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(On behalf of the Imaging Physics Group)

Introduction

2020, which began peacefully, turned out to be an
unprecedented pandemic turmoil in the spring. The land area
divided by the population, which corresponds to the land area
to be given to each, is only 135m x 135m on average in the
world, 55m x 55m on average in Japan and 8m x 8m on
average in the 23 wards of Tokyo. In the present day of dense
urban populations and well-developed aviation networks,

politics has not yet found the right answer to the pandemic.

Natural science is a reliable existence even when we feel
uneasy and are about to lose our way. Matter and the physical
and natural laws that exist in this world always have a certain
essence that will never change. And scientists pay homage to
their predecessors’ works, add new findings to textbooks, and
pass them onto the next generations. In particular, regarding
scientists in national research institutions, their studies should
be topics that universities and commercial companies cannot
cover.

Nuclear medicine is a discipline which applies radioisotopes to
medicine, and supports the basis of modern medicine.
Penetration of radiation enables diagnostic imaging, and
appropriate usage of cell response to radiation enables
treatment. The greatest feature of nuclear medicine should be
that various biomarkers can be labelled by radioisotopes
without changing their properties. And no matter how small the
amount of a biomarker, the exact location and quantity of the
biomarker in the body can be known.

Itis the role of nuclear medicine physics to guarantee the basis
of nuclear medicine imaging. The year 1957, when the
National Institute of Radiological Sciences was established,
was also the year when Japanese researchers’ investigations
into nuclear medicine physics started. Through the 1980s, the
country’s  activities medicine used mainly
domestically produced PET systems as part of a global
research community (for details, see the articles of Drs. Eiichi
Tanaka and Hideo Murayama in our group’s 2018 and 2019
annual reports). However, in the 1990s, when the Japanese
economy became sluggish, imported systems became the
mainstream. The potential high costs brought by the strict RI
regulations in Japan were no longer consistent with the health
insurance system. Then, as companies stopped their research

in nuclear
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and development, activity in academia such as universities,
which were sources of human resources, decreased as well.

In the meantime, cancer has emerged in some countries as the
number one Killer, surpassing cardiovascular disease. In
addition, another big issue with aging populations in some
countries is dementia. Therefore, we need to continue nuclear
medicine physics research for these clinical issues. This is
because we believe that the potential of PET has not been fully
realized yet, and that there may be next-generation nuclear
medicine methods which exceed PET. The information on
which diagnosis is based must be accurate. In recent years,
the development of simple and low-cost diagnostic methods
that combine artificial intelligence and liquid biopsy have been
attracting attention, but progress on reliable diagnostic
technology that is indispensable after screening tests must not
stop. This annual report summarizes the recent results of
research conducted by the Imaging Physics Group (IPG) for
the advancement of nuclear medicine physics.

Overview of novel systems developed by IPG

The IPG succeeded in developing a novel depth-of-interaction
(DOI) detector, which is a key technology to get any significant
improvement in sensitivity while maintaining high spatial
resolution. A flexible detector arrangement has become
possible using the DOI detectors. Good examples are a brain
dedicated PET system and an open-type PET system
“OpenPET”. Whole gamma imaging is also a novel idea that
was brought about by the DOI concept. A new project to
develop high performance small animal PET systems that
break through the current limitations has been started as well.
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Figure 1 Overview of novel systems develop by the Imaging Physics Group.
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Whole gamma imaging
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Whole gamma imaging

Whole gamma imaging (WGI) is our original concept to
combine a Compton camera with PET. Imaging of various
radioisotopes
therapy will become possible. The Compton camera localizes

including nuclei for targeted radioisotope
a source position on the surface of a cone, whereas PET
localizes it on a line of response (LOR), which is determined
by coincidence of a pair of 511keV photons emitted by the
2020, we

component technologies in the Compton camera part, and

electron-positron  annihilation. In improved

developed the 3™ prototype of WGI. We succeeded in
improving the sensitivity and the spatial resolution uniformity
by upgrading the inner detectors (the scatterer detectors) from
non-DOI to DOI capable and doubling the number of detector
rings (Sodai Takyu, p. 15).

Zirconium-89, whose half-life is about three days, is expected
to have new application as a PET isotope for tumor imaging
based on an antigen-antibody reaction. We think %Zr is
suitable for WGI, because the 909 keV gamma-ray that 89Zr
emits can be visualized by Compton imaging (i.e., imaging by
means of the Compton camera) (Hideaki Tashima, p. 19). Our
final goal is to achieve spatial resolution better than that of PET
because Compton imaging is not influenced by the physical
limitations of PET such as the positron range.

WGI will have an advantage even for a typical PET isotope of
8F. A single 511keV photon of which one side of the pair is
missing can be used for imaging by the Compton camera. We
invented a C-shaped PET geometry from this concept (Takumi
Nishina, p. 23).

We believe the WGI has a potential to change the principle of
nuclear medicine itself. We have discovered that the
positronium lifetime, a tiny time difference between the
positron emission and the emission of a pair of 511keV
photons, can be a biomarker for tumor hypoxia (Kengo
Shibuya, p.27). Tumor hypoxia information may lead to better
cancer treatment. For example, a tumor which will be cured
only by carbon ion therapy can be clearly separated from
tumors which are responsive to conventional X-ray therapy. To
measure the positronium lifetime in a patient’s body, the use of
scandium-44, whose half-life is about 4 hours, is suggested. A
1157 keV prompt gamma-ray which is emitted almost at the
same time as the positron emission can be a starting timer. The
imaging principle itself is also novel; the source position can be
directly identified by calculating an intersection point between
the surface of a Compton cone of 1157 keV and the LOR of a
pair of 511 keV photons. We named this positronium imaging
by #Sc-WGI as “quantum-PET (Q-PET)".
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Novel applications under study
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Figure 2 2020 progress in the WGI project. The 3¢ WGI prototype was developed and showed better sensitivity and resolution

uniformity than the previous WGI by upgrading and doubling the scatterer detector rings. In addition to two novel applications of

89Zr-WGlI for better spatial resolution than PET and '®F-WGI for the C-shaped mobile PET, we launched a new project to develop
“Q-PET” for positronium lifetime imaging.

ERRE - BRE PET £l

High resolution and high sensitivity PET technologies

PET omBEREL - @REIZ. 2 OMREN
RERVEATWRREETHBH. LWEITELD
mLTWD, F4ld, BRELBEBEZMIY 5 DO
R ORIMEFRZED % H (2, time-of-flight
(TOF) PET 7= Do EEESE ICH EY A T
W5, TOF-PET . EREHROBOREZED HAIE
BEWEBLHETHY . 300ps ® TOF DEEEEI
4.5cm DAIEDfEEICHHT 5,

DOl nfEREZ B KT Ak L LT, #IRVW >V F
L —ROMiGIcZHBZTFaEE L. XOBRELLL S
DOI 1B R=stE T 2 A x=F L TW3, DOl A@A
DFRPEEESDH D IzH, ¥ FL—RDNEBH S L
—H -5 L CARICEEmEFEKL 7z (laser
encoding), SFEF, L—HF—ITDNRTA—5D
BBt %=1T->7= (Akram Mohammadi, p. 33),

OXR MR ATBERIRER ARG HER L LT, Bl
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OpenPET BICER L 7%k D 3mm A& 4 & DOl 1%
HEBORMWMEFZTL. BEEEED 1.0mm A 3 B
DOl #% 25 (stagger A=) OBREFEICKIN LT, &

Improving the resolution and sensitivity of PET is an essential
issue that many researchers have addressed, but there is still
room for further improvement. Therefore, we are developing
novel DOI detectors which improve both resolution and
sensitivity. In addition, improvement of timing response of DOI
detectors is also important for better time-of-flight (TOF) PET.
In TOF-PET, the source position can be localized by the arrival
time difference between two 511keV photons. For example,
300 ps TOF resolution corresponds to 4.5 cm spatial
resolution.

As a method to improve DOI resolution, we are studying a dual-
end readout detector, in which the DOI information can be
calculated by the ratio of numbers of output photons at both
ends. Laser engraving or laser encoding is used to optically
separate segments inside a monolithic crystal bar. In 2020, we
optimized parameters in the laser processing (Akram
Mohammadi, p. 33).

