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Abstract. Spin polarizations of electrostatic positron beams generated using 68Ge and 22Na 
sources with tungsten moderators were 47 % and 30 %, respectively. A comparable spin 
polarization (27 %) was obtained with much reduced beam diameter (0.5 mm), when 
electromagnetic lenses, a 22Na source and a tungsten moderator were used. Replacing the 
tungsten moderator with a solid neon moderator in this system, the beam flux was significantly 
enhanced with maintaining the spin polarization. The Doppler broadening of annihilation 
radiation spectra of polycrystalline Fe measured using the above beams showed clear 
asymmetry upon field reversal.  

1. Introduction 
The pair-annihilation probability of positron and electron charges depend on their relative spin 
directions. Therefore, if both positrons and electrons are spin-polarized, positron-electron momentum 
distribution shows asymmetry upon spin reversal. We proposed that the Doppler broadening of 
annihilation radiation (DBAR) technique with spin-polarized positrons can be used for studying 
ferromagnetic band structures [1, 2]. Such spin-polarized positron annihilation spectroscopy (SP-PAS) 
will be a potential tool in current spintronics study. Considering the fact that novel spin-phenomena 
occur at surfaces and interfaces and in thin films, a spin-polarized positron beam needs to be 
developed [3-5]. To obtain a highly spin-polarized positron beam, it is important to use β+-emitters 
with higher energy endpoints (Emax). We have demonstrated the spin polarization of an electrostatic 
positron beam using a 68Ge isotope (Emax = 1.9 MeV) was 47 % [6, 7]. In this study, we first compare 
the spin polarizations of positron beams using 68Ge and 22Na sources in electrostatic transportation 
systems. We also examined the spin-polarization of the positron beam generated by 22Na source, 
magnetic lenses and tungsten/solid neon moderators.  
 
2. Positron beam apparatus 
Four types of positron beam apparatus were constructed: (i) 68Ge source + tungsten moderator + 
electrostatic transportation, (ii) 22Na source + tungsten moderator + electrostatic transportation, (iii) 
22Na source + tungsten moderator + electromagnetic transportation and (iv) 22Na source + solid neon 
moderator[8, 9] + electromagnetic transportation. These are schematically summarized in figure 1 and 
2. The source strengths and moderator details are also listed in table 1.  
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The longitudinal spin polarizations of the above positron beams were measured from the magnetic 
quenching of the positronium in fused silica, which is simpler method than measuring the positronium 
decay rate[7, 10, 11]. The strength and direction of the magnetic field were controlled by changing the 
permanent magnets. Furthermore, the Doppler broadening of the annihilation radiation spectra of 
polycrystalline Fe were also measured.  
 
3. Results and discussion 
The magnetic field dependences of S parameters from the fused silica and estimated spin polarizations 
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Figure 1.   Schematics of the apparatus using 68Ge and 22Na source with the tungsten moderator and 
electrostatic lenses : type (i) and (ii). 
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Figure 2. Schematics of the apparatus using magnetic lens transport: type (iii) and type (iv).  
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for each beam are shown in figure. 3. The spin polarization of the type (i) positron beam is estimated 
to be 47 ± 8 %, which is in good agreement with the theoretical calculation. Details of  this analysis is 
described in the previous paper [7]. This value is ~20 % higher than that of the type (ii) 22Na-based 
positron beam (30 ± 3 %). From this result, the 68Ge source is superior to the 22Na source. 

 In the case of the electromagnetic beam transport, spin polarization is expected to be lost due to 
the fringing magnetic field, which is across to the beam trajectory. However, spin polarizations of type 
(iii) and (iv) beams are 28 ± 4 % and 27 ± 4 %, respectively, that are comparable to the case of 
electrostatic beam (type (ii)). Probably, since the directions of the positron spin and magnetic fields of 
magnetic lenses are parallel, the fringing fields are relatively weak near the beam axis. In the 
electromagnetic beam systems, the beam diameter is better focused (0.5 mm in diameter) as compared 
to the electrostatic systems (2~5 mm). Furthermore, when solid neon moderator was used (type (iv)), 
the positron beam intensity is much higher than in the case of tungsten moderator. Thus, in the 
electromagnetic system, without losing longitudinal spin polarization, much better positron beam is 
obtained.  

 Figure 4 shows the differential DBAR spectra of a well-annealed Fe sample in a magnetic field. 
This differential spectra  [N↑(p)-N↓(p)]  was obtained by altering the field polarity. The subscript ↑ or ↓ 
indicates whether the positron polarization and the magnetic field direction was parallel or anti-
parallel. The finite differential intensity means that there is a field-reversal asymmetry, which arises 
from the enhanced annihilation between the spin-up positrons and spin-down 3d unpaired electrons 
[12,13]. The differential amplitude of (b) is almost 2.3 times higher than that of (a). This is because  
the differential amplitude of the differential DBAR spectra is proportional to the sample magnetization 
and the positron spin polarization[1] (0.91T/0.55T × 47%/30% ≅ 2.5). This result also shows that our 
positron beam was sufficiently spin-polarized.  
 
4. Summary 
From the comparison between two electrostatic positron beams using 68Ge and 22Na sources, it is 
concluded that sources with higher energy endpoints are preferred in generating highly spin-polarized 
positron beams. Electromagnetic transportation is suitable to generate well focused and longitudinally 
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Figure 3. The magnetic field dependences of S parameters from a fused silica obtained using 
the slow positron beams of the apparatus type (i)~(iv).   Theoretical curves of best fitting and 
estimated spin polarizations are also shown. 
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spin-polarized positron beam. Positron beam generated using solid neon moderator has a comparable 
spin polarization to that using tungsten moderator.   
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Figure 4. Differential DBAR spectrum of the well-annealed Fe sample in a magnetic field. (a)  
and (b) were obtained using type (i) and (iv) apparatus, respectively.   

Table 1. Positron beams and their spin polarization. 
 

Type Source Moderator Transpotation
Flux
(e+/s)

Spin polarization
(%)

(i) 68Ge (250 MBq) Tungsten mesh (33 sheets) Electrostatic ~2×103 47 ± 8 

(ii) 22Na (20 MBq) Tungsten mesh (8 sheets) Electrostatic ~2×103 30 ± 3 

(iii) 22Na (220 MBq) Tungsten mesh (16 sheets) Magnetic ~1×103 28 ± 4

(iv) 22Na (88 MBq) Solid neon Magnetic ~8×104 27 ± 4 
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