現へ位相/メージング) 王 元素・化学休暇分布マップ (生産回遊過発現イメージング) 元素・化学休暇分布マップ (生産回避光(メージング) 	1. 無類 2. 電池 3. 食料 4. 単位 5. パイオテラクノロジー 6. 水素エネルギー 7. エレクトロニクス 8. 文化濃度 9. 濃着 10. ウィルス 11. 考古学 12. 長術
				二結晶分光器	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			B 1. 構造解析 (X線回折・数乱、変光X線ホログラフィー) 2. 表面構造解析 (X線同折・数乱)	1.触媒 2 電池 3.水素ニネルギー 4.エレクトロニス 5.アモルファス 6.期内 7.創業
15- F	BL-IV	X線コヒーレンドイメージング	IVU.	低エネルギー用	3.1-20 keV (左右円) 2-20 keV (水平重線)	E/4E-7,000	50µm (非氟光)	 Ⅰ.元素・化学状態マップ A (タイコグラフィーン線現石環境編集曲分光、空間分解数 < 5 nm) 2.タイコグラフィー (空間分解数 < 5 nm) 	1. 触媒 2. エレクトロニクス 3. 構造生物 4. 構造材
20	12	1 Contraction of the second		二結晶分光器	3.1-20 keV (墨憲査線)			B 1. 構造解析 (コヒーレント同語イメージング、空間分解載 < 5 nm)	1. 病毒生物 2. ナノマシン 3. ナノ村料 4. パイオテクノロジー
	BL-V	♥ 軟X線磁気イメージング	APPLE-SX	国新格子	0.18-1.2 keV (左右円) 0.13-2 keV (木平面線)	E/4E-10,000-30,000	< 50 nm	1. 観光時年(18月イメージング) 2. 元巻・化学校都イメージング(企業型査査機取(イメージング) 4. 3. 元巻・化学校都イメージング(企業型査券化メージング) 4. 観天(オメージング(現実)二色化(公開)分析数く10 nm) 5.年本料算(イメージング(円)二色化)	1.スピントロニクス 2.熟練 3.電池 4.素料 5.番粉 6.パイオテクノロジー 7.木敷エネルギー 8.エレクトロニクス 5.鍋原 11.涙炉
					0.23-2 keV (高重重)			1.個质環境下磁性分析 0.個质環境下磁性分析 2.4.2 原始成功=合性、X線電気用合性、X線電気元を性、原鉄X線電気 2.4.2 原始X線電気用合性、原鉄X線電気用合性、原鉄X線電気 光学力の振り	1. 現石材料 2. 軟磁性材料 3. 現実記録材料 4. スピントロニクス 5. 原体物理学
								A 1. ナノ化学・電子状態解析(ナノ光電子分光)	1.ナノテクノロジー 2.量子コンピューター
	BL-VI	軟X線電子研想解析	APPLE-EUV	回折格子	0.05-1.0 keV (朱平重線) 0.05-1.0 keV (梁直直線)	E/aE=10,000-30,000	< 50 nm	 法体分子電子分類解析(気喘余潮性X線射点) この本用就体化学地類解析(気喘余潮性X線射点) 国家表面建築成長期杯(消喘水滑性X線射点) 気気表面起煤炭反解析(清喘水滑性X線射点) 気気表面起煤炭反解析(清喘水滑性X線射点) 	1.施護・2.電池 3.バイオテクノロジー 4.黄品
	BL-VII	軟X線オペランド分光	APPLE-SX	国新格子	0.13-2 keV (水平面線) 0.23-2 keV (梁富直線)	E/AE-10,000-30,000	< 50 nm	 オペランド電子状態 (準大気圧X線大電子分光、準大気圧X線吸収線超敏達分光) 電子状態解析(数X線光電子分光) 	1. 総理 2. 電池 3. 水素エネルギー 4. エレクトロニクス
	DI JUR		ADDLE-DIN	-	0.05-1.0 keV (左右円)	the second	50 cm 10 cm	A 1. ナノ全電子状態解析(ナノスピン分解光電子分光) 2. ナノ電子状態解析(ナノ光電子分光)	1.ナノスピントロニクス 2.量子コンピューター
	DC-VIN	MARTINE TAX	Arrector	INCOMENT.	0.05-1.0 keV (皇書重線)	2,22-20,000-20,000	Joinn-20 pm	B 1.電子状態解析 (マイクロ集光角度分解光電子分光) 2.光電子顕微鏡	3. 原体物理学
篇 (月用)	BL-UK	₩X練ナノ很同分光	APPLE-SX (segmented)	面折株7	0.18-2 keV (左右円) 0.13-2 keV (水平直線) 0.18-2 keV (水平直線)	E/4E>10,000	50 nm-10 µm	1. バイスルーダット計割(2)(重要取分子)、2)(重要取分子)、2)(重要取単一色)、2)(素単合)、2)(また)、2)(素単合)(2)(素単合)(2)(素単合)(2)(素単合)(3)(素単合)(3)(素単合)(3)(素単合)(3)(素単合)(3)(素単合)(3)(素単合)(3)(3)(素単合)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)	1.単石材料 2.軟量性材料 3.単気配焼材料 4.スピントロニクス 5.原体物質学
					[編次為:西印第]			B 1.その場磁気計測(X線係収分光、X線磁気円二色性、 X線磁気線二色性、X線線二色性)	
	BL-X	數X線超高分解版共鳴非滑性對乱。	APPLE-5X	面折格子	0.25-1.0 keV (左右円) 0.25-1.0 keV (木平直線) 0.25-1.0 keV (串直直線)	E/4E>150,000	< 500 pm	 超幅密位電子分類解析(結束)得能共鳴作環性X線動品) 医体内素型成解析(信意分解能共鳴分解性X線動品) 医液、医洗清液反応解析(信意分解能共鳴水滑性X線動品) 本 ナノ調急・電子化燃用時解析(故意分解能共鳴水滑性X線動品) 	1.エレクトロニクス 2. 相転移 3. 国体物理学 4. 触媒 5. 電池

