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Interaction of nitrogen with vacancy defects in N+-implanted ZnO studied
using a slow positron beam
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ZnO crystals were implanted with N+, O+, and Al+, and co-implanted with O+/N+ and Al+/N+ ions.
Positron annihilation measurements indicate introduction of vacancy clusters upon implantation. In
the N+-implanted and Al+/N+ co-implanted samples, these vacancy clusters are only partially
annealed at 800 °C, as compared with their entire recovery in the O+- and Al+-implanted samples
at 800–900 °C, suggesting a strong interaction between nitrogen and vacancy clusters. However, in
the O+/N+ co-implanted sample, most vacancy clusters disappear at 800 °C. Probably oxygen
scavenges nitrogen to enhance the annealing of the vacancy clusters. Upon further annealing at
1000–1100 °C, nitrogen also forms stable complexes with thermally generated vacancies. These
nitrogen-related vacancy complexes need high-temperature annealing at 1200–1250 °C to be fully
removed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2037847�
ZnO as a wide-band-gap semiconductor has potential ap-
plication in short-wavelength optoelectronic devices.1 How-
ever, some fundamental problems still remain unsolved in
this material, which have hindered its device application.
One critical problem is the p-type doping control. Although a
few attempts have produced p-type ZnO by doping with
nitrogen2–4 or codoping with N+Ga �see Ref. 5� and N+Al,6

high-quality and reproducible p-type doping is still a chal-
lenge. Ion implantation is an important method for the incor-
poration of dopants in the selected area of semiconductors at
controllable amounts. Therefore, N+ implantation is likely to
be a promising method for obtaining p-type ZnO layers.
However, implantation introduces large amounts of defects,
which may compensate or deactivate the nitrogen acceptors
by forming defect complexes.7 Hence, it is of great impor-
tance to investigate the recovery process of implantation-
induced defects, and the probable interactions between nitro-
gen and various defects.

In this work, we incorporated nitrogen into ZnO by N+

implantation as well as O+/N+ and Al+/N+ co-implantation.
Positron annihilation spectroscopy is well suited for studying
vacancy defects in semiconductors.8 Some recent works have
reported identification of vacancy defects in both as-grown
and irradiated ZnO.9–12 Implantation-induced defects and
their recovery were, therefore, studied using a slow positron
beam.

Samples were hydrothermal-grown n-type ZnO single
crystals �SPC Goodwill�. Ion implantation was conducted at
room temperature using a 400 keV implanter. A box-shaped
implantation layer with thickness of 500–600 nm was
formed by performing multiple implantation using seven dif-
ferent ion energies ranging from 50 to 380 keV. The total
implantation dose for each ion was approximately 4
�1015 cm−2. For the O+/N+ and Al+/N+ co-implantation,
the dose ratios of O+:N+ and Al+:N+ were 1:1 and 0.5:1,
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respectively. The implanted samples were annealed in nitro-
gen ambient for 30 min at 200–1250 °C. The Doppler
broadening of annihilation radiation was measured using a
slow positron beam �E=0.2–30 keV�. The S parameter was
used to characterize the measured spectra, which is the ratio
of the central region �511±0.77 keV� to the total area of the
annihilation peak �511±8.5 keV�. A pulsed slow positron
beam was used to measure the positron lifetime. Hall mea-
surements were performed using the van der Pauw method to
characterize the electrical properties of the implanted
samples.

Figure 1 shows the S parameter as a function of the
incident positron energy �S-E curve� for the samples before
and after ion implantation. In the unimplanted sample, posi-
tron lifetime measurement shows only a bulk lifetime of
about 182 ps,11 indicating that the concentration of vacancy
defects is under the detection limit. After ion implantation,
the S parameters show a large increase as compared with the

FIG. 1. S-E curves measured for the ZnO samples before and after ion

implantation.
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unimplanted sample, indicating the introduction of vacancy
defects. There is a plateau region in the energy range of
3–11 keV, which corresponds to the box-shaped implanta-
tion layer. The S parameters increase to about 1.06 for most
of the implanted samples, except that in the Al+-implanted
one, it is a little higher, that is, 1.08. This suggests that the
defects are mainly vacancy clusters.8

