
2. X-ray radiograph

1. Fast Screening

3. Precise Inspection

Suspicious 
cargo 

Fig. 1 Schematic drawing of the designed overall inspection system. The 
number of the lane of the fast screening system will be chosen by the sea 
port demand. 

Abstract—A Neutron/Gamma-ray combined inspection system 
for hidden special nuclear materials (SNMs) in cargo containers 
has been developed under a program of Japan Science and 
Technology Agency in Japan. This inspection system consists of 
an active neutron-detection system for fast screening and a laser 
Compton backscattering gamma-ray source in coupling with 
nuclear resonance fluorescence (NRF) method for precise 
inspection. The inertial electrostatic confinement fusion device 
has been adopted as a neutron source and two neutron-detection 
methods, delayed neutron noise analysis method and high-energy 
neutron-detection method, have been developed to realize the fast 
screening system. The prototype system has been constructed and 
tested in the Reactor Research Institute, Kyoto University. For the 
generation of the laser Compton backscattering gamma-ray beam, 
a race track microtron accelerator has been used to reduce the 
size of the system. For the NRF measurement, an array of 
LaBr3(Ce) scintillation detectors has been adopted to realize a 
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low-cost detection system. The prototype of the gamma-ray 
system has been demonstrated in the Kansai Photon Science 
Institute, National Institutes for Quantum and Radiological 
Science and Technology. By using numerical simulations based on 
the data taken from these prototype systems and the 
inspection-flow, the system designed by this program can detect 1 
kg of highly enriched 235U (HEU) hidden in an empty 20-ft 
container within several minutes. 

Index Terms—nondestructive inspection system, cargo 
container, sea port, inertial electrostatic confinement fusion 
device, nuclear resonance fluorescence, laser Compton 
backscattering 

I. INTRODUCTION 
N active nondestructive detection system for inspection 

of special nuclear materials (SNMs), especially focused 
on highly enriched 235U (HEU), in containers at the sea port has 
been developed under a support of the “R&D Program for 
Implementation of Anti-Crime and Anti-Terrorism 
Technologies for a Safe and Secure Society” promoted by the 
Japan Science and Technology Agency (JST). In this program, 
we have proposed the Neutron/Gamma-ray combined 
interrogation system [1]. Figure 1 shows an overview of the 
proposed system. The system consists of a fast screening 
system by using a neutron from an inertial electrostatic 
confinement (IEC) device [2,3] and an isotope identification 
system by using nuclear resonance fluorescence (NRF) induced 
by laser Compton backscattered (LCS) gamma-rays [4]. Since 
the fast screening system could not specify the position of 
suspicious material with good resolution (<10 cm), we 
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Fig. 2. Inspection-flow of the overall inspection system. 

 

 
Fig. 3. Designed layout for the neutron-based fast screening system, employing 
three IEC-based DD neutron generators, thermal neutron detectors for the 
DNNA method, and fast neutron detectors for the TENA method. 
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Fig. 4.  Conceptual drawing of IEC device and a deuterium discharge photo [15].  

introduced an X-ray transmission radiograph system [5] to 
specify the suspicious position in a cargo container. The 
position of the LCS gamma-ray irradiation is guided to the 
suspicious position given by the X-ray radiograph image. In 
addition, the X-ray radiograph image can be used for screening 
of suspicious materials by its figure and density, because the 
false-positive events at the neutron screening system are mostly 
caused by low-density materials inside the cargos. 

Figure 2 explains the inspection flow of the overall system. 
The false-positive rate is assumed as 10% in the neutron fast 
screening system. We also assumed that the X-ray radiograph 
can work for screening with a 10% false-positive rate. An 
engineering study to design buildings including shielding and a 
retracting system of container trucks has been conducted to 
estimate the required inspection time according to the 
inspection-flow. 