初期整備ビームラインリスト

次世代放射光施設ビームライン検討委員会報告書 ービームラインリストー

		所業	BL装号	名称	博入光源	分光器	エネルギー (備死)	分解整	ビームサイズ	計型手法例		構定され	にる利用分野	
			BL-I	X職オペランド分光	1VL	伝エネルギー用 二結晶分光器	2-20 keV (木平面線)	E/AE-7,000	100 mm	 オペランド電子状態解析(火気圧X線光電子分 大気圧X線分配分量編構近分光) 加賀内振電子状態(速X線光電子分光) 	£.	1. 計算 4. ましち	1.触媒 2 電池 1.大衆ニネルギー 4.エレクトロニクス 5.ナノ対称 6.エネルギー初編	
									60 µm	日 1. 新島県会師坊(メールイシン集団坊) 人 2. ((汚せ数イメー・ブンダ(メールイン主員切換法×除勝待額)) 人 2. 構造條款(以換小員批社、X線に負触社))		1. 東京 線長王和 2. 単長村 3. 単村料 1. 純成 2. 間奈 3. 水学 5. エレクトエニクス、5. 少か、5. 決測 7. ポリマー 3. マルクトエニクス、5. サル、6. 決測		
				· · · · · · · · · · · · · · · · · · ·										
			BL-N	2線構造・電子状態トータル解析	MPW	ほエネルギー用 二抽墨分光器	2-20 keV (水宁直線)	E/4E-7.000		 オペランド化学記載の時分割幅計(活成剤(環境交流機能構造分別、エネルギー分差 等な構成力能は構造分力) 2) 化学校整算料(一人・シス活体/構成力描録編集分分、エネルギー分差) 2) 化学校整算料(一人・シス活体/構成力描録編集合分)、エネルギー分数(気)構造 方面描述編集合分列) 			2 夏水 3 片東エネルデー よエレクトロニクス	
d	_				_	-						1.000		
	BL-VIII	exx8	リナノリ	電子分光		PPLE-EUV	回折格子	0.05-1.0 keV (左右円) *平直線)	E/4E-10 000 20 000	50 nm-10 um	A	1. ナノ全電子状態解析(ナノスピン分解光電子分光) 2. ナノ電子状態解析(ナノ光電子分光)	
		牧X線ナノ光電子分光		2			0.05-1.0 keV (垂直直線)			в	 電子状態解析 (マイクロ集光角度分解光電子分光) 光電子顕微鏡 		
)	BL-IX	X 板X線ナノ吸収分光		(1	APPLE-SX segmented)	回折格子	0.18-2 keV (左右円) 0.13-2 keV (水平直線) 0.13-2 keV (水平直線) 165-2 keV (水平直線)		E/AE>10,000	50 nm-10 µm	 ハイスループット計測(X線吸収分光、X線磁気円=色性 X線磁気線=色性、X線線二色性) ダイナミクス計測(X線強低性共鳴) ナノ磁性イメージング(顕微X線磁気円二色性, 顕微X線磁気線=色性、顕微X線磁気光学カー効果) 			
							【編尤而這刻第]				в	1.その場磁気計測(X線吸収分光、X線磁気円二色性、 X線磁気線二色性、X線線二色性)		
	BL-X	秋X線超高分解能共鳴非發性散乱。			1	APPLE-SX	回折格子	0.25-1.0 keV (左右円) 0.25-1.0 keV (水平直線) 0.25-1.0 keV (垂直直線)		E/ΔE>150,000	< 500 nm		 1. 超精密価電子状態層析(超高分解能共鳴手弾性X線数 2. 固体内素払記層析(超高分解能共鳴手弾性X線数乱) 3. 固波、固気界面反応解析(截高分解能共鳴手弾性X線 4. ナノ構造、電子状態同時解析(数X線非弾性回折) 	
		-	10.100		4001 6 510		0.05-1.0 keV (左右内)	FUE 10 000 50 000		A 1. ナノ全電子状態隔桁(ナノスピン分解光電子分 2. ナノ電子状態隔桁(ナノスピン分解光電子分 2. ナノ電子状態隔桁(ナノ光電子分光)	<u>%)</u>	1.722	スピントロニクス 2番デコンピューター	
			CC-VIII	MART/元号で7元-	APPEERED	/ 面折格子	0.05-1.0 keV (水平盲線) 0.05-1.0 keV (陸直直線)	E/4E=10,000-30,000	90.000-10 MP	 2 電子状態解析(マイクロ集光角度分解化電子分 2 光電子等致機 	π)	3. (3) (4/1	10年4	
		ख (मन)	国 (市市)	e M) BL-IX	mx親ナノ風奈分光	APPLE-SX (segmented	即折格子	0.18-2 keV (左右円) 0.13-2 keV (水平重勝) 0.15-2 keV (樂平重勝)	E/aE>10,000	50 mm-10 µm	 ハイスループット行向(200年度6月光、20時期第月二日行、 20月4日、20月4日、20月4日-20月) ダイトシス大振し(20月4日) チノ油目・(メージン)(20月6日) チノ油目・(メージン)(20月6日) 第四×344(20月2日) 第四×344(20月2日) 第四×344(20月2日) 		1. 服石时候,工 联络时时候,3. 服务部署的时候 4. 人民分子中国之文 4. 原始的指定	
										B 2 その場面気計算(X線吸収分光、X線磁気内二部 X線磁気線二色性、X線線二色性)	推			
			BL-X	數X線磁高分解統共得非排性徵出.	APPLE-SX	同折格不	0.25-1.0 keV (左右内) 0.25-1.0 keV (水平書編) 0.25-1.0 keV (除百言感)	E/AE>150,000	< 500 mm	 組織否任電子状態操行(相高分解軟片場非滑行) 国体内类型近期研(相高分解軟片場全滑柱(構制) 国法、国际用田氏(特許)(超高分解軟片場中滑 上下了場合常、電子(特別可能知行)(数と通知時間) 	線動点) (年) (1)線動画) (1)	1. エレク 5. 電池	クトロニクス 2 振転移 3.国体物調学 4.創業	

