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Abstract. Reflection high-energy positron diffraction (RHEPD) is a powerful tool for studying 
surface structure. In particular, the topmost surface layer can be observed, facilitated by the 
characteristic of total reflection for positrons. A previous RHEPD study on a Si(111)-√21×√21-
Ag surface, using a 22Na-based beam, is revisited and the analysis detailed. 

1.   Introduction 
The structure of the surface of a crystal is, in general, different from that of the bulk. A typical 
example is a 7×7 reconstructed structure on a clean Si(111) surface [1]. Crystal surfaces can exhibit 
electronic and magnetic properties which may significantly change with slight displacements of 
atomic position in the first surface layer. Therefore, a precise knowledge of the atomic arrangement of 
this layer is needed to fully understand surface properties. 

Reflection high-energy positron diffraction (RHEPD) is a powerful method used to investigate the 
structure of the first surface layer [2,3]. When the glancing angle of a positron beam directed onto a 
surface is below a particular value, positrons are totally reflected from the material, as depicted in Fig. 
1, due to the positive crystal potential. This critical angle is given by θc = arcsin(eV/E)1/2, where eV and 
E denote the mean potential energy of the positron in the crystal and the energy of the incident 
positron beam [2]. For example, for a beam of energy E = 10 keV incident on Si for which eV = 12 eV, 
θc is 2.0°. Under the total reflection condition, the intensities of the diffraction spots are very sensitive 
to the structures and thermal vibration of the first surface layers. A RHEPD apparatus using a 22Na 
positron source was developed in 1998 [3,4] and used in surface structure investigations [5] until 
recently. In this paper, we describe details of the study of a √21×√21 superstructure made with this 
apparatus as an example of surface structure analysis using RHEPD. 

2.   Structure analysis by RHEPD 

2.1.   Si(111)-√21×√21 surface 
Adsorption of one monolayer (ML) of Ag atoms on a clean Si(111)-7×7 surface leads to the formation 
of a √3×√3-Ag structure. The basic framework of the Si(111)-√3×√3-Ag structure was deduced by  
pioneering work using surface x-ray diffraction [6]. Subsequently, using low-temperature scanning 
tunneling microscopy and first-principles calculations, the ground-state structure was confirmed to be 
an inequivalent triangle (IET) structure [7]. In 1994, it was discovered that a √21×√21 superstructure 
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reduction in the crystal potential at the surface because of less overlap between the adatoms and the 
substrate Ag atoms. At higher had, a dip structure appears in the broad peak, as shown by the 
arrowheads. The position of the dip gradually shifts towards lower glancing angles with increasing had. 
The tendency of the shift can be explained by the interference of the positron waves reflected from the 
adatom and the substrate Ag layers [18]. The value of had for the Si(111)-√21×√21-Ag surface is small 
so there is no significant dip structure observed. For comparison, the rocking curve measured from the 
Cs atoms adsorbed √21×√21 superstructure (Si(111)-√21×√21-(Ag,Cs)) [19] is also plotted in Fig. 4. 
In this case, a distinct dip structure is seen because of the large atomic radius of the Cs atoms. 
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Figure 5. RHEPD rocking curves 
along the [ 211 ] direction (many-beam 
condition) for the indicated spots from 
the Si(111)-√21×√21-Ag surface. 
Circles show the experimental curves. 
Solid lines indicate the rocking curves 
calculated with optimized structure 
parameters. 

Figure 6. Diffraction intensity 
profiles along the 1/7th Laue zone 
for the Si(111)-√21×√21 super-
structure. k// is the position in the 1/7 
Laue zone. Red and open circles 
indicate the intensity profiles 
measured from Si(111)-√21×√21-Ag 
and -(Ag,Au) surfaces, respectively. 
Solid lines indicate the profiles 
calculated for the remaining five 
possible structures. 

 

2.3.   Determination of in-plane components by rocking curve and intensity profiles 
To determine the in-plane components of the atomic positions of the Si(111)-√21×√21-Ag surface, the 
rocking curves along the [ 211 ] direction (many-beam condition) were measured. Results obtained are 
shown by the circles in Fig. 5. The rocking curves for the 00, 1/3 1/3, and 2/3 2/3 spots (spots on the 
0th Laue zone) were used in the analysis because the intensities of these spots were greater than those 
of the higher Laue zones. The solid lines show the best fitted rocking curves. As a result, it was found 
that all of the three adatoms were located on sites at the center of a large Ag triangle. However, the 
rocking curves for these spots could not discern which three sites out of the seven were occupied. 
Nevertheless, the possible structure of Si(111)-√21×√21-Ag was narrowed down by this process to 
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five (See Fig. 6 of reference [14]), i.e., the possible symmetrically independent distribution of three 
atoms among the seven possible sites. 

The fractional-order spots resulting from the formation of the √21×√21 superstructure carries 
information about the in-plane distribution of adatoms. However, the intensities of these spots 
measured with the 22Na-based slow-positron beam in this study were too weak to give reliable rocking 
curves. Therefore, the intensity profiles of the spots in the 1/7th Laue zone were used to deduce the 
correct arrangement out of the five possibilities. The red filled circles in Fig. 6 show the intensity 
profile extracted from the observed pattern. The solid lines are the profiles calculated for the five 
possible structures. It is clear that only one graph, #3, matches the intensity profile observed. This is a 
structure where all the three adatoms are sitting on sites at the center of a large triangle of Ag atoms 
(orange sites in Fig. 2). More precisely, the occupied sites form a triangle surrounding the Si trimer in 
the √21×√21 unit cell (#3 in Fig. 6 of reference [14]). It was later shown that the intensity profile from 
the Au-adsorbed Si(111)-√21×√21 structure (open circles in Fig. 6) resembles that of the Si(111)-
√21×√21-Ag surface [20]. This demonstrates that the Si(111)-√21×√21-(Ag,Au) surface has the same 
atomic consignations as the Si(111)-√21×√21-Ag surface. 

3.   RHEPD with an intense beam and future prospects 
Although it was possible to determine the surface structure using the weaker 22Na-based positron beam 
at JAEA, Takasaki, owing to the high reflectivity of positrons at surfaces, the RHEPD apparatus was 
recently moved to the Slow Positron Facility at the Institute of Materials Structure Science, KEK, and 
connected to a linac-produced, brightness-enhanced intense positron beam [21]. Weak fractional-order 
spots in the RHEPD pattern from a Si(111)-7×7 surface were successfully observed with this improved 
apparatus. The intense positron beam makes the structural analysis much more efficient and accurate. 
A study of a more complex surface structure will be made and even a Pattern function analysis without 
assuming a possible atomic arrangement will be attempted. 
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