課題番号	申請者	所属	所内対応者	課題名
22B132	手島昭樹	大阪大、医	古澤佳也	重粒子線照射によるがんの転移と血管新生抑
				制機序の解明
21B157	鵜澤玲子	放医研、次世代重	鵜澤玲子	粒子線治療での腫瘍と正常組織への影響の研
		粒子		究
22B160	山田 滋	放医研、病院	山田 滋	扁平上皮癌における重粒子線の転移抑制作用
				に関する研究
20B164	吉田由香里	群馬大、重粒子医	古澤佳也	群馬大学重粒子線治療装置の前臨床生物実験
		学研究センター		における比較対照用基礎研究-重粒子線治療
				の生物学的考察のための基礎研究-
21B168	篠藤 誠	放医研、病院	篠藤 誠	難治性消化器癌に対する重粒子線と上皮成長
				因子受容体阻害剤併用治療の基礎的検討
22B171	國領大介	放医研、分子イメ	國領大介	ナノ DDS 重粒子線治療実現のための基礎検
		ージング		討
22B172	古澤佳也	放医研、次世代重	古澤佳也	炭素線治療ビームの国際比較-CNAO-
		粒子		
23B173	佐々木良平	神戸大、医学部附	山田 滋	吸収性素材を用いた新規体内スペーサーの生
		属病院		体反応と線量分布最適化の研究
23B174	石川顕一	放医研、先端粒子	石川顕一	炭素線治療予後因子を制御するエピゲノム情
		線生物		報の解明
23B175	藤田英俊	放医研、先端粒子	藤田英俊	マウスモデルを用いた炭素イオン線治療と樹
		線生物		状細胞療法の併用療法の研究
23B178	藤田真由美	放医研、先端粒子	藤田真由美	放射線照射によるヒト癌由来細胞株の浸潤能
		線生物		変化とその抑制に有効な阻害剤の探索
23B180	遠藤悟史	放医研、病院	遠藤悟史	放射線照射によるヒト大腸癌由来細胞株の浸
				潤能変化の検討
23B181	CHEN, Jian	放医研、次世代重	古澤佳也	Radiation Biological Effect of Carbon Beam to
	(陳 剣)	粒子		Glioma Cells
23B182	HANNEMA	Colorado State	藤森 亮	Inhibition of Radioresistance by Novel
	N, William	Univ., USA		Anticancer Drugs
21B254	安西和紀	日本薬科大	上野恵美	重粒子線による乳腺腫瘍の発生とその防御
22B258	王 冰	放医研、リスク低	王 冰 (Bing	Does Radioadaptive Response Also Apply to
	(Bing	減化	WANG)	the Case of Heavy-ion Irradiations in Fetal
	WANG)			and Adult Mice?
23B265	森田 隆	大阪市立大、医	笠井清美	哺乳動物 ES 細胞に対する重粒子線の影響の
				解析

21B267	高井伸彦	長崎国際大、薬	鵜澤玲子	脳内毛細血管密度を指標にした中枢神経の RBE の創出
22B269	柿沼志津子	放医研、発達期被 ばく影響	柿沼志津子	重粒子線による発がんの被ばく時年齢依存性
22B270	丸山耕一	放医研、放射線防 護リスク低減化	丸山耕一	メダカ胸腺に対する重粒子線の影響
22B272	村山千恵子	東海大、医	古澤佳也	重粒子線照射による粘膜炎・唾液腺障害に対 する D メチオニンの防護効果
22B273	浅香智美	JAXA	鈴木雅雄	宇宙放射線の低フルエンス・長期被ばくに対する生物影響
22B275	WANG, Xiao	China Insti. of Atomic Energy	古澤佳也	Molecular biological mechanism of the interaction between nervous and immune systems in rats exposed to heavy ion radiation by differential proteomic analysis
23B276	WANG, Zhenhua	IMP-CAS, China	王 冰 (Bing WANG)	Mitochondrial dysfunction induced by heavy-ion radiation in mouse brain: Does hypoxia play a role?
23B277	田畑哲之	かずさ DNA 研究 所	村上健	重粒子線利用による植物品種識別法の開発
23B278	下川卓志	放医研、先端粒子 線生物	下川卓志	重粒子線照射による肺晩発障害機構の解明
23B279	鈴木信雄	金沢大、環日本海域環境研究センター	松本謙一郎	骨モデル(魚のウロコ)に対する重粒子線の 影響
23B280	高橋 計介	東北大、農	中島菜花子	海産二枚貝アカガイの造血組織に対する重粒 子線照射の効果
22B328	鈴木雅雄	放医研、国際重粒子	鈴木雅雄	重粒子線低フルエンス照射により引き起こさ れるバイスタンダー効果誘導因子の解明
21B335	澤尻昌彦	広島大、医歯薬学 総合	村上 健	重粒子線の骨代謝におよぼす影響
23B340	岡村正愛	キリンホールディ ングス(株)	古澤佳也	植物の突然変異誘発への重イオンビームの効果に関する研究
22B347	高辻俊宏	長崎大、環境科学	古澤佳也	照射されたタマネギ種子根端細胞における小 核発生頻度の経時変化と根の伸長
23B356	長谷川正俊	奈良県立医科大、 放射線腫瘍医学	村上 健	放射線抵抗性腫瘍細胞の生存と分化に対する 重粒子線の影響
23B361	藤森 亮	放医研、国際重粒 子	藤森 亮	難治性がんに対する放射線治療の生物学的側 面からの高度化