Attaching a photodetector array on one side of a crystal block
made of small pieces of crystals is a practical design for cost
effective DOI detectors. In the last year, we developed a new
DOI detector (1.0 mm pitch and 3-layer DOI) based on the
stagger method, which was a big progression from our
previous OpenPET DOI detector (3 mm pitch and 4-layer DOI).
In 2020, we developed two demonstration systems, a total
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RFEIEILT, 4 DOERZUFORHOD KA
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DISAE LT, WAEDOIEER PET 0K %1T-
7o (FRFE, p. 47),

TOF DEREEDRFRD VD E DN Vv F L — R DFENK
BETH D, ZI T LYBESEEICENSTF L
VATEXINEBEINTWEA, SERFIRLYIE
WAERBT D EDNTERL, ZZT.HILKFAR
BREAS & HET, Bx U L (TIBr) &K% H
B/AENR—X(Z, TIBr #EBRLLF =Ly aT7ENE
ELTART AR LIT-o72 GERPRXE, p. 51),

body small animal PET system (TBS) and a mouse-brain
dedicated small animal PET system (SAP) (Han Gyu Kang,
p.37). The OpenPET detector was used for the TBS, and the
stagger detector was used for the SAP.

Generally, DOI detectors, in which light paths can be
complicated, have been considered to have poor TOF
resolution. Development of the crosshair light sharing (CLS)
detector is the challenge to this issue. In 2020, we succeeded
in demonstrating 1.5 mm crystal pitch, 3-layer DOI and 400 ps
TOF by developing prototype detectors (Eiji Yoshida, p. 43).
The top parts of two crystal bars were optically glued to form a
U-shape light path, and two bottom light outputs were read out
by two different photodetector cells. The crystal pitch of 1.5 mm
was half the photodetector cell size, and each photodetector
cell covered four outputs of different U-shape crystal units. As
an application of the CLS detector, we designed and simulated
a breast dedicated PET system (Go Akamatsu, p. 47).

The light emission process in scintillators is considered to be a
limit to improve TOF As an alternative
phenomenon, Cherenkov radiation, which has a faster time
response than the scintillation process, is attracting attention.
However missing energy information is an issue. Therefore, in
collaboration with Dr. Keitaro Hitomi of Tohoku University, we
conducted research on making thallium bromide (TIBr)
transparent and using it as a Cherenkov radiator (Fumihiko
Nishikido, p. 51). As TIBr is usually used as a semiconductor
detector, energy information can be obtained from collected
electrons.
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Figure 3 2020 progress in high-resolution and high-sensitivity PET technologies. We have five different detector technologies;
the laser encoding, the OpenPET detector and the stagger were studied for better DOI, and the crosshair light sharing (CLS) was
invented for balancing depth-of-interaction (DOI) and time-of-fight (TOF) information. Two different small animal systems were
actually developed, and a breast dedicated PET was designed and its performance was simulated. The Cherenkov detector was
investigated to get faster timing response.
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R O AT REMEABREL L 72, EAMICIE. AR F D4
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FiL, p. 71D,
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DNEBENDZET, BEFBERIPHIHIZELD

Brain PET

Realization of the helmet-type PET has almost been
completed in collaboration with ATOX Co., Ltd. However, such
high resolution brain PET would_have its real value only when
an appropriate motion correction method is applied. Therefore,
in 2020, we developed an original motion correction system
which does not require complicated calibration procedures
(Yuma Iwao, p. 55).

Physicians may have sometimes experienced that a PET
system seems to work well for phantoms but does not offer so
good images in clinical use. This issue has been considered
as unsolvable because no one can know the true value in
clinical practice. To try to resolve this, in 2020, we proposed a
new approach to set a “true value” based on clinical knowledge
for healthy subjects. Then we attempted to extract information
that correlates with the PET system performance (Shoma
Ohigashi, p. 59).

Anatomical information is often required for PET diagnosis,
and MRl is preferred over CT for brain imaging. Therefore, we
are developing the “add-on PET” which can be attached to any
existing MRI systems. The PET part is almost completed, and
our only remaining task is the safety evaluation of the MRI coil.
In 2020, an evaluation method for heat generated by
electromagnetic waves from the RF coil was investigated
(Taisei Miyaki, p. 63). Application to an ultra-high magnetic field
MRI is also of interest to us, and a new idea to use a part of
the RF shield for the PET detector as a part of the MRI RF coil
was proposed and evaluated (Md Shahadat Hossain Akram, p.
67).

Contribution to treatment

Carbon ion therapy is recognized as an effective method which
can treat even a deeply seated tumor. Beam irradiation is
performed based on the treatment plan calculated from CT
images, but an in-situ range monitoring method has been
desired for a long time. Therefore, we invented OpenPET to
visualize positron emitters produced through fragmentation
reactions. Our next challenge is to extract tumor diagnostic
information just from OpenPET images by measuring
biological washout rate of irradiated particles. In 2020, we
succeeded in showing the feasibility by irradiating rat models,
and a washout rate for a tumor which was different from that
for a normal tissue was measured (Chie Toramatsu, p. 71).

The true value of nuclear medicine diagnosis is to provide
decisive information for an appropriate treatment method
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selection. Thus nuclear medicine images contain a lot of
diagnostic information, and we believe that deep learning
approaches can be a help to extract more information from the
images. In 2020, the following two themes were studied. One
was diagnosing the future of patients; future rejection was
from FDG-PET
transplantation in rat models (Keisuke Hori, p. 75). The other

predicted images taken after lung
was the quantification of pains; identifying chronic pain patients
which responded to a certain drug from only cerebral blood

flow SPECT images was enabled (Kaito Suzuki, p. 79).

Another role of nuclear medicine diagnosis is in surgery. In
particular in surgery for esophageal cancer, surrounding lymph
nodes of potential metastasis are all dissected to maximize
curability. Therefore, an in-situ diagnosis method for lymph
node metastasis is highly required to minimize the dissection
area, which leads to greatly reduced complications. Following
the clinical study that showed high correlation between FDG
concentration and pathological diagnosis for each dissected
lymph node, in 2020, we launched a new project to develop a
forceps-type mini PET device (Miwako Takahashi, p. 83).

Conclusion

Creation and demonstration of original ideas as well as their
practical realization are our basic policy in the IPG. Including
three new prototypes that we developed in 2020, we have
developed a total of 17 prototypes since 2006. What has
become the driving force behind this is teamwork. In this
annual report, 16 researchers and university students
summarized their individual studies, each of which could not
have been accomplished without efforts from the other 15
group members as well as technical and clerical staff
members.

We expect that 2021 will be a

X BA4% » IEEE Nuclear IEEE NUCLEAR SCIENCE SYMPOSIUM year of globalization for us
Science Symposium  and AND MEDIGALIMAGING Gﬂ_FEBEHCE because we will host the
. . 2" inormatonal Symposiam on foosr Tanpersias ExeciCRS i IEEE Nuclear Science

Medical Imaging Conference . .
Symposium and  Medical

(NSS-MIC) L' FEfE S B, /¢
YTy IPNEROR®BLILIL
=7 WA, NSS-MIC2021 B4
fi % 22 IR PET B3R
DEILRHIERIVEBHFEIN
%o

B

Imaging Conference (NSS-
MIC) in October 2021, baring
complications due to the
Covid-19 pandemic. In the
coming year as well, we
expect further progress in the
generation PET
research with the introduction
of Japan’s first NSS-MIC.

next

Yokohama, Japan
16 - 23 October 2021
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PET mode

Compton imaging opens up new
avenues for diagnostic imaging

Compton imaging, originally developed by astronomers for detecting
gamma ray sources, is now also under investigation for clinical imaging. In
particular, a high-performance Compton camera could prove invaluable
for applications within nuclear medicine and molecular imaging.

Unlike the established medical imaging technique of PET, which can only
visualize positron emitters, Compton imaging has the potential to visualize
a variety of gamma ray sources. To date, however, Compton image quality
has not matched up to that of typical PET scans. To investigate its potential
further, researchers at the National Institute of Radiological Sciences
(NIRS) in Japan have created a combined whole gamma imaging (WGI)
platform to directly compare the two modalities.

“Compton imaging has potential to provide better images than
conventional SPECT and PET, in particular for radionuclides emitting high-
energy gamma rays,” explains Hideaki Tashima. “We expect to explore
new radionuclides that have never been used for nuclear medicine.”

“We are now exploring detector technologies for better energy
resolution,” adds project leader Taiga Yamaya. “We are looking ahead to
the realization of a clinical WGI system.”

(Courtesy: Tami Freeman, Physics World)
physicsworld.com/a/compton-imaging-opens-
up-new-avenues-for-diagnostic-imaging/

Compton mode

Hideaki Tashima, et al., “3D Compton image reconstruction method for whole gamma imaging,” Physics in Medicine & Biology, 2020.

