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The advent of high-flux-polarized γ-ray sources makes possible the nearly isolated precise measurement
of the vacuum contribution, Delbrück scattering, to the elastic scattering of these photons off nuclei.
Because of the fact that the elastic scattering of the photons is a coherent summation of four processes and
that up to now unpolarized sources have been used, the isolated measurement of Delbrück scattering has
not been performed. We show that for the appropriate choice of scattering angles, photon polarization, and
energies this scattering can be measured nearly independently of other scattering processes. This makes
possible the precise measurement of the vacuum contribution to scattering and the possibility of the
detection of new physics.
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Quantum electrodynamics (QED) has been one of the
most successful theories in physics. Predictions from low-
est-order perturbation calculations have been found to agree
with experimental results to very high precision. Further
confirmation of QED requires precisely measuring higher-
order perturbative predictions where deviations could indi-
cate the need for new physics. One inherently higher-order
process is the polarization of vacuum by electromagnetic
fields due to the formation of virtual particle pairs [1]. The
lowest-order processes, which involve four interacting
electromagnetic fields, are photon-photon scattering, pho-
ton splitting, photon merging, and Delbrück scattering [1].
Photon-photon scattering has a small cross section and at
low energies has been measured only with an upper bound
[2–4]. Photon splitting has been observed at high photon
energies but is difficult to observe because of the smallness
of its cross section relative to other similar processes [5].
Photon merging has not been observed, although there are
proposals tomeasure it using petawatt lasers and protons [6].
Among the four processes, only Delbrück scattering, which
is the elastic scattering of γ rays off the Coulomb field of
nuclei due to the formation of virtual electron-positron pairs
from a vacuum [7], has been extensively experimentally
measured (for example, see Refs. [8,9]). This is because its
cross section (scattering amplitude) is enhanced with
nuclear charge Z as Z4 (Z2) [1]. There are two main
drawbacks in measuring Delbrück scattering. One is that
the scattering cross section is so difficult to calculate
numerically that the lowest-order scattering amplitudes exist
in only tabular form over a fairly coarse grid in photon
energies and scattering angles [10]. The second drawback is
that the elastic scattering of photons off nuclei is the coherent
summation of four different scattering processes [8,9,11]:

Rayleigh, nuclear Thomson, giant dipole resonance, and
Delbrück. As a result, the measurement of the Delbrück
scattering is obtained by calculating each contribution to the
cross section and showing that incorporating the Delbrück
component is necessary for an agreement with the exper-
imental results.
Previous experimental results were obtained with unpo-

larized γ rays [8,9]. As pointed out in Ref. [12], by using
linear polarized photons in the scattering plane with the
scattering angle of 90°, a more isolated measurement could
be achieved, because two of the processes, the nuclear
Thomson and giant dipole resonance scattering amplitudes,
go to zero at that angle. Until recently, high peak brightness
monoenergetic tunable photon sources above 100 keV did
not exist. By scattering laser light off relativistic electron
beams, linearly polarized tunable high flux sources, laser
Compton scattered (LCS) γ-ray sources [13], have been
developed and used for the study of various types of science
at HIγS [14], NewSUBARU [15], and UVSOR [16].
Furthermore, extremely high-flux LCS sources will soon
be available such as ELI-NP-GBS [17] and MEGa-ray [18].
The energy recovery linac-LCS source has been proposed
[19]. Through the technological development of LCS γ-ray
sources, high-precision measurements of processes such as
Delbrück scattering using such polarized γ rays will be
possible. In this Letter, we show, using such LCS sources,
thatDelbrück scattering can be nearly isolated from the other
contributions to elastic scattering at angles shifted away
from 90° due to the contributions of Rayleigh scattering.
The total elastic differential scattering cross section of

photons from atoms is expressed as [20]

dσ⊥
∥

dΩ
¼ r2ejA⊥

∥
j2; ð1Þ
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where the subscripts ∥ and ⊥ refer to photon polarizations
parallel and perpendicular to the scattering plane, respec-
tively, and re ¼ e2=mec2 is the classical electron radius
with e being the electron charge, me being its mass, and c
being the speed of light. The scattering amplitude
is [20]

A⊥
∥
¼ AT⊥

∥
þ AGDR⊥

∥
þ AR⊥

∥
þ AD⊥

∥
ð2Þ

with the superscripts T, GDR, R, and D referring to the
nuclear Thomson, giant dipole resonance, Rayleigh, and
Delbrück scattering, respectively. The first two amplitudes
are expressed in terms of relatively simple formulas.
The nuclear Thomson scattering (T) amplitudes parallel,