Figure 2 shows the average S parameters at E
=5–9 keV as a function of annealing temperature for all the
implanted samples. For the O+-implanted sample, there are
two annealing processes. The S parameter first increases up
to 1.08 at 400 °C, then it decreases, and reaches the bulk
value at 800 °C. This annealing behavior can be explained
by the agglomeration of the vacancies into a larger size and
subsequent recovery of these vacancies. The Al+-implanted
sample shows a similar annealing behavior. However, the S
parameter increases to a high value of 1.25 after annealing at
600 °C, indicating formation of microvoids as reported
previously.13 Further annealing up to 900 °C causes full re-
covery of all the detectable vacancies.

In the case of the N+-implanted sample, however, the
annealing behavior of vacancy defects is significantly differ-
ent from that just described. That is, there are four annealing
processes. The first two processes �0–500 °C and
500–800 °C� are similar to that of the O+-implanted sample.
It is interesting to note that, even after annealing at 800 °C,
the S parameter remains rather high value. Furthermore, after
annealing in the third process �800–1100 °C�, the S param-
eter increases again. The full recovery of the S parameter
takes place at 1100–1250 °C. Similar annealing behavior is
also observed for the Al+ /N+ co-implanted ZnO, as shown in
Fig. 2.

The high S parameters at annealing temperature of
800 °C in the N+-implanted and Al+/N+ co-implanted
samples imply that large amounts of vacancy clusters still

FIG. 2. Average S parameter in the implanted region �E=5–9 keV� as a
function of annealing temperature for the as-grown and ion-implanted ZnO.
remain. Clearly this is due to nitrogen impurities. Without
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nitrogen, the vacancies can be easily removed, such as the
cases in the O+- or Al+-implanted samples. It is therefore
suggested that the vacancy clusters are probably stabilized
by nitrogen impurities through the formation of complexes,
which results in the imperfect annealing at 800 °C, as shown
earlier.

We believe that the abnormal increase of the S parameter
after annealing at above 800 °C is also related to nitrogen, as
we do not observe such peculiar behavior in the as-grown or
Al+-implanted ZnO up to 1200 °C �Fig. 2�a��. In the
O+-implanted sample, the S parameter also remains un-
changed up to 900 °C, in contrast to the increase in the
N+-implanted one. No such abnormal annealing behavior
was observed in other ion-implanted ZnO samples either.14

Most probably nitrogen-related defect complexes are created
after annealing at above 800 °C. At such high temperatures,
thermal vacancies are expected to be generated. These ther-
mal vacancies may trap nitrogen to form stable vacancy–
nitrogen complexes, and survive after cooling down. Further
annealing at 1200–1250 °C probably leads to the dissocia-
tion of the vacancy–nitrogen complexes, or the evaporation
of nitrogen, and hence, the recovery of vacancies. Such va-
cancy complexes may also be generated in the as-grown
nitrogen-doped ZnO. Uedono et al.10 observed a significant
increase of the S parameter after annealing the nitrogen
doped ZnO film at 850 °C, while in the undoped ZnO, an-
nealing caused negligible change of the S parameter. Garces
et al.15 found that after heating the nitrogen-doped ZnO
above 800 °C, nitrogen acceptors are transformed into an
electrically inactive state. They ascribed this to either the
formation of defect complexes or the outdiffusion of nitro-
gen. Our positron annihilation measurements, thus, demon-
strate that nitrogen is possibly deactivated through defect
complex formation. The thermally generated vacancy-
impurity complexes has also been observed in other semi-
conductors; for example, the As- and P-doped Si.16

For the O+/N+ co-implanted sample as well, there are
four annealing processes. However, after annealing at
800 °C, the S parameter reaches almost the bulk value, sug-
gesting that most vacancy clusters are removed. This is dif-
ferent from the situation of N+ implantation but similar to
that of the O+ implantation. It suggests that the nitrogen-
related vacancy complexes can be effectively removed, or
the interaction between nitrogen and vacancy clusters is
weakened by co-implantation with oxygen. However, after
further annealing above 800 °C, these nitrogen impurities
again combine with thermal vacancies. Therefore, the S pa-
rameter increases.

