

早戸 良成

(東京大学 宇宙線研究所 神岡宇宙素粒子研究施設)

K2K experiment(1999~2005)

- スーパーカミオカンデ用のデータ収集システムソフトウェア(データ収集制御、 ネットワークを用いたイベントビルダ、解析用データへのフォーマット変換、 ストレージシステムへのデータ転送、アクセスライブラリ等)の開発
- 加速器ニュートリノ実験(K2K)データ収集システム開発
- ハイパーカミオカンデ用データ収集用の電子回路の開発(統括)
- ニュートリノ・原子核反応シミュレーションソフトウェアの開発(統括)
- 陽子崩壊の探索(博士論文は $p \rightarrow \overline{\nu}K^+$)(統括)
- ニュートリノ振動の実験データ解析(統括)
- ニュートリノ・原子核散乱実験のデータ解析

スーパーカミオカンデの研究 素粒子と宇宙の研究 素粒子「この世界を形作っている(多分)一番小さい部品」

スーパーカミオカンデの研究 素粒子と宇宙の研究 素粒子「この世界を形作っている(多分)一番小さい部品」 ニュートリノ

- 素粒子の一種、3つの種類がある。
- とても軽い(ずっと重さがないと思われていた)。
 他の素粒子よりも100万分の1以下の重さ。
- 反応率が極めて小さい。(弱い相互作用)
- 飛行中に別の種類に変わる(ニュートリノ振動)

スーパーカミオカンデの研究

宇宙ができて100秒頃、 粒子と反粒子がほぼ同数 生成したと思われている。

いまの宇宙には粒子(物質)ばかり が残っていて、反粒子(反物質)は ほとんどない状態。

particles

粒子

粒子と反粒子には微妙な 違いがあり、なぜか粒子 だけ残った。

ニュートリノと 反ニュートリノの小さな違い が重要な役割を果たした?

スーパーカミオカンデの研究 素粒子と宇宙の研究 素粒子「この世界を形作っている(多分)一番小さい部品」 ニュートリノ

宇宙 超新星爆発、恒星(太陽)、宇宙創成期 など
 地球 天然 大気圏、地球内部 など
 人工 加速器、原子炉 など

様々なところで生成している、宇宙で最もありふれた粒子。

反応率が極めて小さいため、観測(実験)が難しい。

スーパーカミオカンデ

検出器の原理

媒質中を荷電粒子が「媒質中の高速以上」の速さで移動すると 荷電粒子の進行方向に円錐状のチェレンコフ光が放出される。 光量は少なく、短波長成分(青い光)が多い。

水チェレンコフ型検出器

(Ring imaging Cherenkov detector) ニュートリノ反応標的として水を 用い、周囲を高感度の光検出器 (光電子増倍管)で覆うことで、 微弱なチェレンコフ光を検出

- 光の透過率の高い水を用いて
 大容積の検出器を実現可能。
- チェレンコフ光量や検出時間
 を用いることで、反応位置、
 エネルギー、粒子識別が可能。

スーパーカミオカンデ

Ring Imaging Water Cherenkov detector 1996年4月1日観測開始

世界最大規模の地下ニュートリノ検出器 直径40m、高さ40m、容積5万トン (有効体積 22,500~27,500トン)

- 5万トンの透明度の高い水(現在はGd入) 常時循環することで、透明度、水質を 維持。
- 光電子増倍管(PMT)を用いて微弱な チェレンコフ光を測定。

2 層構造

内水槽 (光有感領域 ~40%) 50 cm PMT ~11,000 本 外水槽

20 cm PMT ~1,900 本

スーパーカミオカンデ 岐阜県神岡町神岡鉱山 地下約1000mに設置

宇宙からは常時大量の宇宙線が降り 注いでおり、地表では希少な現象を 捉えることが困難。

→地下に作ることで、宇宙線を遮蔽 神岡の場合、10⁻⁵程度に減少

神岡鉱山は地盤が強く大空洞の掘削に適していた。また、地下水も豊富。

スーパーカミオカンデにおける主な発見(成果)

数MeV~15 MeV 程度の事象 から発生するチェレンコフ 光の場合、光を検出する PMT 数は25~100 程度。

超新星爆発のエネルギーの約99%はニュートリノとして放出 銀河中心(~10kpC~32,600 ly)で発生した超新星爆発からは 10 秒間に~10,000 事象の発生が予想される。

もし、ベテルギウスが超新星爆発をおこすと、 10 秒間に 1000 万から1億事象の発生が予想される。

背景事象1 宇宙線(ミュー粒子)

2 ~ 3 events / second

背景事象2 低エネルギー事象

(水中のラドン等検出器内の放射性同位元素) **~20,000 events / second** (with current configuration.)