In this paper, we describe the final design of the SNM 
inspection system consisting of the fast screening system by 
using neutrons from a D-D fusion IEC device [6] and the 
isotope identification system by using LCS gamma-rays from a 
220-MeV microtron accelerator, which is more compact than  
conventional linacs. Section II briefly describes a development 
of the D-D fusion IEC device and two neutron-detection 
techniques, which are newly developed [7, 8]. The system 
performance was estimated by MCNP simulation [9], which 
was based on the experimental data taken by the prototype 
system. Section III describes the  proof-of-principle experiment 
of a prototype LCS gamma-ray system driven by the existing 
150 MeV microtron [10] and an array of LaBr3(Ce) 
scintillation detectors. The performance evaluation of the 
designed LCS gamma-ray inspection system driven by 220 
MeV microtron accelerator [11] was examined by GEANT4 
simulation [12], which used experimental data taken by the 
prototype and the NRF experiment on 235U in the HIγS facility 
[13]. 

 

II.  NEUTRON-BASED FAST SCREENING SYSTEM 
The neutron-based fast screening system (see Fig. 3) is 

required to handle hundreds of sea containers per day. If the 
existing neutron-detection techniques, such as Delayed 
Neutron Analysis [14] and Differential Die-Away Analysis [15, 
16], are used for inspection systems, these systems require 
highly intense pulsed neutrons, e.g. 1011 neutrons/sec on 
average at the source to implement in the sea container 
inspection system. To obtain enough number of neutrons, D-T 
neutron generators have been adopted in the existing products 
[17]. On the other hand, D-D neutron generators have merits in 
safety and their easy maintenance at sea ports, which were basic 
requirements in the JST program. Therefore, a D-D neutron 
generator based on IEC of fusion plasmas with an averaged 
neutron flux of 108 neutrons/sec has been developed [6]. 
Besides, new neutron-measurement techniques [7, 8] suitable 
for D-D neutrons have been developed. 

A. IEC D-D Neutron Generator 
The IEC fusion device basically consists of a 

spherical-gridded cathode concentrically placed at the center of 
a spherical anode filled with a fuel gas (see Fig. 4). A glow 
discharge takes place between these electrodes. The produced 
ions are then accelerated toward the center through the 
transparent gridded cathode undergoing fusion reactions. An 
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Fig. 7.  Explanation of prompt region and delayed region after injection of 
pulsed neutron. 
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Fig. 8.  A typical experimental result of DNNA method. Y-Value is 
Feynman Y. The vertical axis corresponds to 10-minutes measurement. 

 

important advantage of IEC over accelerator-driven neutron 
generators employing solid targets comes from the use of “gas 
target” or “plasma target.” This enables high-power operation 
without water-cooling of the central gridded cathode. For 
instance, an IEC neutron generator [18] of 20 cm in diameter 
demonstrated more than 6 kW discharge power to produce 107 
neutrons/sec for D-D fusion. Both the input power and the 
neutron output are high in contrast with a typical commercial 
sealed neutron tube [19] with similar size, which generates ~106 
neutrons/sec for D-D (~108 n/sec for D-T) with ~9 W. The IEC 
neutron generator also shows advantages of robustness and 
easy operation owing to its extremely simple configuration, all 
of which are essential for the practical uses at sea ports. 

Figure 5 shows the cross-sectional drawing of the IEC 
neutron generator developed in the present study. Diameters of 
the spherical anode made of stainless steel mesh and the 
molybdenum-gridded cathode are 560 and 200 mm, 

respectively, both of which are to be placed in a cylindrical 
vacuum chamber of a 600 mm inner diameter. A multistage 
high-voltage feedthrough scheme has been developed and 
adopted, aiming at the capability of a high negative bias to the 
central cathode [20]. As a result, a D-D neutron production rate 
of 1.2×108 neutrons/sec has been achieved in a dc mode with a 
negative bias of 190 kV and a discharge current of 36 mA [6]. 

Figure 6 shows the high-voltage pulsing circuit and typical 
pulsed waveforms of applied voltage and discharge current. 
The experiments presented in the next two subsections were 
carried out in pulsed mode for both DNNA and TENA methods 
though the latter does not require pulsing of the incident 
neutron flux. Also, the averaged neutron yield was limited to 
<106 neutrons/sec, because of the radiation safety regulation in 
the experimental room for those experiments with 235U. 

