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The comprehensive modeling of laser material machining 

[1-3] is complex, with multi-scale time and space, multi-phase, 
and possibly chemical reactions. For laser processing of metals, 
a two-temperature model (TTM) has been proposed as the 
simplest continuum model [4]. In the TTM, empirical parameters 
are employed for all material properties, and the penetration 
depth models the dynamics of the electromagnetic field. The most 
critical assumption of the TTM is the quasi-equilibrium of the 
electron temperature and the electron-lattice interaction term. 

Recently, the first-principles approach employing time-
dependent density functional theory (TDDFT) [5] has been 
applied to laser-matter interactions [6,7]. Although TDDFT 
offers a compromise between accuracy and computational 
feasibility, its computational cost remains high. Electron-electron 
collisions (which are not included in TDDFT) play an important 
role in the laser-metal interactions. 

The Vlasov equation has been employed in nuclear physics 
and electron dynamics in metal clusters to describe the collision 
process of fermi particles [8-10]. Because the Vlasov equation 
treats the distribution function of space, momentum, and time, it 
requires tremendous computational resources. In general, the 
computational cost is reduced by assuming that the distribution 
function is the summary quasi-particles.  

The time-dependent Kohn–Sham equation [5] is the 
fundamental equation of the TDDFT. 
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Here: 

𝐻𝐻𝐾𝐾𝐾𝐾[ne(r⃗, t)] = −
ℏ2

2m∇2 + Veff[ne(r⃗, t)] 2 

where 𝐻𝐻𝐾𝐾𝐾𝐾  was the Kohn–Sham Hamiltonian, m the electron 
mass, Veff  the effective potential, and ne(r⃗, t) the time-
dependent electron density. 
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Further, the von Neumann equation governed the time-evolution 
of the density matrix 𝜌𝜌� 

𝜕𝜕𝜌𝜌�(𝑟𝑟, 𝑟𝑟′, 𝑡𝑡)
𝜕𝜕𝜕𝜕 = −

𝑖𝑖
ℏ �𝐻𝐻

�𝐾𝐾𝐾𝐾,𝜌𝜌�(𝑟𝑟, 𝑟𝑟′, 𝑡𝑡)�. 4 

By performing the Wigner transformation and taking the limit 
ℏ → 0, the density operator was mapped onto a real function 
𝑓𝑓(𝑟𝑟, 𝑝⃑𝑝, 𝑡𝑡), which obeyed the Vlasov equation: 

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑓𝑓

(𝑟𝑟, 𝑝⃑𝑝, 𝑡𝑡) = −
𝑝⃑𝑝
𝑚𝑚
∙ ∇𝑟𝑟𝑓𝑓(𝑟𝑟, 𝑝⃑𝑝, 𝑡𝑡) + ∇𝑟𝑟𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ∇𝑝⃑𝑝𝑓𝑓(𝑟𝑟, 𝑝⃑𝑝, 𝑡𝑡), 5 

Here, 𝑓𝑓(𝑟𝑟, 𝑝⃑𝑝, 𝑡𝑡)  was interpreted as the electron distribution 
function in phase space. 

The effective potential was a function of the electron 

density ne(r⃗, t) and decomposed into 
Veff[ne(r⃗, t)] = 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶[ne(r⃗, t)] + 𝑉𝑉𝑥𝑥𝑥𝑥[ne(r⃗, t)] + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟, 𝑡𝑡), 6 

with the exchange-correlation potential 𝑉𝑉𝑥𝑥𝑥𝑥  [11], external field 
potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒, and  

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶[ne(r⃗, t)] = �𝑉𝑉𝑝𝑝𝑝𝑝�𝑟𝑟 − 𝑟𝑟′𝑗𝑗�
𝑗𝑗

+ 𝑉𝑉𝐻𝐻[ne(r⃗, t)], 7 

where 𝑉𝑉𝑝𝑝𝑝𝑝, 𝑉𝑉𝐻𝐻, and 𝑗𝑗 denoted the ionic pseudopotential, Hartree 
potential, and label of ions, respectively. 