Super-Kamiokande IV

Run 69990 Sub 200 Event 39621645 12-08-05:02:19:40 Inner: 112 hits, 162 pe Outer: 2 hits, 1 pe Trigger: 0x05 D_wall: 1690.0 cm Evis: 0.0 MeV

0 mu-e decays

1500

2000

スーパーカミオカンデ 検出器構成要素

光電子増倍管信号読み出し用電子回路 QBEE(2008 ~)

- 光電子増倍管から約70mの同軸ケーブルを経て届いた信号の 検出時間と電荷量を記録する。
- →電荷量-時間幅変換 ASIC (QTC) を新規開発 (ICRR/IWATSU) 閾値を超えた信号が入力されたとき、入力電荷量に比例 した時間幅の信号を出力。(閾値は~-0.7mV で運用中)

スーパーカミオカンデ 検出器構成要素

光電子増倍管信号読み出し用電子回路 QBEE(2008 ~)

 記録した全データは Fast Ethernet経由で計算機に転送。 SiTCP (= FPGA上に実装された FIFO + TCP/IP スタック)を利用。 ラインレートでの転送が可能。

OTC

PMT

signa

(24ch

-thernet

Readout

Network Interface

60MHz Clock

Trigger

AMT (ATLAS Muon TDC)

- 60MHzの基準クロックを全ボード に配布、同期動作。(事象再構成 に相対時間差が用いられるため。
- 1 ボードあたり 24 PMT を処理。 計~500枚が稼働中。

故障率が非常に低く、15年 を経た現在でも安定して稼働。

同期信号は GPS と連動、GPS (Charge to Time converter ASIC for SK by ICRR and IWATSU) 時間との関係も高精度で記録。 (加速器ニュートリノ実験に必須)

スーパーカミオカンデ エレクトロニクスハット内

スーパーカミオカンデ 事象判定方法 1

光電子増倍管(PMT)は入射光量に比例した電荷を出力する一方 常時5kHz程度のノイズも出している。 信号であるチェレンコフ光は短時間(数ns~数百ns)の発光。

◆ 数百ns以内に一定数(閾値)以上の数のPMTが光を検出 したとき、その時間周辺のPMT電荷・時間データを記録。 (現在、最少の閾値は 34 PMTs/200ns。)

ソフトウェア処理であるため、満たした条件によって緑枠の 時間幅を変えるなど、求める物理事象に対し柔軟な対応可。

スーパーカミオカンデ 事象判定方法 2

T2K 実験では J-PARC 加速器を用いて生成したニュートリノを 神岡に打ち込んで、ニュートリノ種類の変化を測定する。 加速器ニュートリノは 1.3 秒に 1 回の頻度で 4 µs の間生成。 ニュートリノ射出時間を GPS で記録、神岡に情報を転送。 Super-Kamiokandeではニュートリノの到着予定時間前後 1 ms に光を検出した全PMTのデータを記録。

スーパーカミオカンデ GPS装置

複数の異なるGPS受信機を利用 2 機種からの GPS 時間情報を事象データとともに 記録。

J-PARC と 神岡の GPS の相互安定性

「コモンビュー受信機」の利用 GPS 衛星毎の情報を記録、個別の衛星から情報 を NICT が公開するデータと比較することで、 標準時間とのズレを確認できる特別な受信機。

https://www.nict.go.jp/pamphlet/TS_j-panf.pdf

特殊"ソフトウェアトリガー"計算機へ(超新星速報用、超低エネルギー事象探索用)

Super-Kamiokande + Gadolinium (SK Gd)

ニュートリノや陽子崩壊は観測できる事象数が非常に少ない。 より大きな検出器を用い、事象数を増加させる。 より高性能な検出器を用い、測定精度を高める。

ハイパーカミオカンデ用光センサーとエレクトロニクス

光検出性能と時間測定精度 を倍に向上した新型PMTを 新たに開発、大量生産中。

電子回路はタンク外に設置すると、 光電子増倍管からの距離が遠くなり、 信号ケーブルの長さが長くなる。

- 信号品質の劣化
 PMT近傍に電子回路を設置
- PMTとりつけフレームに設置
- 耐水圧容器に収容

データ収集は24時間365日継続 修理には水を抜く必要があり、困難

→ 高信頼性の機器を開発中、

2024度中に量産開始予定。

まとめ

- スーパーカミオカンデは超高感度光センサー (50 cm PMT, 20 cm PMT) からの信号を独自開発の ASIC+電子回路を用い記録。
- PMTの受光時間の相対時間差が事象再構成に重要であり、 すべての電子回路で同じクロック源を用いて同期動作。
- 2008年からは、暗電流ノイズ(ダークノイズ)を含めた全ての信号を計算機で読み出した後、ソフトウェア的に事象を判定、ディスクに記録。
- T2K加速器ニュートリノ実験は J-PARC からのニュートリノビーム射出時間の GPS 情報をリアルタイムで神岡に転送、神岡ではニュートリノ到着時刻の前後1msの全PMTデータを記録することで、バイアスのない解析を可能としている。
- 次世代実験ハイパーカミオカンデは、統計不足克服のため、 有効体積をスーパーカミオカンデの約8倍の検出器とする。
- 2027 年度中の実験開始に向け、新型 PMT やエレクトロニクスの開発、製造が進行中。