B. Delayed Neutron Noise Analysis (DNNA) 
The DNNA method is based on the variance-to-mean value 

method, which is one of the well-known noise analysis 
methods to measure the subcriticality of reactors. In this 
method, the variation of a neutron count rate distribution from 
the Poisson distribution from a target system is measured, and 
when the neutron count rate distribution does not show the 
Poisson distribution, it means the existence of fissile materials 
in the target system. To apply for SNM detection by using a 
pulse neutron source, the DNNA method was developed, where 
neutron count rate distributions only appeared in the delayed 
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Fig. 5.  The IEC neutron generator is employing 3-stage feedthrough system. 
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neutron region after the injection of pulsed neutron were 
analyzed to avoid difficulties caused by the dead time effect of 
neutron detectors as shown in Fig. 7 [7]. The validity of the 
present DNNA method was successfully demonstrated by 
experiments using an HEU and a pulse neutron generator, 
where 3He detectors were used, the frequency of pulse neutrons 
was 10 Hz, and the delayed neutron region was selected as 

50-100 ms after the injection of neutrons. Figure 8 shows a 
typical measurement result. The Y-Value of the vertical axis is 
Feynman Y [7]. MCNP simulations on the final design (Fig. 3) 
have been performed and the results show that the detection of 
1 kg HEU hidden in a cargo container can be achieved by using 
a combination of at least three D-D pulsed neutron sources and 
approximately 50 neutron detectors of 1-inch diameter 
surrounding a cargo container within a few minutes [7]. 

C. Threshold Energy Neutron Analysis (TENA) 
 In the TENA method, neutrons from a D-D source whose 

energy is 2.45 MeV are injected into a suspicious target and 
neutron energies are measured by the surrounding neutron 
detectors. When SNMs exist inside an object, fission reactions 
are initiated by the external neutrons and they emit fission 
neutrons whose energies are up to approximately 10 MeV as 
shown in Fig. 9 [8]; therefore, the detection of neutron whose 
energies are higher than 2.45 MeV means the existence of 
SNMs in the target. The TENA method can be available only in 
the case of using D-D neutron sources, and not D-T neutron 
sources. In the test measurement with the prototype system, the 
neutron energies were measured by a liquid scintillation 
detector, which can distinguish neutron and gamma-ray by 
pulse shape analysis. Because of the serious SNM usage 
regulation, a fission chamber (FC) was used as the target. The 
preliminary results with and without FC are shown in Fig. 10. 
The red lines in the figures correspond to 2.5 MeV neutron 
energy. We clearly observed high-energy neutrons induced by 
the D-D neutron generator. We also performed MCNP 
simulation to estimate the inspection time of the designed 
system (Fig. 3), which consists of 36 liquid scintillation 
detectors with 3-inch diameter arranged around 20-ft cargo 
with 2.5-mm thickness iron wall. It should be noted that the 
other shielding was not arranged in the simulation. The 
simulation result shows that the detection of 1-kg HEU hidden 
in a cargo container can be achieved by TENA method with 
tens of detectors within 10 min of measuring time [21]. 

III. GAMMA-RAY INSPECTION SYSTEM 
The NRF is a phenomenon in which an atomic nucleus is 

excited by the absorption of an incident gamma-ray whose 
energy corresponds to the nuclear-level energy and 
subsequently the excited level decays out through the emission 
of an NRF gamma-ray. Therefore, by measuring NRF 
gamma-rays, we can identify nuclear species even in hidden 
materials. Bertozzi et al. have proposed the novel method by 
application of nuclear resonance fluorescence (NRF) using 
gamma-rays [22]. A major challenge of implementation of the 
NRF method to an inspection system is to improve the 
signal-to-noise (S/N) ratio of the NRF measurement. Because 
the NRF can occur in a very narrow energy width (<< 100 eV) 
when compared with the irradiated gamma-rays, the rest of the 
incident gamma-rays are atomically scattered by irradiated 
materials. Therefore, Pruet et al. has proposed an inspection 
system based on NRF gamma-ray spectroscopy with high S/N 
ratios using the Thomson-Radiated Extreme X-ray Source 
(T-REX) [4]. T-REX can potentially generate 
quasi-monochromatic radiation beam using an electron linac 

 
Fig. 9   Neutron energy spectrum by fission reaction. The fission neutrons 
above the threshold energy of 2.45 MeV from a D-D neutron source are to 
be detected in the present TENA method, which is indicated by the shaded 
area that corresponds to 30% of the total neutrons from fission reactions.   
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Fig. 10   A preliminary result of TENA method, which is induced by D-D 
neutron generator and a fission chamber target measured by liquid 
scintillation detector. 