3

4

次世代放射光施設ビームライン検討委員会報告書 一挿入光源検討-

		最大 K値	最大磁場 (T)	光子エネルギー範囲 (keV)
APPLE-SX λ_u =56mm	円偏光	2.75	0.526	0.178 - 1.20
	水平直線偏光	4.67	0.893	0.128 - 2*)
	垂直直線偏光	3.39	0.648	0.226 - 2*)
APPLE-EUV λ _u =75mm (56周期)	円偏光	4.67	0.666	0.050 - 1.01
	水平直線偏光	6.60	0.942	0.050 - 2")
	垂直直線偏光	6.21	0.887	0.056 - 2")

フラックス

ナノ集光スピン分解ARPESビームライン(案)

光源:可変偏光アンジュレータ(水平・垂直・左右円偏光:高速切り替えは不要) エネルギー領域 50-1000 eV

・ブランチでは汎用的な集光系によるARPESやPEEM実験を想定

世界の動向:世界放射光施設のナノARPES装置

	Focusing Optics	Spot size	Energy Range	Energy Resolution	Spin Resolved
Spectromicroscopy (Elettra, Italy)	Schwarzschild	500 nm	27eV & 74eV (Fixed)	12.5 meV	×
Maestro (ALS, USA)	FZP Capillary	120 nm 450 nm	80 - 1000 eV	50 meV	×
ANTARES (Soleil, France)	FZP	150 nm	95 - 1000 eV	25 meV	×
I05: ARPES (Diamond, UK)	FZP	700 nm	60 - 150 eV	30 meV	×
本提案	超精密加工 ミラー光学系	< 100 nm	50 - 1000 eV	< 10 meV	0

建設中:SSRF(China), TPS(Taiwan), NSLS-II(USA),等

最近の動向:ナノ集光光学系

①フレネルゾーンプレート:現在様々な装置で最も汎用的に使用されている。 ・長所:調整が非常に容易 ・短所: 強度が著しく低下する r: 半径 = 100 μm Δr: 最外ゾーン幅 = 35 nm ・集光サイズ: m: 回折次数 = 1 σ:光源サイズ ~ 50 μm 極限では10nm級が可能だが、 p:光源 - FZP間距離 = 15 m q:FZP - 試料間距離(焦点距離) ARPES実験の制約のために $2r\Delta r/m\lambda = 5.65 \text{ mm} @1 \text{ keV}$ ナノARPES装置では最高でも E: 光エネルギ △E: 光エネルギー分解能 100nm級の集光に留まる。 焦点距離 $2r\Delta r$ 集光サイズ $1.22 \times \Delta r$ $\sigma \underline{q}$ ΔE 2rf =mλ E p 回折限界 色収差 縮小率 42.7 nm ~ 30 nm ~ 40 nm

最近の動向:ナノ集光光学系

最近の動向:2次元スピン検出器

いずれの方法も、2次元のARPES信号を、 2次元情報を保持したままターゲットで 反射させた後に検出器上に結像する。

電子の結像レンズの調整が非常に難しく、 主流の方法がどうなるかはまだ 定まっていない。

DLD 1

ナノ集光スピン分解ARPESビームラインエンドステーション(案)

スピン分解光電子分光の動向 広島大学・奥田太一

スピン分解光電子分光の動向

広島大学放射光科学研究センター奥田太一

Outline

- 主なスピン分析器と特徴(復習) Mott, VLEED, Au/Ir or W filter
- スピンARPESの近年の進展
- マルチチャンネル検出器の現状
- ・国内外のスピンARPESの現状と将来

What is spin-polarized ARPES

E. Kisker et al. Phys. Rev. B 31, 329 (1985).

Mott

Au/Ir(100) (or W) filter

Spin-orbit Interaction

Au 1ML pseudomorphic film on Ir(100)

J. Kirschner et al., PRB 88 125419 (2013).

まとめ1:スピン検出器の比較 (シングルチャンネルで比較)

	Mott	VLEED	Au/Ir filter
効率(FOM)	\bigtriangleup	Ø	\bigcirc
3Dベクトル測定	Ø	\bigcirc	\bigtriangleup
高分解能測定	\bigtriangleup	\bigcirc	\bigcirc
微小試料測定	\bigtriangleup	\bigcirc	\bigcirc
時間分解測定	Ø	\bigtriangleup	\bigtriangleup
安定性・メンテナンス	Ø	\bigcirc	\bigcirc

Outline

- 主なスピン分析器と特徴(復習) Mott, VLEED, Au/Ir or W filter
- スピンARPESの近年の進展
- マルチチャンネル検出器の現状
- ・国内外のスピンARPESの現状と将来

COPHEE (COmplete PHotoEmission Experiment) machine (3次元スピン解析) @ SLS for 3D spin vector analysis

ESPRESSO machine at HiSOR BL-9B 2011~ (高効率スピン検出 ➡ 高分解能化)

 Efficient SPin REsolved SpectroScOpy (ESPRESSO) machine for 3D spin vector analysis Resolution