Collaborators

All members in Imaging Physics Group, Kotaro Nagatsu,

JSPS KAKENHI (E#2A 16H02641, PKEKEAZF 18K19949, [E PR+ [F]B 19KK0280, Z A C 20K12683 and £ &S 20H05667),
the QST International Research Initiative (IRI) program and the QST President Grant.

Atsushi Tsuji, Tatsuya Higashi (NIRS-QST), Mikio Suga (Chiba U.),

Peter Thirolf, Katia Parodi (LMU), Kei Kamada, Akira Yoshikawa (Tohoku U.) and Yoichi Imai (U. Tokyo)

Taiga Yamaya <jpet@gst.go.jp>, Imaging Physics Group, NIRS-QST

NIRS
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Imaging Physics Group FY2020

Group Leader

Taiga Yamaya

Principal Researcher

Eiji Yoshida, = Miwako Takahashi (part time until Sep.)

Principal Researcher (part time)

Naoko Inadama

Senior Researcher

Hideaki Tashima, = Fumihiko Nishikido, = Akram Mohammadi

Senior Researcher (part time)

Md Shahadat Hossain Akram,  Chie Toramatsu

Researcher

Go Akamatsu (Postdoc until June), Han Gyu Kang

Researcher (part time) Yuma Iwao

Postdoctoral Researcher Sodai Takyu

Senior Technical Staff Hidekatsu Wakizaka

Technical Staff (part time) Fujino Obata

QST Research Assistant Shoma Ohigashi,  Kaito Suzuki,  Takumi Nishina (from Oct.)
Secretary (part-time) M. Ohno, Y. Saito, M. Tanaka (Public Relations, from Oct.)

Visiting Researcher (alphabetical)

Trainee / Internship (alphabetical)

Makoto Doi ATOX Co., Ltd.

Keisuke Hori Chiba University (Yamaya-lab. B4)

Hideaki Haneishi Chiba University

Tomoya Kikuchi Chiba University (Suga-lab. B3)

Tomoyuki Hasegawa | Kitasato University

Hayato Numakura | Yamagata University

Yoshiyuki Hirano Nagoya University

Ryotaro Ohashi Chiba University (Yamaya-lab. B3)

Shigeki Ito Mirai-imaging Corp.

Yuji Rodrigo Okada | NIT, Toyama College (Takada-lab. AC2)

Masaaki Kumagai ATOX Co., Ltd. Yutaka Otaka University of Tokyo (Takahashi-lab. D3)
Shunsuke Kurosawa | Tohoku U. Daiki Satake NIT, Toyama College (Takada-lab. AC1)
Takashi Obi Tokyo Inst. Tech. Mizuki Uenomachi | University of Tokyo (Takahashi-lab. D3)
Yoshiaki Sato ATOX Co., Ltd. Tuo Yin Tokyo Inst. Tech. (Obi-lab, M2)

Kengo Shibuya University of Tokyo

Kenji Shimazoe University of Tokyo

Mikio Suga Chiba University

Eiji Takada NIT, Toyama College
Tsunetoshi Tanaka ATOX Co., Ltd.
Hiroshi Umeda ATOX Co., Ltd.
Masakazu Yamagishi | NIT, Toyama College
Taichi Yamashita ATOX Co., Ltd.

Masao Yoshino Tohoku University

Major collaborators (except for funded projects)

Collaborators (alphabetical)

Themes

(Dep. Thoracic Surgery, U Tokyo Hospital)

1 | Masaki Fukunaga (NIPS) Research on PET inserts for MRI
2 | Mikio Higuchi (Hokkaido U) Beta-ray micro imaging using thin scintillators
3 | Japan Radioisotope Association Development of 2?Na phantoms
4 | Takashi Obi (Tokyo Inst. Tech.) TBD (M2, Tuo Yin)
. . . In-beam PET sim/exp,
5 Elﬁtcli?vip?l\;zgilﬁﬁzazl]-r:\l/rgrzitét Miinchen) QST-IRI collaboration for WGI development,
9 Development of an in-beam PET platform for small animal irradiation
Anatoly Rosenfeld (U. of Wollongong), P .
6 Mitra Safavi-Naeini (ANSTO) Research on range verification for carbon ion therapy
7 Masaaki Sato Early diagnosis of chronic rejection after lung transplantation by nuclear

medicine

8 | Mikio Suga (CFME Chiba U)

Absorption of electromagnetic waves from MRI RF coil (M2 Taisei Miyaki)
Compton-PET simulation (M1 Takumi Nishina)

9 | Eiji Takada (NIT, Toyama College)

Medical application of organic semiconductor detectors (AC2 Yuji Rodrigo Okada)

Hiroyuki Takahashi, Kenji Shimazoe
(University of Tokyo)

Development of a read-out circuit for Si-detectors

Taiga Yamaya, Hideaki Haneishi
(CFME Chiba U)

Deep learning approach to chronic pain SPECT (M2 Kaito Suzuki)

Scanner performance evaluation from clinical PET images (M2 Shoma Ohigashi)
Deep learning prediction of lung transplant rejection from FDG-PET (B4 Keisuke Hori)
Monte Carlo simulation for realization of a forceps PET (B3, Ryotaro Ohashi)

Collaborative research contracts

Collaborators (alphabetical) Funding Themes
1 AIST (Mitsugu Sohma, Jun Akedo) No Sample development by the AD method and evaluation of its
membrane structure
2 | ATOX Co., Ltd. Yes Research on practical realization of the helmet PET
3 | Mirai-lImaging Corporation Yes Scintillation detectors for nuclear medicine and environment
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FY2020 Imaging Physics Group Grants

As of Dec. 31, 2020

Internal budget (b iy luding labor cost) [x1,000 ven]
Budget Note AmoumLabor Main collaborators outside the group (PI underlined)
Realization of a new imaging-based .
) ) ° ) " Makoto Higuchi, et al. (NIRS;
1 |diagnostic method for dementia and  |For Integration Plan D (Additional) 40,000 asolo dzuch o2 5. MRS )
Naokoi Kawachi, Mitsutaka Yamaguchi (Takasaki)
depression (BIAB1)
Realization of a new imaging-based .
) ) ° ) Makoto Higuchi, et al. (NIRS;
2 |diagnostic method for dementia and  |For Integration Plan D 9,700 asolo dpuciy. o2 5. MIRS) )
Naokoi Kawachi, Mitsutaka Yamaguchi (Takasaki)
depression (BFAB3)
, 3:11)'( er:?;tional Research  Initiative|For collaborative research with LMU on whole gammal o500 oy |5t Taui Ko Nagatsu (NIRS)
: Jmaeing ” " 937 Katia Parodi, Peter Thirolf, et al. (LMU)
PI: Taiga Yamaya (Internal competitive grant)
Research  on  new  cancer ) .
. A Latsuya Rigasni, -
4 | oeoharmaceutical druge (BIAGDY " |For Integration Plan A 9,000 0|Tatsuva Higashi, et al. (NIRS)
Research on diagnosis methods using
photon  and  quantum  imaging
5 |rechmologion (BIAB1) For group operation 7,000 0
PI: Taiga Yamaya
¢ |Directorate’s Fund (B1AB1) For “Quantum PET” project 2000 Kotaro Nagatsu, Atsushi Tsuji, Taku Inaniwa (NIRS), Naoki Kawachi (Takashaki), Kengo Shibuya (U
Pl Taiga Yamaya (Internal competitive grant) . Tokyo)
7 |Returned indirect expense 10% of indirect—BIAB1 2,267 0
Directorate’s Fund For carbon ion mi ot Hitoshi Ishikawa, Hiroshi Tsuji, Masaru Wakatsuki, Makoto Shinoto, Kazutoshi Murata, Makoto
8 T'm 3”’ ©s Fun (10: °”|°” fon 'S;,Cm s”rg;"y projec 1,500 0|Sakama (QST Hospital), Makoto Higuchi, Takafumi Minamimoto, Toshiyuki Shirai Shunsuke Yonai,
aiga Yamaya nternal competitive gran Dousatsu Sakata, Ryoichi Hirayama (NIRS), Motohiro Hayashi (TWMU)
o |QST President's Fund Intra-operative “scratch-PET” 1000 R
PI: Yuma Iwao (Internal competitive grant) .
10 |@ST President's Fund Partial ring PET with reduced imaging artifacts 1000 R
PI: Hideaki Tashima (Internal competitive grant) !
11 |@ST President's Fund (ABACR) Quantum theranostics with *Cu-labeled antibody for 100 Yukie Yoshii, Tatsuya Higashi, Ming-Rong Zhang, Hisashi Suzuki (NIRS),
Hideaki Tashima, Taiga Yamaya pancreatic cancer (Internal competitive grant) Mitsuyoshi Yoshimoto (NCC), Hiroki Matsumoto (Nihon Medi-Physics)
=& 85,067 7.037

Competitive grants [x1,000 yen]

; Direct expense Indirect Members in the group N
Project Therme o e ] ey oG Collaborators outside the group

. [Dovlopment rograms - Focuset“on|Forceos tpe min-PET system for nre-aperative bmoh | 100 o maml  ipooo e Tsammst Fuminko (I LT S
Technology ~ Transfers  (AMED-|node diagnosis ' ’ e g v 4 Nakaguchi (Chiba U), Yasuyuki Seto
SENTAN) e (U Tokyo)

KAKENHI Whole gamma imaging to break through the physical Taiga Yamaya, Miwako Takahashi, |2 Yoshikawa (Tohoku Uj, Mikio
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Introduction

Whole gamma imaging (WGI) is a new imaging concept which
combines PET and Compton imaging [1-2]. By inserting a
scatterer detector ring into a PET ring, two different modalities
can be evaluated on the same platform. It is difficult for
conventional Compton cameras to achieve a higher spatial
resolution than PET [3-7]. Therefore, we are developing the
WGI system that brings us closer to the realization of Compton
imaging which is comparable to PET imaging.