AT
∥ , and perpendicular, AT⊥, to the scattering plane are

calculated for a rigid spin-zero nucleus using Eqs. (3) and
(4) in [20]:

AT⊥ ¼ −
Z2e2me

Mc2

�
1 −

1

3
k2hr2i

�
; ð3Þ

AT
∥ ¼ AN⊥ cos θ; ð4Þ

whereM is the mass of the nucleus, k is the wave number of
the photon, r is the nuclear charge radius which is taken to
be zero, and θ is the scattering angle in the scattering plane
formed by the directions of the initial and final photon.
Note that in the case of scattering perpendicular to the
scattering plane the amplitude is independent of θ.
For the giant dipole resonance (GDR) perpendicular,

AGDR⊥ , and parallel, AGDR
∥ , scattering amplitudes, we use

Eq. (11) in [20]:

AGDR⊥ ¼ E2

4πℏcre

X2
j¼1

σjΓj

E2
j − E2

ðE2
j − E2Þ2 þ E2Γ2

j
; ð5Þ

AGDR
∥ ¼ AGDR⊥ cos θ; ð6Þ

which was calculated using the optical theorem and
dispersion relation where E is the γ-ray energy and
ðσj; Ej;ΓjÞ are GDR parameters.
The Rayleigh and Delbrück scattering amplitudes do not

have a simple form like the above T and GDR scattering
amplitudes. The Rayleigh scattering amplitudes AR

∥ and AR⊥
have been previously calculated using the relativistic
second-order S matrix and form factors [21] and can be
found in the Rayleigh scattering database (RTAB) [22]. The
Delbrück scattering amplitudes AD

∥ and AD⊥ have been
previously calculated from the lowest-order vacuum polari-
zation tensor [1], and the values can be found in Ref. [10].
For our study, we have found that a finer resolution is
necessary.
We have recalculated the Rayleigh (R) scattering matrix

amplitudes using the code “ENTING,” which uses the
relativistic second-order S matrix (see [21] and references
cited therein). We have confirmed the agreement over the

range of energies and angles in which we are interested
with the RTAB database [22].
Delbrück scattering (D) represented by the lowest-order

Feynman diagrams is shown in Fig. 1 [23]. Compact
expressions for the real and imaginary parts of the scattering
amplitudes expressed in terms of three- and four-dimen-
sional integrals with relatively simple irrational functions of
the arguments have been obtained and calculated in
Refs. [12,24,25]. We have written a code to calculate the
Delbrück scattering amplitudes using the expressions and
numerical techniques ofRefs. [12,24,25],which arevalid for
γ-ray energies above 2mec2, whereme is the electron mass.
The differential scattering cross section is expressed in terms
of the right- and left-handed polarization of the photons,
þ and − subscripts, respectively [12,24,25]:

dσþþ
þ− D

dΩ
¼ ðZαÞ4r2ejaþþ

þ−
j2: ð7Þ

The Delbrück scattering amplitudes perpendicular, AD⊥, and
parallel, AD

∥ , to the scattering plane are given by [25]

AD⊥ ¼ aþþ − aþ−; ð8Þ

AD
∥ ¼ aþþ þ aþ−: ð9Þ

The imaginary part is [12,24,25]

Im½aþþ
þ−
ðd; pÞ� ¼ 1

πp

Z
k2=4

1

dy
Z

xþ

x−

dx

×
Z

bðyÞ

0

dzA�ðx; y; z; d; pÞ; ð10Þ

where k ¼ ω=mec2, d ¼ k sinðθ=2Þ, p ¼ k cosðθ=2Þ, k2 ¼
d2 þ p2 with the conditions k ≥ 2, x� ¼ ðp�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 4y

p
Þ2,

bðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=y

p
, and Im½aþþ

þ−
ðd; pÞ� ¼ 0 for k ≤ 2, and

the functions A�ðx; y; z; d; pÞ are given in Refs. [12,24,25].
The real part is [12,24,25]

Re½aþþ
þ−
ðd;pÞ�¼C�ðdÞþ

2p2

π
P
Z

∞

αðdÞ

dp0

p0
D�ðp0;dÞ
p02−p2

ð11Þ

where αðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − d2

p
, when d ≤ 2; αðdÞ ¼ 0, when

d > 2. The function D�ðp0; dÞ is [12,24,25]

FIG. 1. Delbrück scattering represented by lowest-order Feyn-
man diagrams. k and k0 are the 4-vector momenta of the incoming
and outgoing photons, respectively, and i and j are their
polarization directions, respectively. Δ ¼ k0 − k is the momen-
tum transfer. The X represents the Coulomb field of the nucleus in
which q is the field momentum.
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D�ðp0; dÞ ¼ 1