Fig.11  Layout of the target and detectors. Eight LaBr3(Ce) scintillators 
were located at the scattering angle of 140° behind a lead and  copper 
plate. An LYSO scintillator was used as a flux monitor of LCS 
gamma-rays. 

 
Fig. 12 Gamma-ray energy spectrum for the silver target. The black line is 
subtracted spectrum, and the red line is a result of smoothing by 5 terms 
Savitzky-Golay filter. The errors indicated in the figure are estimated only 
by statics. 

and an intense laser system, the so-called laser Compton 
scattering (LCS) gamma-ray beam. However, the LCS 
gamma-ray beam is a low-intensity beam when compared with 
the conventional bremsstrahlung beam, we need a long 
inspection time (typically order of hours). Therefore, our 
proposed inspection system uses the NRF method induced by 
LCS gamma-ray beam for a precise inspection system by 
isotope identification of SNMs inside suspicious containers 
after passing through the fast screening system based on the 
D-D neutrons and the X-ray radiograph system. In this 
inspection-flow, we can use an enough long time, > 30 min, for 
the LCS gamma-ray inspection system. 

A proof-of-principle (POP) experiment of the gamma-ray 
inspection system using NRF signal induced by LCS 
gamma-rays was performed at Kansai Photon Science Institute 
(KPSI) at QST [23]. We also examined an array of LaBr3(Ce) 
detectors to measure the NRF gamma-rays, instead of high 
purity Ge detectors, which need careful treatment. LCS 
gamma-rays were generated by colliding Nd:YAG laser pulse 
(wavelength of 1064 nm, pulse duration of 200-300 ps) with 
150 MeV electrons accelerated by Race Track Microtron 
(RTM) accelerator [24]. It should be noted that the maximum 
energy of the LCS gamma-ray of this POP experiment was 400 
keV, which could not excite 235U (1.733 MeV), we still can 
obtain useful information by scaling to 220 MeV microtron 
system [11] for actual HEU detection. To excite NRF level with 
400 keV LCS gamma-rays, a natural silver block was chosen as 
a sample, because natural Ag consists of two isotopes, 107Ag 
and 109Ag, that have gamma-ray resonance states at 325 keV 
and 311 keV, respectively. Figure 11 shows the layout of the 
target and detectors in this POP experiment. Considering the 
divergence angle of the LCS gamma-rays and limited available 
space at KPSI, the size of the target was 40 (height) × 40 
(width) × 20 (thickness) mm3 and the target was tilted to reduce 
the gamma-ray attenuation in the target block. Eight LaBr3(Ce) 
scintillation detectors with 1.5” (Dia.) × 3” (length) were 
positioned at 140° and 18 cm apart from the target to detect 
NRF gamma-rays from the target. Between the target and the 
detectors, a 2 mm lead plate and a 5 mm copper plate were 
inserted to simulate the cargo container wall. The attenuation of 
300 keV gamma-ray by these plates is equivalent to that of 2 
MeV gamma-ray by a 16 mm steel plate. Unfortunately, the 
resonant energies of Ag target were somewhat lower than the 
maximum energy of the LCS gamma-rays (400 keV), whereas 
atomic processes of gamma-ray scattering (Compton scattering, 
Rayleigh scattering, and so on) generated a physical 
background around the NRF peaks. Therefore, a tin block, 
which has a close atomic number and has no resonant states 
with excitation energies of up to 400 keV, was used as a 
reference target for subtraction of these background events. The 
repetition rate of RTM and laser pulse was set to 10 Hz and 5 
Hz, respectively, to measure background events caused by 
neutrons and gamma-rays from the beam dump and 
bremsstrahlung gamma-rays generated by residual gas in the 
electron beam pipe. The NRF spectrum of silver target was 
obtained by subtraction of the Laser-OFF spectrum and the 
blank target (Tin) spectrum. Figure 12 shows the subtracted 