To this end, sensitivity and energy resolution of the scatterer
detector need to be improved. Sensitivity is improved by using
thicker crystals but the parallax error resulting from the crystal
thickness should be carefully addressed. Depth of interaction
(DOI) detectors work well while suppressing the parallax error.
In the 15t and 2" WGI prototypes [1-2], because a scintillator
which had a different decay time from the absorber was used
for the scatterer, energy resolution of the scatterer was
degraded due to the limitation of the data acquisition system.
In this work, we developed the 3™ WGI prototype with a 2-layer
DOI scatterer detector consisting of a GSO scintillator which
was the same scintillator as the absorber detector.

"; _“&' ’.a&s

¢ PET (absorber ring)

s

iy 2
Il

Fromy|

8.4cm

e

il i
= —
g Axial: 10.4 cm

-

Figure 1 The 3 WGI prototype. Photo of a 2-layer DOI GSO detector (a), a schematic drawing of a new scatterer detector ring
(b) and a photo of the 3 WGI prototype (c).
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Developed 3" WGI and performance evaluation

Figure 1 shows the structure of the 3 WGI prototype. The
GSO crystals (Oxide, Japan) sized at 2.9 x 2.9 x 7.5 mm?® were
arranged into a 7 x 7 array for the 1st layer and a 8 x 8 array
for the 2nd layer, and these layers were stacked with the
staggered arrangement. The 2-layer DOl GSO block was
coupled to a multi-pixel photon counter (MPPC) array module
(3 x 3 mm?, 8 x 8 array, Hamamatsu Photonics K.K.). Totally,
forty detectors were fabricated. The scatterer detector ring had
four rings and each ring had ten detectors. The inner diameter
was 8.4 cm and the axial length was 10.4 cm. The scattering
detector ring was inserted into the absorber detector ring [8] to
construct the 3" WGI prototype. Table 1 is a comparison of the
system configuration of each WGI prototype.

At first, energy resolution of the scatterer detector was
compared to the scatterer detector of the 1%t and 2" WGI
prototypes. Using a point source of '*’Cs, we compared
angular resolution measure (ARM) and Compton imaging
sensitivity to those items for the 29 WGI prototype. The
definition of Compton imaging sensitivity [%] is the number of
coincidence events in which the energy deposition is in the
range of 50-200 keV for the scatterer detectors, 460-610 keV
for the absorber detectors and 550-770 keV in total divided by
the total number of decays. A Derenzo phantom injected with
an aqueous solution of 8Zr (which mainly emits positrons and
909 keV gamma rays) was measured for 2 hours. Image
reconstruction was performed using list-mode ordered subset
expectation maximization (OSEM). Then PET and Compton
images were compared. Normalization was performed using
the measured data of a hollow phantom. Random correction
was carried out by the delayed coincidence method.
Attenuation correction and scatter correction were not
implemented.

FIEZIT > 7, LS5 - BELMIEIZEE L TUL7aLy,
Table 1 System configurations of the WGI prototypes.
WGI-1 WGI-2 WGI-3
Scintillator material GSO
Size of crystal [mm?] 29%x29x75
Absorber Number of crystals 16 x 16 x 4
(PET ring) Number of detectors 40 det. x 4 rings
Ring diameter [cm] 66
Axial length [cm] 21
Scintillator material GAGG GSO
Size of crystal [mm?] 0.9%x09x6.0 29x29x75
Number of crystals 24 x 24 x 1 (7x7)+(8x8)
Scatterer - - -
Number of detectors 20 det. x 2 rings 10 det. x 2 rings 10 det. x 4 rings
Ring diameter [cm] 20 9.4 8.4
Axial length [cm] 5.2 5.2 10.4
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Results and discussion

Figure 2 (a) shows the energy resolution results of a scatterer
detector of the 3™ WGI prototype. The scatterer detector had
an energy resolution of 23.5% at 81 keV, 14.7% at 141 keV,
12.7% at 202 keV, 11.2% at 307 keV, 10.4% at 511 keV and
10.1% at 662 keV. Although there are some points without data
in the graph, the scatterer detector had an improved energy
resolution compared to the scatterer detector of the 15t and 2"
WGI prototypes.

The comparison of ARM and sensitivity results is shown in
Figures 2 (b) and (c). The horizontal axis indicates the radial
offset position from the center of the field of view (FOV). The
angular resolution was about 6 degrees at the center of the
FOV and slightly deteriorated toward the peripheral region of
the FOV. Although there were fewer data points, we
considered that the angular resolution was comparable
between 3 WGI and 2" WGI prototypes. We considered that
the comparable angular resolution was because the effect of
the enlarged crystal size canceled the effect of the improved
energy resolution for ARM. The sensitivity was about 0.18% at
the center of the FOV and it was almost constant even at the
peripheral region of the FOV. The 3 WGI prototype had about
1.5 times higher sensitivity than the 2" WGI prototype at the
center of the FOV.

Figures 3 (a) and (b) show a reconstructed PET image and
Compton image of the Derenzo phantom. For the PET image,
all coincidence events such as scatterer-scatterer, absorber-
absorber and scatterer-absorber were used for PET image
reconstruction. The voxel size and the number of subsets were
the same for both images. The PET image resolved 2.4 mm
rods clearly, while the Compton image resolved larger 3.2 mm
rods only roughly. Comparing the line profile of the 3.2 mm
rods (Figure 3 (c)), the PET image more clearly resolved the
peaks and valleys of the rods than the Compton image. The
current Compton image did not exceed the PET image quality.
Further optimizations of the system and the image
reconstruction are required.

Conclusion

We developed the 3 WGI prototype. The new scatterer ring
with the 2-layer DOI GSO detector had better energy resolution
and Compton imaging sensitivity than our previous WGI
prototypes. Further improvements of the 3 WGI system will
be made to reach the final goal of achieving Compton imaging
that outperforms PET imaging.
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Figure 2 Experimental results. Energy resolution (a), ARM (b) and Compton imaging sensitivity (c).
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Figure 3 Reconstructed images of Derenzo phantom: PET image (a), Compton image (b) and comparison of the line profiles on

the red dashed line in (a) and (b) for the 3.2 mm rods (c).
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Introduction

Compton imaging was developed originally for practical uses
in space science, and, in recent years, its development has
widened to include environmental radiation measurements
and medical applications. Compton imaging was expected to
be single-photon tomography
(SPECT) that can measure various radionuclides not only
SPECT isotopes but also positron emission tomography (PET)
isotopes, but previously developed systems suffered from poor
image quality far from that of PET or SPECT.

collimator-less emission

Last year, however, we succeeded in achieving Compton
image quality approaching that of PET for a #2Zr-injected
mouse measured by our whole gamma imaging (WGI)
prototype. There were three key points: 1) the developed
Compton image reconstruction method incorporated a highly
accurate detector response function with essential correction
methods; 2) the high energy 909 keV gamma rays emitted from
89Zr were suitable for achieving a high resolution; and 3) the
WGI prototype was realized for the full-ring geometry. Our WGI
prototype is the world’s first realization of the full-ring Compton
imaging system. However, the effectiveness of the full-ring
geometry has not been thoroughly investigated.

Therefore, in this study we experimentally investigated the
Compton image reconstruction condition by comparing the full-
ring system with a partial-ring scatterer geometry simulated by
extracting data.