πp

Z
k2=4

1

dy
Z

xþ

x−

dx

×
Z

bðyÞ

0

dzϵðl̄ÞA�ðx; y; z; d; pÞ; ð12Þ

where k ≥ 2, ϵðjxjÞ ¼ 1, ϵð−jxjÞ ¼ −1, and the notation is
the same as Eq. (10). The function C�ðdÞ is [12,24,25]

C�ðdÞ ¼ fRe½aþþ
þ−
ðd; pÞ�gk¼d;θ¼π; ð13Þ

which is the amplitude for backscattering implying
CþðdÞ ¼ 0. The nonzero componentC−ðdÞ is given by [25]
C−ðdÞ ¼ fRe½aþ−ðd; pÞ�gk¼d;θ¼π

¼ 1

π2

Z
∞

0

dq
Z þ1

−1
dξ

1

q2 þ 2d2 − 2dqξ
P

×
Z

∞

1

dy

�
B1ðy; q; ξ; dÞ

y − s
þ B2ðy; q; ξ; dÞ

�
; ð14Þ

where

4s¼ 4t¼−q2þ2dqξ; 4μ1¼ q2;

4μ2 ¼ q2þ4d2−4dqξ; v¼ 4u¼−d2q2ð1−ξ2Þ; ð15Þ
and the other variables, functions B1ðy; q; ξ; dÞ and
B2ðy; q; ξ; dÞ, are given in Refs. [12,24,25]. We have
confirmed the agreement with previously published data
at energies lower than 10 MeV.
In the lowest order, the Delbrück scattering amplitude

increases with Z as ðαZÞ2 and α is the fine structure
constant; however, the next-higher-order contribution to the
scattering also increases as αðαZÞ4 and with photon energy
and large scattering angles [9]. Because the next-higher-
order correction has not been theoretically calculated, we
choose a regime where these higher-order corrections, also
known as Coulomb corrections, are negligible. For targets
with Z less than 50, the Coulomb correction contributions
have been shown to be lower than 5% [26]. The lowest-
order scattering amplitudes have been shown to be suffi-
cient for γ-ray energies less than 2 MeV for uranium
(Z ¼ 92) (see references cited in Ref. [26]). For energies
less than 1.115 MeV, experiments have shown that the
lowest order is sufficient for Z ¼ 74 and 82 within
experimental uncertainties of ∼5% [27]. At 2.754 MeV,
experimental results with Z ¼ 82, 83, 90, and 92 have
shown differences from the lowest-order calculations by as
much as a factor of 2 [27]. Considering the above
information, we have chosen tin (Z ¼ 50) as the target
material and γ rays in the range from 1.050 to 1.150 MeV,
where the lower bound has been chosen to be above
1.022 MeV, where the expressions we have chosen for
the Delbrück scattering are valid [12,24,25] and the
energies available in the RTAB database [22]. Although
the full order amplitude has been analytically formulated
[28] and numerically calculated [29], few data points exist.
In addition, the large number of terms has prevented the
calculation of the next-higher order [23].

To locate where the Delbrück scattering amplitudes are
nearly isolated, it is first necessary to find regions where the
other three contributions to the scattering are small. For the
GDR scattering amplitude in Eq. (5) for tin, we use the
fitting parameters for the most abundant isotope having an
atomic number, A ¼ 120, from the Reference Input
Parameter Library (RIPL-3) database [30,31], where j ¼
1 is the only term in the summation in Eq. (5) with
E1 ¼ 15.37 MeV, σ1 ¼ 284.1 mb, and Γ1 ¼ 5.08 MeV
[30]. The Rayleigh scattering (R) amplitudes were calcu-
lated from the program ENTING using the same configura-
tion as the RTAB database [22] in our energy range of
interest, where the contribution of 10 inner shell electrons is
calculated using the relativistic second-order S matrix and
of 40 outer shell electrons is calculated using form factors
[21]. The T amplitudes were obtained from the routines in
the code ENTING used to generate the RTAB database [22].
Figure 2 shows results of the calculations of the differ-

ential cross section dσ∥RþTþGDR
=dΩ, for Rþ T þ GDR for γ

rays in the range 1.10� 0.05 MeV and scattering angles
40° ≤ θ ≤ 120° in the scattering plane. In the energy range
we have chosen dσ∥RþTþGDR