gamma-ray spectrum. The black line is measured gamma-ray 
distribution from the natural silver target and the red line is a 
smoothed spectrum with 5-terms Savitzky-Golay filter. Error 
bars for statistical uncertainty, which includes errors during 
subtraction procedure, are also indicated. The largest peak is 
residual gamma-rays of Compton scattering from the target. At 
the energies of the NRF peaks, only one peak is observed. 
Because of the broad energy resolution of the LaBr3(Ce) 
detectors (13 keV in FWHM), two NRF peaks cannot be 
separated. The accumulated peak count is (2.3±1.1)×102, which 
is consistent with the result of the GEANT4 simulation. The 
large error is originated by the background subtraction 
processes. 

By using the GEANT4 simulation code and the above 
experimental data, the NRF gamma-ray yield has been 
calculated to a designed inspection system. We calculated that 
1-kg HEU was located at the center of a 20-ft cargo with 
2.5-mm thickness iron wall. Although the actual containers 



carry a variety of materials, we calculated an empty cargo to 
simplify the calculation. We should note that the demonstration 
experiment also assumed an empty cargo. By using a 10 x 10 
array of 3.5” x 4” LaBr3(Ce) detector, LCS gamma-ray flux of 
106 photon/s with 5% energy spread, the NRF peak can be 
identified with a measurement time of 10 min [25]. It should be 
noted that the LCS gamma-ray flux was 105 photon/s in our 
POP experiment, which is 10 times smaller than the simulation 
condition. However, a high repetition rate, 100 Hz, microtron 
can be available [26]. The LCS gamma-ray flux of 106 photon/s 
could be available in the final designed system, which will use a 
220 MeV 100 Hz microtron. 

IV. CONCLUSION 
A study on developing a nondestructive inspection system of 

SNMs hidden in a sea container has been promoted by the JST 
program. The proposed inspection system consists of a D-D 
neutron-based fast screening system, X-ray radiograph system, 
and an LCS gamma-ray-based precise inspection system. We 
have developed an intense IEC device to generate more than 
108 neutrons/s by using the multistage high-voltage 
feedthrough structure. Two new techniques, Delayed Neutron 
Noise Analysis and Threshold Energy Neutron Analysis, which 
fit the developed D-D neutron source, have been developed. A 
prototype system of the neutron system was constructed at the 
Research Reactor Institute, Kyoto University, to evaluate the 
designed fast screening system. By using experimental data, 
MCNP simulations show that the designed system can detect 
1-kg HEU in less than 10 min. 

A prototype system of the LCS gamma-ray-based precise 
inspection system has also been constructed and tested in KPSI. 
An existing 150 MeV race track microtron accelerator was 
employed and the LCS gamma-ray of maximum energy of 400 
keV with more than 105 photons/sec has been generated and 
used to irradiate a natural silver target through lead and copper 
plates, which simulated a shielded SNM. As a result, eight 
LaBr3(Ce) detectors successfully detected the NRF 
gamma-rays from the silver target. GEANT4 simulation has 
also been carried out to evaluate the detection performance of 
the designed precise inspection system. The result showed that 
the designed system can detect 1-kg HEU in an inspection time 
of 10 min by using the LCS gamma-ray flux of 106 photon/s. 

The overall system including inspection buildings has been 
designed to evaluate the required inspection time and the land 
space. A cargo container translation and a positioning system 
were also designed to estimate the total performance of the 
overall system. According to the inspection flow, the inspection 
time was evaluated and the designed inspection system, 
Neutron/Gamma-ray combined interrogation system, can 
detect 1-kg HEU located at the center of a 20-ft container 
within 10 min inspection time, which will be varied with the 
container loadings and a real-scale prototype system should be 
examined. 
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