Methods

We measured a cylindrical phantom filled with 8Zr solution
using a WGI prototype (WGI 2") [2] remodeled for small
animal experiments (Figure 1). The WGI 2" had a double-ring
geometry composed of an outer ring of absorber detectors (4-
layer depth-of-interaction (DOI) detectors of GSO crystals with
crystal size of 2.8x2.8x7.5 mm?®) and an inner ring insert of
scatterer detectors (non-DOI detectors of GAGG crystals with
crystal size of 0.9x0.9%6.0 mm?®). The diameter of the phantom
was 38 mm, and it contained radioactivity of 10.2 MBq. We
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simulated partial-ring scatterer geometries starting from the top
1 detector and increasing by 2 detectors, one on each side, in
steps up to 9 detectors, out of 10 detectors which would be the
full-ring geometry. To simulate the geometries, we filtered list-
mode data measured by coincidence detection between the
scatterer and absorber detectors at the time of data loading to
exclude list-mode data that came from detectors marked not to
be used in image reconstruction.

For image reconstruction, we used the Compton image
reconstruction method, which was developed based on the list-
mode ordered subset maximum expectation maximization
(OSEM) method incorporating the energy
dependent detector function modeling, normalization, and
random correction. Image quality was evaluated by visual
inspection of the reproducibility of the cylinder shape phantom.

resolution-

To absorber ring

Number of
the scatterer
detectors

T T
2" 4 @ ¢ 7 8 9

Cylirl1drica| Phantom (89Zr)

(b) (c)

Measurement setup for a cylindrical phantom filled with a 89Zr solution by the WGI 2™ prototype (a), a simulated

partial-ring scatterer geometry (an example of the case of 7-detector per ring) (b), and the cylindrical phantom (c).
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Results

Figure 2 shows reconstructed images when the number of
scatterer detectors per ring was varied from 1 to 9 in 2-detector
steps. In the case of 1 scatterer detector, the phantom shape
was reproduced to some extent in the coronal slice, but strong
streak artifacts radiating from the scattering detector occurred
in the transaxial slice. In the case of 3 detectors, the coronal
slice was similar to the full-ring case, but the transaxial slice
showed strong streak artifacts towards the direction without
scatterer detectors. When the number of detectors was
increased to 5, there was only a slight distortion at the location
indicated by the white arrow in Figure 2. When the number of
the detectors was increased to 7, the cylindrical shape was
reproduced to the same extent as the full-ring case. In the 7-
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T, 7 BHEBEFTEPTETILY VT ERFREICH  detector geometry, the scatterer detectors covered more than
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Figure 2 Images of the 82Zr cylindrical phantom reconstructed for the partial-ring scatterer geometries (1-9 detectors) and the
full-ring geometry (10 detectors). The upper row shows schematic illustrations of the geometries (not to scale). Images in the
middle and the lower rows show the central slices for each slice direction.
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BONTLLBRICIORMABRIND LMD above considerations, we suggest as a condition for accurate
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Conclusions

To verify the effect of the full-ring geometry in WGI Compton
imaging, we simulated partial-ring scatterer geometries by
filtering the measurement data and compared them with the
full-ring geometry results. Our findings suggested that for
Compton imaging, it is unnecessary to cover the entire object
with the full-ring geometry, but the condition for accurate image
reconstruction is that the object should have more than 180°
coverage by the scatterer detectors.
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Introduction

We have been developing an MRI coil-integrated PET, “Add-
on PET,” [1] which enables an existing MRI scanner to be
upgraded to PET/MRI easily. However, a PET detector has a
certain thickness because scintillators and photodetectors
need to be stacked inside a shield box. Therefore, when
imaging with a full-ring PET system, it is impossible to set up
the subject with the same posture as a typical MRI examination
due to the interference with the bed. Therefore, we
investigated C-shaped PET in which a part of the ring is open.
The open space is used to pass the head through so that the
patient setup can be simplified. However,
projection data of the C-shaped PET are truncated because
the y-ray pairs toward the open part can be detected only on
the other side. Due to the truncation, distortions or artifacts
strongly occur in reconstructed images.

measurable

Therefore, we are developing a new C-shaped PET system
that can compensate for the truncation by applying the
Compton imaging technique. Figure 1 shows the C-shaped
Compton-PET geometry, in which the C-shaped PET ring is
regarded as an absorber, and the scatterer is inserted at the
location opposing the open space. This idea was inspired by
whole gamma imaging (WGI) [2], which combines PET with
Compton imaging. Artifacts reduction will be possible by
combining PET events and Compton events in image
reconstruction. Here, we verify the effect of reducing image
artifacts in the C-shaped Compton-PET by Monte Carlo
simulation.

Compton camera

Compton cone

C-shaped Compton-PET
C-shaped PET (absorber)

Scatterer

Compton detection of
511 keV y-ray

Coincidence of
511 keV y-ray pair

g Scatterer |$

Absorber

E,

Figure 1
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Principle of the proposed C-shaped Compton-PET.
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Methods
Simulated geometry

Using the Geant4 toolkit, we modeled the C-shaped Compton-
PET, in which a scatterer (Si semiconductor detectors, 300 mm
inner diameter) was inserted into a C-shaped PET ring (GSOZ
crystals, 400 mm inner diameter) regarded as the absorber, as
shown in figure 2 and table 1. The absorber was modeled with
4-layer depth of interaction (DOI) detectors [3]. The number of
scatterer detectors per row was simulated with 9 to
compensate for the angle of the open part and 15 to approach
the angle of the absorber, respectively. For comparison, we
also simulated the C-shaped PET geometry only, excluding the
scatterer. Assuming a brain PET measurement, we set a
cylindrical phantom with a diameter of 200 mm, a height of 150
mm, and uniform radioactivity of positron emitters. We
assumed the radioactivity of 4.5 MBq and the measurement
time of 5 min.

Image reconstruction and evaluation method

We used a hybrid image reconstruction method combining
PET and Compton events developed based on the list-mode
subset maximization (LM-OSEM)

ordered expectation

algorithm [4].

The 3D region corresponding to the cylindrical phantom was
defined as the region of interest (ROIl), and the sum of pixel
values for the ROl was calculated as SUMgo. We also
calculated the sum of pixel values for the entire FOV, including
the background, and we defined it as SUMgoy. The ratio of the
total pixel value inside the cylinder to that of the entire FOV
was evaluated by the (SUMgol / SUMroy) as a recovery
coefficient.

Results

The reconstructed images and evaluation results are shown in
figure 3 and figure 4, respectively. For the C-shaped PET,
strong artifacts occurred, especially in the lower part of the
cylinder, because of the lack of projection data due to the open
part (figure 3(a)). On the other hand, the C-shaped Compton-
PET reduced the truncation artifacts and reproduced the
cylinder more accurately than the C-shaped PET (figures 3(b),
(c)). Further, the geometry with 15 detectors per row
reproduced the shape of the cylinder more accurately than that
with 9 detectors. Figure 3 (c) is blurred because the accuracy
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of Compton imaging is lower than that of PET imaging and the
calculation is not sufficient for the convergence of the solution.
As a result of the quantitative evaluation, the C-shaped
Compton-PET increased the recovery coefficient, indicating
that the geometry is effective for reducing the image artifacts
(figure 4).

Front view Side view

47/’ \\<>

U=

A L
(b)

Figure 2 lllustration of the simulated geometry: with scatterer inserts of (a) 9 X 6 and (b) 15 X 6 detectors.
Table 1 Major specifications of the simulated geometry.
Type of Detector Insert (Scatterer) C-shaped PET (Absorber)
Material Si GS0OZ
Energy resolution @511 keV 2.5% 13.7%
Crystal size [mm?] 1.0x1.0x6.0 2.85x2.85%x75
Number of pixels 30x30x1 16 X16 x4
Number of detectors 0 9x6 15x6 17 x4
Ring diameter [mm] 300 400
Step angle [deg] 15.0 14.4

300 mm 200 mm

300 mm

PET sensitivity: 28.7 [cps / kBq]

Compton sensitivity: 8.0 [cps / kBq]
Total sensitivity: 35.4 [cps / kBq]

(a)

27 4 [cps / kBq] 25.2 [cps / kBq]
14.6 [cps / kBq]
39.9[cps / kBq]

(b) (c)

Figure 3 Reconstruction images: (a) without the scatterer (C-shaped PET) and with the scatterers having (b) 9 X 6 detectors
and (c) 15 x 6 detectors.
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Figure 4 The result of the image quality evaluation for the proposed geometries with the scatterers 9 x 6 and 15 x 6.

xeH Conclusion

Geant4 #FUWT C & Compton-PET % &% L. We modeled the C-shaped Compton-PET by using Geant4.
T—F 770 MEBNR AR L1, ZDEER, C R From the Monte Carlo simulation results, we showed that the
Compton-PET ERIBARY ATV T Ry A Ry C-shaped Compton-PET could reduce artifacts by applying an
e LTSI, CEPET OFMETERICEL image reconstruction method combining the PET and

. . Compton events. In our future work, we will optimize the
T=F 770 MEERTBIENTE, SHRIIK
BERHBORBEL A E ATV, EEOBEED Mm% 1T
IFETH S,

number of iterations and subsets.