Best $(\Delta E, \Delta \theta) = (7.5 \text{ meV}, \pm 0.2^{\circ})$ Typical $(\Delta E, \Delta \theta) = (\sim 20 \text{ meV}, \pm 0.38 \sim 0.75^{\circ})$

Special function

- Efficient normal ARPES
- 3D spin vector observation (Px, Py, Pz)

高分解能測定と3次元スピン解 析の両立を実現した。

J. Electron Spectrosc. Relate. Phenom. 201, 23 (2015).

マイクロビームの利用

まとめ2: 最近のspin-ARPESの発展 (i.e. 最近のspin-ARPESに求められる条件)

・3次元スピンベクトル解析

高分解能(エネルギー・波数)
 レーザー利用による超高分解能化

・ 微小ビームによるサイト選択的な測定

Outline

- 主なスピン分析器と特徴(復習) Mott, VLEED, Au/Ir or W filter
- スピンARPESの近年の進展
- ・ マルチチャンネル検出器の現状
- ・国内外のスピンARPESの現状と将来

スピン分解光電子分光の最近の発展 Recent progress of Spin-resolved PES

マルチチャンネル測定

Multichannel spin detector

Momentum microscope(MM) using Au/Ir(100) spin filter

Multi channel spin detection using Fe(001)p1x1-O

F. Ji,...S. Qiao PRL 116, 177601 (2015).

Multi channel Mott @SLS

At Analyzer

まとめ3:シングルチャンネル vs マルチチャンネル

	シングルチャンネル VLEED	マルチチャンネル VLEED	MM + Au/Ir filter
効率(FOM)	\bigtriangleup	\bigcirc	Ø
高エネルギー分解能	Ø	\bigcirc	0
高波数分解能	\bigcirc	\bigcirc or \oslash	Ø
3Dベクトル測定	\bigcirc	\bigtriangleup	\bigtriangleup
微小領域測定	\bigtriangleup	\bigcirc	Ø
微小試料測定	Ø	Ø	\bigtriangleup
時間分解測定	\bigtriangleup	\bigtriangleup	\bigtriangleup
操作性・汎用性	Ø	\bigcirc	\bigtriangleup

- マルチ化できると効率は飛躍的に向上>>>分解能も上げられる可能性
- 3Dベクトル解析はまだ未報告。
- MMは、微小領域測定は得意だが、微小試料は不得意
- 現状のシステムは時間分解測定とはやや相性悪い。(複数回測定必要)
- 操作には熟練が必要?
- 現状で市販されているのはMMのみ。

Outline

- ・ 主なスピン分析器と特徴(復習) Mott, VLEED, Au/Ir or W filter
- スピンARPESの近年の進展
- マルチチャンネル検出器の現状

・国内外のスピンARPES(ビームライン)の現状と将来

日本の状況 黒:稼働中、緑:開発中、青:計画中?

UVSOR

SR MBS A1 +2D or 1D multi VLEED

MM+spin

HiSOR

SR 13-100 eV Scienta R4000 +VLEED

Laser 6 eV Scienta DA30+VLEED

Multi channel SES 2002 +VLEED

Sato Lab.

Xe, He lamp

MBS A1+Mott (VLEED, 2D or 1D multi)

LASOR

Laser 7 eV Scienta DA30 +VLEED

Laser 12 eV Kondo-san

Multi channel Yaji-san

世界の放射光とスピン分解光電子装置

世界の状況

黒:稼働中、緑:開発中、青:計画中 🏠: 3GeV級

- 中国
 - ☆ 2D VLEED+Scienta R3000, 2D VLEED+Scienta DA-30? (labo.>>>上海LS)
 - ・Mott+Scienta+Laser (Zhouグループ)
- ・韓国
 - VLEED+Scienta DA-30 (PLS)
- ・ヨーロッパ
 - 🔆 Mott+Scienta R8000 (BESSYII)
 - Momentum Microscope + spin (Jurich)
 - MM+TOF+spin (PETRA III)
 - Mottx2+Omicron (SLS COPHEE >>> upgrade 2020>>>SLS2.0 2023 7-1000 eV T<4K, 1.6 meV, 50μm) Mottx2+Scienta DA30</p>
 - VLEEDx2+Scienta DA-30, (MM) (ELETTRA)
 - Mott+Scienta SES2002 >>> FERRUM + MBS A1 (SOLEIL)
 - MM+TOF+spin (Daimaond LS)
 - VLEED+SPECS (MAX IV) 10-1000eV
- ・アメリカ
 - Co_VLEED+TOF (ALS)

東北3GeVのspin-ARPES計画

	計画	計画 ॥
アンジュレータ	APPLE II	Helical or APPLE II
エネルギー領域	50 ~ 1000 eV	30 ~ 1100 eV
フラックス(試料)	10 ¹² photons/sec	10 ¹⁵ photons/sec
エネルギー分解能	10,000	>30,000
ビームサイズ	< 100 nm	30 nm
試料環境	He 冷却	4 К , オペランド

海外と比較して

- 低エネルギーは出さない
- ビームサイズに特徴

コンセンサス

- 微小ビームは必須
- 極低温も重要
- 3D測定も重要
- SXを積極的に活用

<u>懸案事項</u>

- スピン検出方法は?
- 2D(1D)か 0Dか ?
- ・ ビームはμmか、nmか?
- ・ 低エネルギーはどうするか?
- 可変偏光は必要か?

Discussion

- マルチチャンネルにするかどうかは慎重な検討必要
 - ・3次元測定が現状では報告されていない。
 - オペレーションの難しさ。
 - ・コントラストは得られるが、スピン偏極度の絶対値は?
- ・シングルチャンネルなら日本で経験豊富なVLEEDか?
- ・時間分解測定にこだわるならMottもあるか?
- ・マルチチャンネルではMM+Au/Irフィルターが一日の長?

