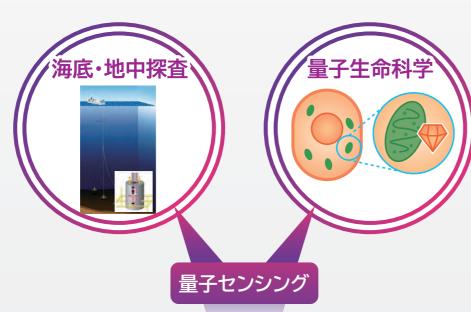


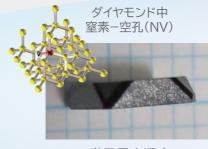
量子機能創製研究センター



国立研究開発法人量子科学技術研究開発機構 QST 量子ビーム科学部門高崎量子応用研究所

QX(Quantum Transformation) 技術の創出により

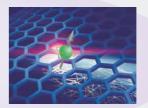
Society 5.0 実現への貢献



QSTオリジナル技術を活用した固体スピン量子ビットの探索・形成、光融合・量子状態制御技術

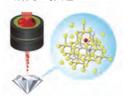
レーザー冷却イオン制御

世界最高濃度 单一光子源形成


量子ビット/ 量子状態制御

新規スピン欠陥・ 単一光子源探索

スピン状態の光制御・検知

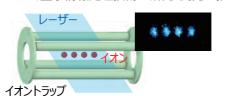

二次元材料・磁性材料の 成膜·複合化

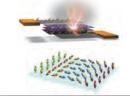
世界を先導する 量子材料: 機能創製の研究

量子センシングプロジェクト

イオンや電子ビームを駆使してダイヤモンドや炭化ケ イ素などのワイドバンドギャップ半導体中に量子セン サとなるスピン欠陥を形成して、超高感度な磁場や 温度のセンシングに応用する研究を推進

二次元物質スピンフォトニクスプロジェクト


グラフェンなどの二次元物質や磁性材料をベースに、 光と電子の情報の相互変換を可能にする量子材料や 光により動作するスピンデバイスの研究など、光-ス ピン融合技術"スピンフォトニクス"の基礎研究を推進


レーザー冷却イオンプロジェクト


イオントラップに捕捉された冷却イオンを量子ビット とする量子コンピュータの開発、さらに、イオントラッ プをイオン源として用いる超精密イオン注入技術の 開発により、量子情報処理技術の研究・開発を推進

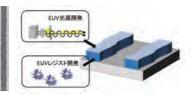
光スピン量子制御プロジェクト

半導体量子構造や複合欠陥のスピン状態を高度に 制御し、半導体集積化技術やフォトニクス技術との 融合を見据えた量子状態の精密制御や異種物質接 合の構造解析・量子物性に関する研究を推進

量子材料理論プロジェクト

実験パラメータを用いない、第一原理理論計算を行 うことにより、新規量子材料の探索や、量子デバイス 中の電子状態解析、さらにはゲート方式量子コン ピュータのアルゴリズム開発や量子誤り訂正技術の

希土類量子デバイスプロジェクト

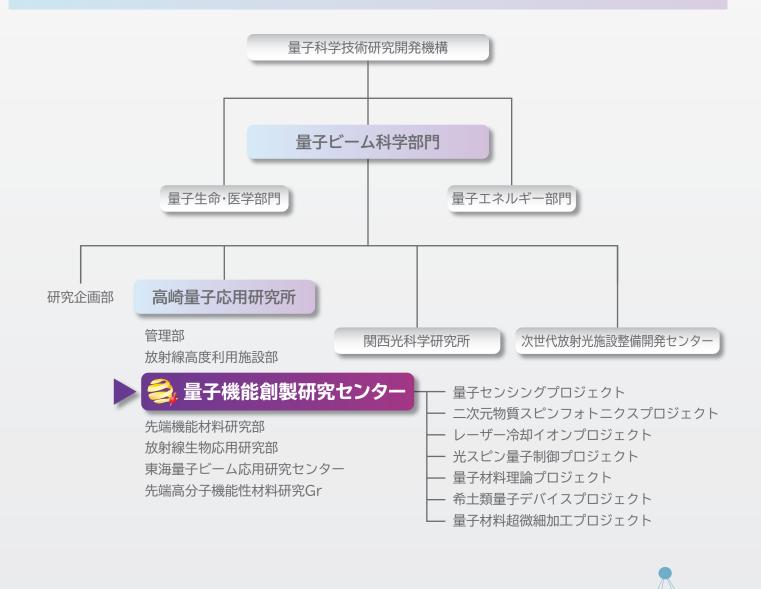

窒化物などの半導体に注入した希土類元素を量子 ビットや単一光子源として制御する量子デバイスを 開発し、オンチップ量子もつれ光源の実現に向けた 研究や新たな量子センシング手法の開発を推進

量子材料超微細加工プロジェクト

メタルレジストや新規ブロック共重合体といった EUVレジスト材料の開発、さらに、量子デバイスの高 品質化・集積化に欠かせない超微細リソグラフィ技 術および超微細3D素子造形に関する研究を推進

量子機能創製研究センター は、Society5.0の実現のキー テクノロジーとなる量子科学技 術の研究を加速するために、 2022年4月1日に高崎量子 応用研究所に発足しました。

センターでは、量子材料・ 機能創製などの基礎研究から デバイス応用までを視野に入 れた幅広い研究を推進します。


産学官の密接な連携のもと、 スピンやフォトンといった量子 を巧みに操り、更には、それら の相互作用を活用することで 世界を先導するユニークな研 究を実施するとともに、量子 科学を広く使える真の技術と するハブとしての役割を担っ てまいります。

量子機能創製研究センター長

組織図

https://www.qst.go.jp/site/taka/

高崎地区

〒370-1292 群馬県綿貫町1233 TEL: 027-346-9232 (代表)

東海地区

〒319-1106 茨城県那珂郡東海村大字白方2-4(JAEA原子力科学研究所内)

TEL: 070-3943-3400 (代表)

目黒ラボ

〒152-0033 東京都目黒区大岡山2-10 (東京工業大学大岡山北地区内)

TEL: 070-3943-3398 (代表)