Acknowledgements

Collaborators Hideaki Tashima, Sodai Takyu, Fumihiko Nishikido, Taiga Yamaya (NIRS-QST)
Mikio Suga (Chiba University)
Grants JSPS KAKENHI 20K12683 (PI: Hideaki Tashima)

QST President’s Strategic Grant (Exploratory Research) (PI: Hideaki Tashima)
IEEE NSS-MIC 2020 Trainee Grant (150 USD)

References
[11 F. Nishikido, et al., “Development of a full-ring “add-on PET” prototype: A head coil with DOI-PET detectors for
integrated PET/MRI,” Nucl. Instruments Methods Phys. Res. A, vol. 863, pp. 55-61, 2017.

[2] E. Yoshida et al., “Whole gamma imaging: a new concept of PET combined with Compton imaging,” Phys. in Med.
Biol., vol. 6, p. 125013, 2020.

[3] Y. Hirano et al., “Performance evaluation of a depth-of-interaction detector by use of positron-sensitive PMT with a
super-bialkali photocathode,” Radiol Phys Technol., vol. 7, pp. 57-66, 2014.

[4] H. Tashima, et al., "Development of a hybrid image reconstruction algorithm combining PET and Compton events for
whole gamma imaging,” IEEE NSS&MIC, MIC-15-150, 2020.

26



PET 2020 Report on PET Imaging Physics Research

"I‘%EU?}% Special contribution

R bAZo LICK5BRSEHALE

Measurement of pO2 using positronium lifetime

MG BIE RRAFRFERE TR

Kengo Shibuya, Graduate School of Arts and Sciences, The University of Tokyo

FL&IC

myoz=o L (Ps) | BTLEFHIOLARDT
Sy F v IRFT, PET @EEP ICIRERE DIEN T
1 FEEIFEBFICERL TV, Ps 3 <ERFH
(FFEHLESD 1#IFEE) T2HRDyIRICE(LT S
7=, {EED PET TIRZDHEEEZZH L TULARL,

ARG, D Ps OFmHEALOBEENSTIRE
(pO) I U TEALT 2MEICE D 7 RER
RAA—D VT FEERET D, DNAMRITEMLE
DEWDH DT EEKFICIBIEL., BENGEBRRTRE
IZBE Y R L, BIC BRRT R OMEE AR L
T, LIFLIZHEREERTY, £ERD p0, HHAEH

L <DL, D ABREDRIRICHE L D?

R

NABETESL L FDG-PET (1. HE MR TER
BEZBET 2. XROMSEFMBLTWS

“Frem > ("O+e")+e - (e"+e)+"0 - 2y+"0.

F 9 R RIAL %@ BEAISEF (ef) Z#HET S
(BrERt ) RIS, BEFHIEEDFOHNEETFD 1
2 (e) IZEZEL. 2 $0> Y IR~ T D (BFAHE

B)oe TD2ARKDYyBROBEMEN S, ¥F ZBHEI&
L T THEWEEROEERND L DD D

CITPsEMRERFIZ. DREEZEETET :
“Fre — (”‘O+e*)+e‘ N

QA TEMEINETRIEZ, BEFLEFICLD Ps

ﬁ/&%ﬁi} 7=7= L/ Ps @ﬁ/ﬁk iﬁ_%xﬁl]fck 7 |“7
v hTHBHEBYR Qy) ITEELAEW D, I

(e"+e7)+"0
(e"+e)+"0 - Ps+"0

Introduction

Positronium (Ps) is an exotic atom consisting of a positron and
an electron, and ca. 100 billion Ps atoms are spontaneously
created in the human body during a PET scan. Ps has received
little attention in PET because it annihilates into two y-ray
photons in a very short lifetime: ca. 2 ns (1/500,000,000 s) in
average.

Our recent work shows that the lifetime of Ps depends on the
surrounding oxygen concentration (pO;) and proposes that it
can be used for hypoxia imaging. Since more malignant cancer
cells tend to grow faster to fall into chronic oxygen deficiency
and these cells are often resistant against treatments such as
radiation therapy as well as chemotherapy [1], the knowledge
of the pO; distribution will help the selection of a treatment for
patients [2].

Principle

The FDG-PET, a well-known cancer examination, uses '®F and
the following reactions:

M

First, '®F undergoes B* decay and emits a positron (e*).
Second, the positron collides with an orbital electron (e") in
nearby molecules to annihilate into two y-ray photons. Last, the
detection of the two photons make us known the location of
8F-labeled pharmaceutical.

The Eq. (1) should be modified to include the creation of Ps as
follows:

— "0+2y. 2)

The lower part of Eq. (2) describes the creation of Ps from a
positron and an electron. No matter whether Ps is generated
before the annihilation or not generated, the same outputs are
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obtained, i.e., two y-ray photons. This is why we have not
discussed Ps in PET. However, the timing of the y-ray
emissions is delayed as long as the lifetime of Ps. This time-
lag provides the new biological information because the Ps
lifetime is reduced by an interaction with the molecules having
unpaired electrons such as O; [3]. Therefore, Ps can be work
as an in vivo “nano-size oxygen-meter.” The more details of the

sensing mechanism are described in the following box.

To whom interested in the detail #1: Ps spin states

There are two kinds of Ps atom in different spin states: one has
the parallel spins between the positron and the electron and
the other has the anti-parallel spins. The former Ps has a
lifetime of 142 ns in vacuum and decays into three y-ray
photons while the latter Ps has a lifetime of 125 ps in vacuum
and decay into two y-ray photons [4]. The large difference in
their lifetimes is due to the number of photons involved; the
increase in the photon numbers makes the chance smaller to
meet the conservation laws.

The former lifetime is so short that the decay is difficult to be
distinguished from the direct annihilation at the upper part in
Eq. (2). Therefore, the pO,is informed by the former Ps via the
electron exchange interaction with an oxygen molecule as
follows:

©)

where the arrows indicate the spin direction (up/down) of the
positron (p) or electron (e). This reaction changes the Ps spin
from parallel state, e.g., T T, to anti-parallel state, e.g., T |,
then the lifetime is reduced. The lower pO,, the longer Ps
survives.

Material and method

Three kinds of sample were prepared with different oxygen
Nz-saturated (pO2=0 mmHg)
saturated (pO2 =159 mmHg) water, and O,-saturated (pO,=750
mmHg) water. Each sample contains positron emitter: 190 kBq
(5 uCi) 2NaCl. We obtained 49 million counts from the N.-
saturated sample, 59 million counts from the air-saturated
sample, and 43 million counts from the Oz-saturated sample,
and the mean time-lag was determined between one detection
of a nuclear y-ray photon (1.27 MeV) emitted approximately at
the same time of the B* decay and another detection of an
annihilation y-ray photon (<511 keV) emitted at the annihilation
of Ps in the parallel spin state.

concentrations: water, air-
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Results

A linearity was found in Fig. 1 between the oxygen
concentration (pO;) and the Ps annihilation rate, which is the
inverse of the mean lifetime of Ps in the parallel spin state. As
the pO; increased from 0 to 750 mmHg, the annihilation rate
was increased from 520 to 548 ps™'. The linearity comes from
the fact that the chance for Ps to meet with O, is proportional

IS B=dIcE Lz, to pO2,
" 560
=5
P in 100%
© 550} 0,
=
ks]
8 540}
£
c
& 530
§
= in Air (21% O,)
Q 520}
= in 100%
° N
o 2
510
0 100 200 300 400 500 600 700 800

Oxygen partial pressure (pO,) /mmHg

Figure 1 Alinearity between the oxygen concentration (pO.) and the Ps annihilation rate [5].
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The linearity provides how to convert the Ps annihilation rate
(T/us™) to the absolute value of pO./mmHg as follows:

©)

where the values in the brackets are the uncertainty (1c). The
sensitivity, i.e., pO, resolution, can be estimated from this
uncertainty to be ca. 10 mmHg when 300 million counts are
obtained from the field-of-view (FOV) and to be ca. 5 mmHg
when 1 billion counts are obtained.