=dΩ has a minimum around 70°.
Figure 3 shows the real and imaginary parts of the
scattering amplitudes A∥ for D and Rþ T þ GDR at
1.1 MeV. The real part of the amplitude, Rþ T þ GDR,
goes from negative to positive, crossing zero around 70°.
Although T and GDR go to zero at 90°, the contribution
from R shifts the crossing point to lower angles. In addition,
the imaginary parts of the amplitude are small compared to
the real parts. Since T and GDR do not have imaginary
components, this part comes only from R.
The event rate dR=dt for a given cross section σp is

calculated from

dR
dt

¼ Lσp; ð16Þ

where L is the luminosity for a fixed target given by

L ¼ Φρtl; ð17Þ

where Φ is the flux, ρt is the target density, and l is the
target length.
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FIG. 2. The differential cross section dσ∥RþTþGDR
=dΩ for tin

including Rþ T þ GDR for scattering angles from 40° ≤ θ ≤
120° in the scattering plane. The angular resolution is
Δθ ¼ 0.15°, and the energy resolution is 1 eV.
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Choosing parameters of the proposed ELI-NP-GBS as a
γ-ray source, the energy range is between 1 and 20 MeV
with a root mean square (rms) bandwidth less than
0.5% and a time average spectral density greater than
5 × 103 ph= sec =eV [17]. Taking the spectral density to
be 5000 ph= sec =eV at a photon energy of 1.1 MeV with
the above bandwidth, the photon flux Φ becomes
2.75 × 107 ph= sec. Assuming that the target is tin, we
get ρt ¼ 7.31 g=cm3=ð118.71Þð1.660 538 92 × 10−24 gÞ ¼
3.7 × 1022 cm−3 with l ¼ 10 cm and then L becomes
1.02×1031 cm−2 s−1. Around 70°, Fig. 4 shows that
dσ∥=dΩ is approximately 1 μb=sr. Using a typical angular
acceptance of Δθ ¼ 0.8° (for example, Ref. [26]), we get
ΔΩ≈1.5×10−4 giving σ∥≈ΔΩdσ∥=dΩ≈1.5×10−34 cm2.
The resulting event rate is dR=dt ¼ 1.5 × 10−3= sec. The
total number of scattering events is N ¼ τdR=dt, where τ is
the measurement time with an error of δ ¼ 1=

ffiffiffiffi
N

p
. To get

an error of δ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τdR=dt

p ¼ 1%, the measurement time
would be τ ¼ ðδ2dR=dtÞ−1 ¼ 6.5 × 106 sec or ≈76 days.
Previously, measurements of the elastic scattering
cross section obtained 2% accuracy for tin at 75° [26].
However, since these measurements were performed with
unpolarized photons and at a higher photon energy of
2.754 MeV, all four processes contributed to the scattering,
and higher-order corrections to the Delbrück scattering

needed to be incorporated [26]. So an error of δ ¼ 1%
would not only give us measurements of the Delbrück
scattering with accuracies approximately a factor of 2
higher in accuracy than before but be nearly isolated.
From Fig. 4, we can see that the overall effect of Delbrück
scattering is to shift the angle of the minimum scattering
cross section from θ ¼ 70° down to θ ¼ 60°.
We show in Fig. 5 the differential scattering amplitudes

dσ⊥=dΩ forD and Rþ T þ GDR as indicated in the figure
for tin at 1.1 MeV for scattering photons with polarizations
perpendicular to the polarization plane. At scattering angles
near θ ¼ 102°, the Delbrück scattering contribution is
nearly zero, because the real part of D crosses zero and
its imaginary part is small. With dσ=dΩ⊥ ≈ 20 μb=sr, this
cross section could be measured with a very high accuracy
of δ ¼ 0.2% in the same amount of time for the nearly
isolated Delbrück scattering measurement. As a result, the
accuracy of the calculation of Rþ T þ GDR could be
experimentally verified simultaneously with the nearly
isolated Delbrück component using two detectors.
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The polarization of the incoming photons can be altered
by the scattering process if the photons are not completely
polarized [32]. In this study, we have ignored the change in
polarization of the photons. Because it has been shown that
with future sources such as ELI-NP-GBS a very high
degree of polarization can be maintained [33], we consider
this to be an adequate assumption. However, future studies
could take into account unexpected changes in polariza-
tions as indications of the possibility of new physics.
In conclusion, we have shown that, using linearly

polarized photons with polarizations parallel to the scatter-
ing plane at a sufficiently low energy impinging on targets
having a sufficiently small atomic charge Z to avoid higher-
order effects, the vacuum contribution to the elastic
scattering, Delbrück scattering, of these photons can be
nearly isolated and precisely measured. With the proposed
ELI-NP-GBS [17] measurements, within 1% accuracy
could be made in 76 days. Such precise measurements
would allow for the search for possible deviations from
theoretical predictions indicating the need for new physics.
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