まとめ (私見です)

- ・ビームライン 50-1000eV, 分解能10000-30000, 可変偏光
- ・第1期 (or 第1ブランチ)

確実に結果を残すフェーズ(orブランチ) (μ-ARPES, μ-SARPES)

- ビームは数µmでハイスループットな実験。
- ・スピン検出はVLEED方式?、現状確立されたシングルチャンネル+3Dスピン測定
- ・低温もそこそこ頑張る
- ・第2期 (or 第2ブランチ) 挑戦するフェーズ(orブランチ) (nano-ARPES, nano-SARPES)

 - ・数十nmサイズのビームを目指す
 - ・スピン検出はマルチチャンネル+3Dスピン測定
 - 極低温も目指す
 - 時間分解も検討

ナノARPES の研究動向 広島大学・岩澤英明

次世代放射光 ナノ光電子分光ワークショップ2019 東京大学、本郷キャンパス、2019年10月2日

ナノARPESの研究動向

岩澤 英明

広島大学 理学研究科 物理科学専攻

2008~2016:広大放射光センター(HiSOR) **2016~2018:英国放射光(Diamond Light Source)** 2018~:現所属

😍 diamond

Outline

- o 国内外のナノARPES・軟X線ARPESの開発状況
- o Diamond Light Source
- o ARPES beamline (I05): 高分解能ARPES / ナノARPES
- ナノARPESの研究動向

ナノARPES

÷

ナノARPES

角度分解光電子分光

ARPES : Angle-Resolved PhotoEmission Spectroscopy

高機能性(高精度・多自由度)

- 高エネルギー・波数分解能
- 。 波数空間マップ (角度走査)
- 。 極低温
- 。 励起光エネルギーの可変性

顕微能力(高空間分解能)

- 。 微小スポット
- 。 実空間マップ(位置制御精度)
- 。 ビーム安定性
- 。 位置安定性

国内外におけるナノARPES・軟X線ARPESの開発状況

■ ナノARPES

	集光方法	スポットサイズ	入射光エネルギー	試料温度	試料ステージ
Elettra Spectromicroscopy	Schwarzschild	500 nm	27 eV & 74 eV	15-470 K	4軸
SOLEIL Antraes	FZP	150 nm	95 – 10000 eV 50 eV or 100 eV	60-80 K	5軸
Diamond I05	FZP	240 - 450 nm	60-150 eV	25-30 K	5軸
ALS Maestro	FZP Capillary	120 nm 450 nm	80 – 1000 eV	RT	5軸

建設中/予定:SSRF, TPS, NSLS-2

■ 軟X線ARPES × イオン化断面積の減少(2-3桁) ⇒ 斜入射実験配置(cosの逆関数で増大)

	入射光エネルギー	偏光	分解能力	光量	スポットサイズ
SLS ADRESS	300 – 1600 eV	可変	33,000 @ 1 keV	> 10 ¹³	10 x 74 μm²
SPring-8 BL-25SU	220 – 1000 eV	円偏光	10,000 @ 1 keV	> 10 ¹¹	1 x 120 μm² (30 x 80)
Diamond I09	500 – 1300 eV	可変	-	-	40 x 20 μm ²
PETRA-III P04	250 – 3000 eV	可変	> 30,000@ 1 keV	> 10 ¹²	10 x 10 μm ² (1 x 1 更新予定)

V. N. Strocov et al, Springer Ser. Mater. Sci., 266, 107 (2016). エネルギー分解能に関して(1)

■ 装置のエネルギー分解能

$$\Delta E_{\rm Intrum} = \sqrt{\Delta E_{BL}^2 + \Delta E_{Ana}^2}$$

■ アナライザー分解能

$$\Delta E_{Ana} \sim \frac{E_P W}{2R}$$

エネルギー分解能に関して(2)

R= 200 mm, Ε/ΔΕ	E/ΔE _{BL} = 100,000			
E _P (eV)	w (mm)	ΔE _{Ana} (meV)	ΔE _{Tot} (meV)	ΔE _{Tot} (meV)
20	0.2	10	10.1	10.0
50	0.2	25	25.1	25.0
20	0.1	5	5.3	5.0
50	0.1	12.5	12.6	12.5
R= 200 mm, Ε/ΔΕ	_{BL} = 30,000 @ 500	eV		E/ΔE _{BL} = 100,000
E _P (eV)	w (mm)	ΔE _{Ana} (meV)	ΔE _{Tot} (meV)	ΔE _{Tot} (meV)
20	0.2	10	19.4	11.2
50	0.2	25	30.0	25.5

0.1

0.1

20

50

E _P (eV)	w (mm)	ΔE _{Ana} (meV)	ΔE _{Tot} (meV)	ΔE _{Tot} (meV)
20	0.2	10	34.8	14.1
50	0.2	25	41.7	26.9
20	0.1	5	33.7	11.2
50	0.1	12.5	35.6	16.0
		52		

5

12.5

17.4

20.8

7.1

13.5

E/ΔE_{BL} = 100,000

Diamond Light Source (DLS)

DLSの強み:組織

■ 組織力

o 十分なマンパワー

DLSの強み:エンジニア

■ 大型・先端機器も内部開発

プログラムの作成 / 組み込みなど

装置/ソフトウェアの開発・経験 → BLだけでなく各部門に蓄積 → 人員の流動性の確保

DLSの強み:ソフトウェア

測定・Beamline制御ソフトウェアの基本部分は全ビームライン共通

■ 計測ソフト GDA : General Data Acquisition

■ 自動計測

■ Beamline制御 (EPICS based)