Discussion

The pO; in healthy liver tissue cells is reported to be ca. 41
mmHg [6], and that in liver tumor cells is reported to be ca. 6
mmHg [7]. Assuming that their discrimination is possible when
the resolution (10) is better than the difference by a factor of 2,
the resolution of 17 mmHg is the least requirement. Therefore,
the result above indicates that the Ps annihilation rate imaging
(PARI) has enough sensitivity for discriminating hypoxia
regions from the control regions.

The advantage of PARI is the absolute determination of pO,,
which is independent of the scanner and protocol. As this
method based on the fundamental properties of Ps, i.e., its spin
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and reactions, the results are also independent of the tracer
and its mechanism of delivery/accumulation.

In order to realize PARI, a new timer for measuring Ps lifetime
is needed, but the technical barriers related to the hardware
are estimated not so high because the time resolution required
is comparable to that used in the time-of-flight (TOF [8])
function installed in most of current scanners.

It should be noted that 2Na with a long half-life (2.6 years) is
not adequate for human examinations, and another radioactive
isotope with a half-life of several hours/days and a prompt y-ray
photon emission should be employed, and the development of
448C

discussed in a WGI paper [9]. (In preliminary experiments with

radiopharmaceutical is essential. For example, is

small animals, however, we can use physical way of delivery
as described above.)

Summary

During a PET scan, 100 billion “nano-size oxygen-meters”, i.e.
Ps atoms, are spontaneously created and annihilated in the
human body. Here, we propose the new methodology to read
such an oximeter for the first time. In addition to the
conventional principle of the PET, namely the accumulation of
radioactivity, now is the time for a paradigm shift of the PET
using the new information from the Ps lifetime for the innovative
methodology of hypoxia imaging!

Fumihiko Nishikido, Miwako Takahashi, Taiga Yamaya (NIRS-QST)

References

[11 J. M. Brown & W. R. William, “Exploiting tumor hypoxia in cancer treatment,” Nature Rev. Cancer, vol. 4, pp. 437-447,
2004.

[2] M. R.Horsman, et al., “Imaging hypoxia to improve radiotherapy outcome,” Nature Rev. Clin. Oncol., Vol. 9, pp. 674—
687, 2012.

[8] R.A. Ferrell, “Ortho-parapositronium quenching by paramagnetic molecules and ions,” Phys. Rev., vol. 110, pp. 1355—
1356, 1958.

[4] M. D. Harpen, “Positronium: Review of symmetry, conserved quantities and decay for the radiological physicist,” Med.

Phys., vol. 31, pp. 57-61, 2004.
K. Shibuya, et al., “Oxygen sensing ability of positronium atom for tumor hypoxia imaging, ” Commun. Phys., vol. 3,
pp. 173, 2020.

(5]

[6] A. Carreau, et al., “Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and
hypoxia,” J. Cell. Mol. Med., vol. 15, pp. 1239-1253, 2011.

[71 P.Vaupel, et al., “Detection and characterization of tumor hypoxia using pOz2 histography,” Antioxid. Redox Signal., vol.
9, pp. 1221-1225, 2007.

[8] P.Lecoq, et al., “Roadmap toward the 10 ps time-of-flight PET challenge,” Phys. Med. Biol., vol. 65, pp. 32RMO01, 2020.

[9] E. Yoshida, et al., "Whole gamma imaging: a new concept of PET combined with Compton imaging," Phys. Med.

Biol., vol. 65, 125013, 2020.

30



PET

Ho LAY WAAN#2: BEFO—X

GETFO—4%%, M2I(Cxd, ELENBEAT S
&L ?Na > “Sc 13, B AL IZITAEICK Yy RE K
33, NP EBEREERBOSEER S, BE
FEOBVIRLE -5 BT & OHE
EFR T AR _H%T%t ﬁ%\?®%L$ ‘%
ZLIERT %, 2 b—E% (30-40%) DEGFE
b D@ TRVI D FH %?%19%%&%\%
EERT B,

Ps @ 1/4 IZRE VY RFITIREETER L, BEHIC 2
YICERTE (LROEREREXFITEAL),
HBY D 3/4 T REVFITIREED Ps TERK L., £D
REFAEDTFOHFEEBETFND S B, ALV DAIZTHN
Ps # BT A3BBEFORE Y EHFRAEDED ER
6L TIBERT %, chxey 24 7 (F4))
EWS,

o-Ps(T, T.)+H,0({,)

BIL, ABICEESTF (DTWTETF) HEFET D
. RBR)DBFRBRIGICE Y REVFEIT Ps AR
Y R¥EIT Ps ICERIR L. BICZ DERIC 2y ~E1L

T35, COBFXBRIGIZEY 77 HBRLY HE
ZHWXRTL BESFOEEIFRAE YV EIT Ps DFw
%E,‘E‘\ s%ﬂ%ﬁ—‘j— % o

Positron emitter

2020 Report on PET Imaging Physics Research

To whom interested in the detail #2: a positron life

More detail of the life of positron/positronium is shown in Fig.
2. Some positron emitters such as ?Na and “‘Sc also emit
prompt y-ray photon at their B* decay, and the photon is used
to trigger the timer. The energic positron loses its kinetic
energy in a short time during successive collisions with
surrounding molecules and finally collides with an orbital
electron in the surrounding molecules to annihilate into y-ray
photons, which stop the timer. Some positrons (30-40%)
capture an electron to create Ps before the annihilation and
they survive as long as the lifetime.

A quarter of Ps atoms are created in the spin-antiparallel state
and annihilate in a very short time, which cannot be
distinguished from the above collisional annihilation. On the
other hand, the other three quarters of Ps atoms in spin-
parallel state most likely annihilate via pick-off annihilation
between a positron in Ps and a foreign electron in the
surrounding molecules with the opposite spin as follows:

—2y+e (T) +H,0". 4)
In addition, the total annihilation rate is enhanced also by the
electron-exchange interaction when oxygen molecule having
the unpaired electron exists in the vicinity as described in Eq.
(3). The electron-exchange interaction exhibits higher
possibility to occur per collision in comparison with the pick-off
annihilation, the Ps lifetime is reduced effectively.

Surrounding molecules (H,O etc.)

Direct annihilation (2y)

(B* decay, Eq.1) Q
@) &" Interactions @ 4
Positron slow down A . * .
l oY Ps formation & )
Prompt y-ray (Eq. 2)
Self-annihilation
Self- ann|h|lat|on - Interactions w
% €
Pick-off annihilation @
p-Ps o-Ps (2,Eq. 4) 'O-Ps
(S=0) (S=1)
7, =125ps 7, =142ns

Electron exchange
interaction (Eq. 3)

' Interactions

Radicals (O, etc.)

o-Ps

\

Prompt y-ray
(start signal)

Annihilation y-ray
(stop signal)

Lifetime measurement

Figure 2 A lifetime story of positron/positronium and how O, reduces the Ps lifetime [5].
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Timing the life of antimatter particles
may lead to better cancer treatment

Experts in Japan have devised a simple way to glean more detailed
information out of standard medical imaging scans. A research team
made up of atomic physicists and nuclear medicine experts at the
University of Tokyo and the National Institute of Radiological Sciences
(NIRS) has designed a timer that can enable positron emission
tomography (PET) scanners to detect the oxygen concentration of
tissues throughout patients’ bodies.

“The outcome (of a positronium) is the same, but the lifetime is not.
Our proposal is to distinguish the lifetimes of positrons using a PET
scan with a timer so that we can map oxygen concentrations inside
patients' bodies," said Assistant Professor Kengo Shibuya from the
University of Tokyo Graduate School of Arts and Sciences.

"It should not be much of a cost increase for development of
instruments," said Professor Taiga Yamaya, a leader of the Imaging
Physics Group at the NIRS.

"We imagine targeting more intense radiation
treatment  to  the aggressive, low-oxygen
concentration areas of a tumor and targeting lower-

to give patients better outcomes and less side effects,"
said nuclear medicine physician Dr. Miwako Takahashi
from the NIRS.

(Courtesy: Caitlin Devor, EurekAlert!)
https://www.eurekalert.org/pub_releases/2020-10/uot-ttl092920.php
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layer in scintillation

Introduction

The image quality of positron emission tomography (PET) can
be improved by having information on depth-of-interaction
(DOI) within PET detectors [1, 2].

We have been working on development of a series of dual-
ended DOI detectors composed of crystal bars segmented
using subsurface laser engraving (SSLE) [3, 4]. SSLE creates
very fine micro-cracked layers in a scintillation crystal, which
acts as optically diffuse layers to scatter and reflect light [3-5].
Twenty DOI segments with DOI resolution of 1.0 mm was
obtained for the detector composed of 1x1x20 mm? sized
crystal bars [6].