We employed a modified Heine–Abarenkov-type local 
pseudopotential for 𝑉𝑉𝑝𝑝𝑝𝑝  with parameters to reproduce the all-
electron density functional theory calculations [12]. 𝑉𝑉𝐻𝐻  was 
evaluated by solving the Poisson equation. 𝑉𝑉𝑥𝑥𝑥𝑥  was the 
exchange-correlation potential in the local density approximation. 
The laser-electron interaction was described in the length gauge. 

We approximated the six-dimensional time-dependent 
function with the summation of the pseudo particle (PP): 

𝑓𝑓(𝑟𝑟, 𝑝⃑𝑝, 𝑡𝑡) =
1
𝑁𝑁𝑠𝑠

�𝑔𝑔𝑟𝑟�𝑟𝑟 − 𝑟𝑟𝑘𝑘(𝑡𝑡)�𝑔𝑔𝑝𝑝�𝑝⃑𝑝 − 𝑝⃑𝑝𝑘𝑘(𝑡𝑡)�

𝑁𝑁𝑝𝑝𝑝𝑝

𝑘𝑘=1
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Here, 𝑘𝑘 was the label of the PP, and 𝑁𝑁𝑝𝑝𝑝𝑝 the total number of PPs 
defined as 𝑁𝑁𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑠𝑠𝑁𝑁𝑒𝑒, where 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑒𝑒 were the number of 
PPs per electron and the total number of electrons, respectively. 

 

 
 
Fig. 1 (a) Conductivity and (b) refractive indexes of bulk-Al 
with the Vlasov equation and TDDFT [15]. The filled circles 
indicate the experimental results [13]. 



 

We defined the smoothing functions for position 𝑔𝑔𝑟𝑟(𝑟𝑟)  and 
momentum 𝑔𝑔𝑝𝑝(𝑝⃑𝑝) in the Gaussian form. The Newton equation 
described the motion of the PP under an effective potential with 
a periodic boundary condition as follows: 

𝑑𝑑𝑟𝑟𝑘𝑘
𝑑𝑑𝑑𝑑 =

𝑝⃑𝑝𝑘𝑘
𝑚𝑚 9 

𝑑𝑑𝑝⃑𝑝𝑘𝑘
𝑑𝑑𝑑𝑑 = −�𝑑𝑑𝑟𝑟 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)∇𝑟𝑟𝑔𝑔𝑟𝑟(𝑟𝑟𝑘𝑘(𝑡𝑡) − 𝑟𝑟) 10 

The dynamics of PPs were performed by the Verlet method [14]. 
We discussed the complex optical conductivity, refractive 

index, extinction coefficient, and reflectivity as functions of 
photon energy [15]. Despite the simplicity of the Vlasov 
approach, the results agreed with the TDDFT results and 
experimental values (Fig. 1). The peak and dip at approximately 
1.5 eV in the TDDFT results were due to inter-band transition, 
which was not reproduced by the present Vlasov approach 
because the latter considered only the free-electron dispersion. 

Fig. 2 shows the absorbed energy as a function of laser 
intensity with laser wavelengths of (a) 800 nm, (b) 1,030 nm, and 
(c) 1,200 nm [15]. The triangles indicated the results obtained 
using TDDFT, and the circles indicated the results obtained using 

the Vlasov equation. The scaled one-photon absorption was 
indicated by the solid line for the guiding eye. At all wavelengths, 
the Vlasov equation agreed with TDDFT below the intensity of 
1 × 1013  W/cm2. Above 1 × 1013  W/cm2, Vlasov 
underestimated compared with TDDFT. 

Here, we proposed a semi-classical approach for the laser-
metal interactions employing the Vlasov equation. The master 
equation and potential were based on the Kohn–Sham 
Hamiltonian with a local density approximation. We employed 
PP to reproduce the continuous density distribution function in 
the real and momentum spaces. Our results agreed with TDDFT 
for the weak and intense laser field regimes. In particular, the 
Vlasov equation reproduced the optical properties of aluminum 
without artificial parameters. The advantages of the Vlasov 
equation was its low computational cost (approximately 1/50 of 
TDDFT) and high scalability. Assuming Pauli blocking, we 
included the electron-electron collision process in the materials. 
Further, the collision between PP and the pseudo-potential 
ensured semiclassical molecular dynamics. 
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Fig. 2 Laser fluence dependence of the energy absorption 
with a wavelength of (a) 800 nm, (b) 1,030 nm, and (c) 
1,200 nm.[15]  
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