■ 解析ソフト開発

DAWN

Suitable for image visualization https://dawnsci.org/

大規模データ

DLS, I05 : Floor layout

DLS, 105 : 高分解能ARPES

DLS, 105における高分解能ARPES測定の効率化

試料面マッピング(実空間)

Nano-ARPES branch

フェルミ面マッピング(試料面内)

16 15

14 13 12

k, [2π/c] 11

10

1.0

k// [A']

z

Z

z

1.0

フェルミ面マッピング(試料面外)

ナノARPES endstation @ DLS, 105

0 Deflector (DA30) : \pm 10 0

試料・光の位置関係を変えずに波数マッピング可能

ナノARPESの研究例: ピンポイント測定

側面に存在する「弱いトポロジカル電子状態」を実証

 β -Bi₄I₄ hv = 85 eVT = 35 K

R. Noguchi, T. Kondo et al. (ISSP, Univ. of Tokyo) Nature 566, 518-522 (2019).

ナノARPESの研究例: ヘテロ構造

■ 遷移金属ダイカルコゲナイド

Nano-scale heterostructures : Monolayer ~ few monolayer WS₂ / Single layer or Bilayer Graphene

B. Rösner et al., J. Synchrotron Rad. 26, 467-472 (2019).

Søren Ulstrup et al., Nat. Commun. 10, 3283 (2019).

ナノARPESの研究例:デバイス/オペランド測定

■ ゲート電圧印加下のナノARPES

Elettra, Spectromicroscopy

Visualizing electrostatic gating effects in two-dimensional heterostructures.

<u>Monolayer Graphene / BN</u>

P. V. Nguyen et al., Nature 572, 220 (2019).

SOLEIL, Antraes

Visualizing the effect of an electrostatic gate with angle-resolved photoemission Spectroscopy.

同様の測定がDiamond, ALSで既に可能

QST におけるスピントロニクス材料研究の展開 量子科学技術研究開発機構・境誠司

QSTにおけるスピントロニクス材料研究

I. 量子スピントロニクス材料の研究

深さ分解XMCD分光による "グラフェン/ホイスラー合金へテロ構造の分析" 李他, Advanced Materials (to be accepted)

スピン偏極Heビームで "磁性絶縁体YIGの近接効果を解明"

境他, Advanced Functional Materials 28, 1800462 (2018)

II. 先端量子ビーム計測技術の開発

深さ分解放射光メスバウアー分光により "鉄表面にスピンのさざ波を発見" 三井他, Physical Review Letters (10月投稿予定)

I. 量子スピントロニクス材料の研究①

深さ分解XMCD分光による グラフェン/ホイスラー合金へテロ構造の分析

S. Li, P. B. Sorokin, Y. Sakuraba, P. Avramov, K. Amemiya, S. Sakai et al., Adv. Mater., to be accepted

ソース

雷極

グラフェン/ホイスラー合金ヘテロ構造の創製

グラフェンスピンデバイス - 磁性電極によるスピン注入の低効率

深さ分解XMCD分光

K. Amemiya, Phys. Chem. Chem. Phys. 14, 10477 (2012)

XMCD分光 – 元素選択的な電子・磁気状態の計測手法

部分電子収量法をベースに深さ分解測定を実現

二次元物質/磁性体ヘテロ構造の研究に利用

グラフェン/CFGGヘテロ構造を作製

CFGG(Co₂FeGe_{0.5}Ga_{0.5}) - スピン偏極率最大のハーフメタルホイスラー合金

- ・グラフェン/CFGG界面の高い平坦性
- ・CFGGのL2₁構造(~ハーフメタル性)が保たれている
- ・グラフェンはランダムな面内配向(多結晶)

深さ分解XMCD分光

K. Amemiya, Phys. Chem. Chem. Phys. 14, 10477 (2012)

XMCD分光 – 元素選択的な電子・磁気状態の計測手法

部分電子収量法をベースに深さ分解測定を実現

二次元物質/磁性体へテロ構造の研究に利用

グラフェン/CFGGヘテロ構造の深さ分解XMCD分光

10

グラフェン/CFGGヘテロ構造の深さ分解XMCD分光

グラフェン/CFGGヘテロ構造の深さ分解XMCD分光

- ・界面近傍におけるCFGGの磁気的ロバストネスや高スピン偏極率
- ・グラフェンのスピン輸送を司るπバンド(ディラックコーン)の維持

I. 量子スピントロニクス材料の研究②

スピン偏極Heビームで 磁性絶縁体YIGの近接効果を解明

67

S. Sakai, Y. Yamauchi, Y. Yamada, P. Sorokin, P. Avramov, K. Ando *et al.*, Adv. Funct. Mater. 28, 1800462 (2018)

スピン偏極準安定He脱励起分光(SPMDS)

16

最表面にある原子層だけを観測

✓ オージェ電子のエネルギースペクトル(MDSスペクトル) → 状態密度

✓ スピンに依存した強度変化(スピン非対称率スペクトル) → スピン偏極
グラフェン/YIGヘテロ構造のSPMDS

MDSスペクトル(上)とスピン非対称スペクトル(下)

グラフェンは、バンド構造を維持しつつ、 YIGの近接効果によりディラックコーンがスピン分裂

グラフェン/YIGヘテロ構造のSPMDS

磁性絶縁体とのヘテロ構造を用いることで、 グラフェンのバンド構造を保ちつつスピン偏極状態を制御できる!