These explanations are further confirmed by our positron
lifetime measurements. As shown in Fig. 3, for the
N+-implanted sample, after annealing at 1100 °C, two life-
time components with �1=233 ps and �2=369 ps are ob-
served. It is evident that �2 corresponds to the vacancy clus-
ters that are stabilized by nitrogen, while �1 coincides with
the positron lifetime for zinc vacancy �VZn�,

12 and therefore
can be attributed to the positron annihilation at the thermally
generated VZn–N pairs. As for the O+/N+ co-implanted
sample, since the vacancy clusters have been annealed out at
800 °C, only the thermally generated VZn–N pairs exist af-
ter further annealing at 1000 °C, therefore, we observe a
single lifetime of approximately 240 ps.

One more indication of the nitrogen–vacancy interaction
+ +
is the S-W correlation. For the O /N co-implanted sample,
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deviation of the S-W plot from that of the O+-implanted one
can be seen after annealing above 800 °C, indicating VZn–N
complex formation. For the N+-implanted sample, the S-W
plot is even more complicated. This is due to the interaction
of nitrogen with both vacancy clusters and zinc vacancies.

We also examined another O+/N+ co-implanted sample.
The O+-implanted sample after annealing at 900 °C was sub-
sequently implanted with N+. The annealing behavior for this
sample was nearly the same as that of the N+-implanted one
�Fig. 2�. This means that only the mobile oxygen can effec-
tively remove the vacancy clusters in the N+-implanted ZnO.
After annealing of the O+-implanted sample, oxygen atoms
occupy the sublattice sites and become immobile. Thus, the
annealing behavior of this co-implanted sample is identical
to that of the one implanted with nitrogen only.

Hall measurements listed in Table I reveal that after N+

implantation and final annealing, the implanted layer exhibits
n-type conductivity, with a sheet resistance in very close
proximity to that of the unimplanted sample annealed at
1200 °C. This implies that nitrogen has little contribution to
the conductivity. The Al+/N+ co-implanted layer also shows
n-type conductivity. Contrarily, after O+/N+ co-implantation
and annealing at 800 °C, the implanted layer exhibits a high
sheet resistance, 107 � /�, which is much higher than that of

FIG. 3. Positron lifetime in the N+-implanted and O+/N+ co-implanted ZnO
after annealing at 1100 and 1000 °C, respectively. The incident positron
energy is 7 keV.
the unimplanted sample annealed at 900 °C. The
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O+-implanted layer also shows rather high resistance after
annealing. It is thus inferred that the semi-insulating layer is
mostly due to the incorporation of oxygen, which suppresses
or compensates donor-type defects.

In summary, nitrogen dopants implanted into ZnO delay
the recovery process of the vacancy clusters by forming va-
cancy complexes. However, by co-implantation of nitrogen
with oxygen, vacancy clusters can be effectively annealed at
800 °C. At high temperatures, nitrogen also combines with
thermally generated vacancies to form stable complexes. A
high temperature of 1200–1250 °C is needed to remove all
these nitrogen-related defect complexes.
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TABLE I. Sheet resistance RS, carrier mobility �, and conduction type for
the as-grown and implanted ZnO samples obtained from Hall measure-
ments.

Sample RS�� /�� ��cm2 V−1 s−1� Type

As-grown 3.3�105 66 n
As-grown+900 °C 5�103 70 n

As-grown+1200 °C 17.7 51 n
N+ impl+1250 °C 11.9 84 n
O+ impl+800 °C 5�106

¯ SIa

Al+ impl+900 °C 8.6 167 n
O+/N+ impl+800 °C 107

¯ SIa

Al+ /N+ impl+1200 °C 9.4 49 n

aSI: semi-insulating.
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