23B363	横堀伸一	東京薬科大, 生 命科学	吉田 聡	微生物の重粒子線照射下での生存条件の検討
23B364	ZHANG,	IMP-CAS, China	王 冰	Relationship between telomere length and
	Hong			radiosensitivity of human cancer cell lines
				induced by heavy ion irradiation
21B366	益谷美都子	国立がんセンター	岡安隆一	重粒子線がん治療におけるポリ ADP-リボシ
				ル化関連酵素の役割と阻害剤の効果
21B367	島田幹男	京大、放生研	平山亮一	重粒子線照射時の動物細胞における中心体過
				剰複製の検討
21B368	劉翠華	放医研、国際重粒	劉 翠華	重粒子線における悪性胸膜中皮腫細胞致死メ
		子		カニズムの解析
21B370	松藤成弘	放医研、次世代重	松藤成弘	重粒子線少分割照射における放射線感受性変
		粒子		動要因の研究
21B371	崔星	放医研、次世代重	崔星	重粒子線照射による癌組織の病理学的変化と
		粒子		癌幹細胞関連マーカーの発現変化
22B372	Li, Qiang	IMP-CAS, China	古澤佳也	The effect of carbon ion irradiation on tumor
				cells of mitosis
22B373	MEIJER,	Karolinska Insti.,	鈴木雅雄	Molecular and cellular effects in tumor and
	Annelie	Sweden		normal cells exposed to accelerated ions
22B375	中島菜花子	放医研、国際重粒	中島菜花子	重粒子線による DNA 損傷応答を制御するエ
		子		ピジェネティクスの研究
23B376	松本英樹	福井大学、高エネ	古澤佳也	重粒子線がん治療における低線量被ばくによ
		ルギー医学研究セ		る正常組織反応の機構解明
		ンター		
23B377	ZHOU,	IMP-CAS, China	古澤佳也	Mechanisms underlying cell cycle suspension
	Guangming			induced by ionizing radiation and its potential
				application in tumor radiotherapy
23B378	KATO,	Colorado State	岡安隆一	高 LET 放射線によるクロマチン構造依存
	Takamitsu	Univ., USA		DNA 損傷と修復
23B379	鈴木雅雄	放医研、国際重粒	鈴木雅雄	重粒子線分割照射における培養細胞の生物効
		子		果に関する研究
23B382	ZHOU,	IMP-CAS, China	古澤佳也	Evaluation of tumorigenetic risk of highly
	Guangming			energetic particles.
23B384	高橋 美智	宇都宮大学、農	古澤佳也	重イオンビーム照射による栄養ストレス耐性
	子			植物の作出と原因遺伝子の同定
22B424	伊藤 敦	東海大学、工	古澤佳也	DNA 酸化損傷 8-OHdG を指標とした高 LET
				線の生物作用の解明
23B452	岡安隆一	放医研、IOL	岡安隆一	重粒子線照射による細胞損傷応答とその応用

22B462	LE SECH,	ISMO, France	古澤佳也	STUDY of CELLS DEATH RATE LOADED with HIGH-Z ATOMS-gadolinium and gold-
	Oladdo			IRRADIATED with HELIUM IONS
23B463	MOELLER,	German	岡安隆一	Analysis of temporal gene expression of
	Ralf	Aerospace Cent.,		heavy ion irradiated Bacillus subtilis spores
		Germany		towards understanding of the interaction of
				error-prone and error-free DNA repair
				processes during spore germination (ANEXI)
21B467	高橋昭久	群馬大、先端科学	古澤佳也	重粒子線による生と死のシグナル制御機構の
				解明
21B468	平山亮一	放医研、次世代重	平山亮一	低酸素環境下での RBE ならびに OER の LET
		粒子		依存性
21B470	安西和紀	日本薬科大	上野恵美	重粒子線による正常組織の障害を防護する化
				合物の開発
21B472	清水喜久雄	大阪大、RI 総合セ	古澤佳也	重粒子線による DNA 損傷と突然変異誘発の
		ンター		特性
22B478	高井伸彦	長崎国際大、 薬	鵜澤玲子	炭素線照射により作製した放線菌および真菌
				変異株より得られる新規生理活性物質の探索
23B483	松本謙一郎	放医研、先端粒子	松本謙一郎	重粒子線によるフリーラジカル生成反応の解
		線生物		析と制御
21B487	井出 博	広島大、理	古澤佳也	高 LET 放射線が誘発する DNA-タンパク質ク
				ロスリンク損傷の解析
21B488	寺東宏明	佐賀大、総合分析	古澤佳也	重粒子線誘発クラスターDNA 損傷の複雑性解
		実験センター		析とその生物効果の解明
21B490	二宮康晴	放医研、リスク低	二宮康晴	ヘテロクロマチン形成に着目した重粒子線作
		減化		用機序に関する研究
21B491	松本孔貴	放医研、次世代重	松本孔貴	転移に対する重粒子線の効果解析
		粒子		
21B492	高居邦友	京大、放生研	平山亮一	グリオーマ幹細胞の重粒子線 DNA 損傷応答
23B494	矢島浩彦	放医研、国際重粒	矢島浩彦	重粒子線による DNA 二本鎖切断に対する初
		子		期応答の分子生物学的解析
23B495	NICKOLOF	Colorado State	藤森 亮	Genetic Control of the DNA-repair Response
	F, Jac A.	Univ., USA		to Photon and Hadron-particle Radiation
23B496	古澤佳也	放医研、次世代重	古澤佳也	重粒子線のトラック構造の広がりと生物効果
		粒子		