18

II. 先端量子ビーム計測技術の開発

深さ分解放射光メスバウアー分光により 鉄表面にスピンのさざ波を発見

T. Mitsui, S. Sakai, M. Seto, H. Akai et al., Phys. Rev. Lett., to be submitted

深さ分解放射光メスバウアー分光の開発

2017 深さ分解計測技術を開発 – 世界初の超高真空in situ実験装置

2018 超単色放射光のマイクロビーム化 – 高感度化,顕微測定を可能に

【従来】

観測対象:塊(バルク)

次世代スピントロニクスデバイス 観測対象:原子(表面・界面)

材料・デバイス内の量子スケールのスピンの振る舞いが計測可能に

19

鉄表面にスピンのさざ波を発見

T. Mitsui, S. Sakai, M. Seto, H. Akai et al., Phys. Rev. Lett., to be submitted

鉄(Fe) 代表的な磁性元素、スピントロニクスデバイスで多用 デバイス開発 - <mark>界面の制御</mark>が鍵

Fe表面(真空/Fe界面)の性質は古来の謎

原子分解能深さ分解メスバウアー分光

狙った深さ(1~7ML)に⁵⁷Fe層(0.8ML)を埋め込み

超高真空深さ分解メスバウアー分光装置 SPring-8 QST専用BL(BL11XU)

MRAM

結論

・原子層分解能の深さ分解放射光メスバウアー 分光技術を開発

・ 鉄表面に磁気フリーデル振動の存在を発見
 理論的予測 - C. S. Wang & A. J. Freeman, PRB (1981)

深さ分解放射光メスバウアー分光

真の深さ分解計測 - 見たい深さだけの情報が得られる

情報の豊富さ、複雑な材料での有効性 - サイト毎などの局所的な原子構造、電子状態やモーメントの配列

多様な計測環境 - 磁場,電場/電流,光,雰囲気など(オペランド計測が容易)

磁気ヘテロ構造界面・磁性体表面研究の新ツール

FIG. 5. Self-consistent spin-density map of seven-layer of Fe0011 in units of 0.0001 a.u. on the (110) plane. Each contour line differs by a factor of 2. The dashed lines indicate negative spin density. Wang & Freeman (1981)

QSTにおけるスピントロニクス材料研究

I. 量子スピントロニクス材料の研究

深さ分解XMCD分光による "グラフェン/ホイスラー合金ヘテロ構造の分析" 李他, Advanced Materials (to be accepted)

スピン偏極Heビームで "磁性絶縁体YIGの近接効果を解明"

境他, Advanced Functional Materials 28, 1800462 (2018)

II. 先端量子ビーム計測技術の開発

深さ分解放射光メスバウアー分光により "鉄表面にスピンのさざ波を発見" 三井他, Physical Review Letters (10月投稿予定)

量子ビーム計測技術群でスピントロニクスの発展に貢献

謝辞

QST 李 松田, 三井 隆也, 上野 哲朗, 綿貫 徹 他 MISiS(Russia) Pavel B. Sorokin 他 NIMS 山内 泰, 桜庭 裕弥 東大物性研 赤井 久純 京大 瀬戸 誠 他 慶北大(韓国) Pavel V. Avramov 筑波大 山田 洋一 他 KEK 雨宮 健太

26

レーザー光電子分光によるトポロジカル物性の開拓 東京大学物性研究所・近藤猛

レーザー光電子分光によるトポロジカル物性の開拓

近藤猛 東京大学物性研究所

「ナノ・スピンARPES 構想」

SYNCHROTRON RADIATION NEWS, Vol. 25, No. 5, 2012

Topological insulator state in Fe(Te,Se)

(a)

	<i>a</i> (Å)	$c(\text{\AA})$	d _z (Å)
FeSe	3.7724	5.5217	1.4759
FeSe0.493Te0.507	3.7933	5.9552	1.6192

pd coupling: position of p_z band at Γ pp coupling: band width of the p_z band along ΓZ

Topological insulator state in Fe(Te,Se)

Observation of Topological Superconductivity on the surface of Iron-based Superconductor

- (1) Dirac-cone-type surface state?
- (2) Spin-helical texture in the Dirac surface band?
- (3) Superconducting gap in the Dirac surface band?

 $FeTe_{1-x}Se_x$ (x = 0.45, Tc = 14.5 K)

(1) Dirac-cone-type surface state?

P Zhang et al, Science 360, 182 (2018)

(2) Spin-helical texture in the Dirac surface band?

The surface states are spin-helical.

(3) Superconducting gap in the Dirac surface band?

TSC on surface and realization of Majorana fermions

STM measurements

D. Wang et al., Science 362, 333 (2018).

82

0.4

0.0

Energy (meV)

-0.4

0.4

0.0

Energy (meV)

-0.4

0.4

0.0

Energy (meV)

-0.4

https://newscenter.lbl.gov/2013/03/12/photoelectron-polarization-tis/

直線偏光は重要である。

3D photoelectron spin polarization in laser-photoemission

Laser based spin-resolved ARPES (Laser-SARPES)

Origin of the polarization dependence

K. Kuroda *et al.*, Phys. Rev. B **95**, 081103(R) (2016).
K. Yaji *et al.*, Nature Commun. **8**, 14588 (2017).

3D SARPES result for the asymmetric set-up

Spin-polarization evolution of linear polarization angle

3D photoelectron spin polarization in laser-photoemission

The model vs the experimental result

直線偏光は重要である。

なぜナノビームが必要か?

quasi-1D crystal of Bi₄I₄

90

Purpose

• Determine the topological phases of α - & β -Bi₄I₄

- ・α-Bi₄I₄:通常の絶縁体?
- ・β-Bi₄I₄:「弱い」 or 「強い」トポロジカル絶縁体?

同定には実験が必要である。

Two cleavable surfaces of β -Bi₄I₄

Two cleavable surfaces of β -Bi₄I₄

Experiments

本当に側面か?

Experiments

ナノARPESの世界地図

ELETTRA, SOLEIL, ALS, Diamond

http://commune.spring8.or.jp/about/features.html

ナノARPESの世界地図

ELETTRA, SOLEIL, ALS, Diamond

□ SSRF : commissioning towards end of 2017

http://commune.spring8.or.jp/about/features.html

なぜエネルギー範囲 50eV < hv <1,000eVか?

Experimental determination of the topological phase diagram in Cerium monopnictides

K. Kuroda et al., Phys. Rev. Lett. 120, 086402 (2018).

ARPES technique

Large SOC, Large electron and hole pockets

Experimental determination of the topological phase diagram in Cerium monopnictides

ミラーナノ集光系に対する準備 東京大学物性研究所・松田勲

20191002 次世代放射光 ナノ光電子分光 ワークショップ2019

ミラーナノ集光系に対する準備

松田巌 東大物性研

107

資料

協賛: 日本放射光学会 日本放射光学会(メーリングリスト)会員向け案内文(8 月 27 日発信) "日本放射光学会" <jssrr@jssrr.jp> wrote:

日本放射光学会 会員各位

次世代放射光ナノ光電子分光ワークショップ 2019 の案内をいただきましたので 会員の皆様にお知らせいたします。

日本放射光学会事務局

次世代放射光ナノ光電子分光ワークショップ 2019

「次世代放射光施設ビームライン検討委員会報告書(1)」(https://www.3gev.qst.go.jp/BL_report.html)により、次世代放射光施設の 第 1 期整備ビームラインラインアップが提示され、それを受けて国が整備する 3 本の共用ビームラインの検討を開始し、AllJapan の叡智を結集した実験ステーションを建設すべく議論を重ねています。今回、ナノ光電子分光ビームラインについて、下記のワーク ショップを開催することにいたしましたので、多数のご参加をお待ちしております。

1. 日時:2019年10月2日(水)13時~17時

- 2. 場所:東大本郷キャンパス山上会館2F 大会議室(120 名)
- 3. 主催:量子科学技術研究開発機構(QST) 量子ビーム科学部門 次世代放射光施設整備開発センター
- 4. 参加費:無料
- 5. 参加申し込み:当日会場にて受け付けます
- 6. プログラム
- 13:00~ Opening Address: WS 趣旨説明(東大・尾嶋正治)
- 13:10~ 高輝度 3GeV 放射光の特徴と光源性能(量研・高橋正光)
- 13:30~ ナノスピン分解電子状態解析:サイエンスとビームライン提案(東北大・佐藤宇史、KEK・堀場弘司)
- 14:20~ スピン分解光電子分光の動向(広大・奥田太一)
- 14:50~ ナノARPES の研究動向(広大・岩澤英明)
- 15:20~ 休憩
- 15:40~ QST におけるスピントロニクス材料研究の展開(量研・境誠司)
- 16:10~ レーザー光電子分光によるトポロジカル物性の開拓(東大物性研・近藤猛)
- 16:40~ パネル討論
- 16:55~ Concluding Remarks
- 7. 本件連絡先:加道雅孝(量研次世代放射光施設整備開発センター)

3GeV-info@qst.go.jp

https://www.3gev.qst.go.jp/

協賛: 日本表面真空学会

日本表面真空学会(メーリングリスト)会員向け案内文(8月27日発信) "表面真空学会事務局" <office@jvss.jp> wrote:

官民地域パートナーシップにより推進している「次世代放射光施設(軟 X 線向け高輝 度3GeV 級放射光源)」に関し、「次世代放射光施設ビームライン検討委員会報告書 (1)」(https://www.3gev.qst.go.jp/BL_report.html) により、次世代放射光施設の 第1期整備ビームラインラインアップが提示され、それを受けて国が整備する3本の共 用ビームラインの検討を開始ました。今回、ナノ光電子分光ビームラインについて ワークショップを開催いたしますので、多く方からご意見をいただけますよう多数の ご参加をお待ちしております。

1. 日時:2019 年 10 月 2 日(水) 13 時~17 時

- 2. 場所:東大本郷キャンパス山上会館2F 大会議室(120 名)
- 3. 主催:量子科学技術研究開発機構(QST) 量子ビーム科学部門 次世代放射光施設整備開発センター
- 4. 参加費:無料
- 5. 参加申し込み:当日会場にて受け付けます
- 6. プログラム
- 13:00~ Opening Address: WS 趣旨説明(東大·尾嶋正治)
- 13:10~ 高輝度 3GeV 放射光の特徴と光源性能(量研・高橋正光)
- 13:30~ ナノスピン分解電子状態解析:サイエンスとビームライン提案(東北大・佐藤宇史、KEK・堀場弘司)
- 14:20~ スピン分解光電子分光の動向(広大・奥田太一)
- 14:50~ ナノARPES の研究動向(広大・岩澤英明)
- 15:20~ 休憩
- 15:40~ QST におけるスピントロニクス材料研究の展開(量研・境誠司)
- 16:10~ レーザー光電子分光によるトポロジカル物性の開拓(東大物性研・近藤>猛)
- 16:40~ パネル討論
- 16:55~ Concluding Remarks
- 7. 本件連絡先:加道雅孝(量研次世代放射光施設整備開発センター)

3GeV-info@qst.go.jp

https://www.3gev.qst.go.jp/

来場者数 94人 (アンケート回収率 83%)

本ワークショップはどのように知りましたか。

参加者の所属について。

量子科学技術研究開発機構 次世代放射光整備開発センター 軟 X 線向け高輝度 3GeV 級放射光源(次世代放射光施設) https://www.3gev.qst.go.jp/

2019.10