In this report we focus on mitigating fragility of the narrow
crystal bars of our dual-ended detectors to have the
submillimeter spatial resolution for a small animal PET
scanner. For this purpose, twenty crystal bars with the same
size of 1.5x1.5x20 mm?® were divided into five groups and
crystals of each group were segmented into 4 DOI segments
by applying SSLE to the middle surface area of the crystal
cross section with the distance of 0.1, 0.2, 0.3, 0.4 and 0.5 mm
from two opposite edges of the crystal bars as shown in figure
1. Five prototype detectors were prepared using five series of
segmented crystal
investigated. Hereafter each prototype detector is identified
using the distance of the SSLE-induced layer from two
opposite edges of the crystal bars, crystal array 0.1, crystal
array 0.2 and so on.

bars and their performances were

Top view of a crystal bar at
induced SSLE layer

| © 5\\36\65 Fragile
oW
&N\
£ SSLE ® "w_
E — | X
&
7;5/\.? fa
1 S, :
(/% |mpr9yed
fragility
Yi_ia

X

Schematic drawings of a crystal bar segmented into 4 DOI segments by applying SSLE to the full surface area or the

middle of the crystal cross section with the distance of a mm from two opposite edges of the crystal.
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Material and method

Scintillation crystals of lutetium fine silicate (LFS) were used
and segmented into 4 DOl segments using the SSLE
technique. Five sets of 2x2 segmented crystal arrays were
prepared with reflectors between the crystal bars as shown in
figure 2.

Two 4x4 array TSV (through silicon via) MPPCs (S13361-
3050NE-04) were set at the bottom and top of the segmented
crystal arrays. The effective area of each MPPC was 3x3 mm?
and the dead space thickness between MPPC arrays was 0.2
mm (see figure 2). The 2x2 crystal array was at the center of
two MPPCs. The detectors were irradiated with two '*’Cs
sources from the bottom and top, as seen in figure 2. The
interaction positions were estimated by the Anger calculation.

mcSLsY'

Figure 2 Schematic drawings of the array of TSV MPPCs (left) and the DOI detector irradiated with two '*’Cs sources from the
top and bottom (right).

Results and discussion

The position maps were obtained for all five detectors after
applying energy windows around the photo peaks. 3D position
maps of the arrays 0.1, 0.3 and 0.5 are compared in figure 3.
The 3D position map shrank significantly in the z direction for
crystal array 0.5 compared to crystal arrays 0.1 and 0.3. The
responses of all four segments were separately identified;
however, a clearer separation was obtained for crystal arrays
0.1 and 0.3 compared to crystal array 0.5. The best segment
separation was observed for crystal array 0.1. The reason for
significant degradation of crystal segment identification for
crystal arrays 0.5 was probably due to increased cross talk
between the segments.

The energy resolutions for all crystal arrays are given in figure
4. It can be seen that the energy resolution was not significantly
changed for different crystal arrays.
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Figure 3 3D position maps of the crystal array of 0.1, 0.3 and 0.5.
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Conclusion

We investigated the performance of one of our DOI dual-ended
detectors to obtain the optimum surface area of the SSLE-
induced layers in the segmented crystal bars in order to
mitigate the fragility of segmented narrow crystals. We
evaluated performance of five prototype detectors consisting
of 2x2 crystal arrays segmented into 4 DOI segments by the
SSLE technique at the middle of the crystal cross section with
the distance of 0.1, 0.2, 0.3, 0.4 and 0.5 mm from two opposite
edges of the crystal. The best performance was observed
based on a compromise between fragility and crystal segment
identification for crystal array 0.3.
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Introduction

Small animal positron emission tomography (PET) scanners
have been playing an important role in preclinical molecular
imaging for new drug development. The 3D distribution of
radiopharmaceuticals inside a living animal can be visualized
quantitatively, providing useful information to understand the
mechanism of various radiopharmaceuticals at the molecular
level [1]. The spatial resolution and sensitivity are the major
parameters determining the reconstructed PET image quality.
Moreover, depth-of-interaction (DOI) information is crucial to
preserve the spatial resolution without compromising the
sensitivity [2]. In this report, we propose two types of next
generation small animal PET systems featuring DOI encoding
capability as we move closer toward our goals of high-
resolution and ultrahigh sensitive preclinical
imaging.

molecular

Development of a mouse brain PET scanner

Mouse brain PET imaging has been widely used for research
on dementia in rodent models.
available preclinical PET scanners cannot provide the detailed
structures of mouse brain due to the poor spatial resolution
limited by their large crystal pitch of around 1.2 to 1.5 mm and
the non-DOI crystal design (Figure 1). Therefore, here we
propose a novel high-resolution mouse brain PET scanner
featuring 1 mm crystal pitch and 3-layer DOI design which may
give insight the interpretation

radiopharmaceuticals uptake inside a living rodent animal.

However, commercially

a new on of

Methods

The proposed mouse brain PET scanner had a 53 mm ring
diameter and 11 mm axial field-of-view (FOV) (Figure 2). The
number of detectors was 16 each of which consisted of a
LYSO
photomultiplier (SiPM) 4x4 array. The crystal pitch of 1 mm and
total thickness of 15 mm (4+4+7 mm) were used. The SiPM

staggered  3-layer crystal array and silicon

anode signals were read out by using a resistive network to
encode the energy and crystal position (i.e. DOI information)
while the timing signal was extracted from the common
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cathode. The multiplexed SiPM analog signals were
transferred to the amplifier boards and subsequently digitized
by using the 8-bit data acquisition (DAQ) system. The energy
window and coincidence window were 400-600 keV and 20 ns,

respectively.

We performed in vivo mouse brain FDG imaging using the
proposed mouse brain PET scanner for 60 min 102 min after
the FDG injection. The PET images were reconstructed by
using the ordered-subset expectation maximization (OSEM)
algorithm with 8 subsets and 10 iterations. The identical mouse
was also scanned by using a commercial preclinical PET
scanner (Inveon, SIEMENS, USA) [3] for the performance
comparison with our mouse brain PET.

Inveon preclinical PET (SIEMENS)

Crystal pitch= 1.59 mm
"

*~——

]
T
]

é

Non DOI (LSO)

ID =161 mm

_»1 H
10 mm

wuw o1

Our proposed mouse brain PET (a) and the commercial Inveon preclinical PET from SIEMENS (b).

(b) In vivo mouse brain imaging

N
Front-end [
14

Figure 2 Photos of the proposed mouse brain PET scanner (a) and mouse brain imaging setup (b).

(a) CT image

Salivary gland

1 min

Scan time:

(b) Mouse brain PET (NIRS)

60 min

(c) Inveon PET (SIEMENS)

R Cortex

Thalamus

-
ye

) /
Salivary gland

10 min

Figure 3 CT image of the mouse head (a), mouse brain FDG image obtained with the proposed PET scanner (b) and mouse

brain FDG image obtained
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with the Inveon PET (c).
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Results

The CT image shows the anatomical structures of the mouse
head (Figure 3). The mouse brain structures such as cortex
and thalamus can be clearly identified in the reconstructed PET
image when the proposed mouse brain PET was used. On the
contrary, the cortex and thalamus were barely identified with
the Inveon PET due to the low spatial resolution.

Discussion

The proposed mouse brain PET scanner can visualize the
FDG uptake distribution on the mouse brain with a substantially
better spatial resolution over the Inveon PET scanner thanks
to the fine crystal pitch of 1 mm and 3-layer DOI encoding
capability. In the near future, we plan to extend the axial FOV
above 50 mm to enhance the sensitivity considerably.

Total-body small animal PET scanner

Ultrahigh sensitive small animal PET scanners can enable
real-time whole-body dynamic PET imaging which may provide
new opportunities in preclinical cancer research. The efficacy
of new radiopharmaceuticals for cancer treatment can be
assessed more accurately by acquiring delayed images
without additional injection of radiopharmaceuticals. However,
the sensitivity of the commercially available preclinical PET
scanner is less than 10% because of the short crystal thickness
(~10 mm) (Figure 4). Moreover, whole-body rat imaging is not
available due to the limited axial FOV (~130 mm). The
sensitivity of a preclinical PET scanner can be enhanced by
using a thicker crystal and a longer axial FOV, however, the
parallax error becomes problematic not only in the radial
direction but also in the axial direction. The parallax error can
be effectively reduced by using a DOI detector which narrows
the width of line-of-response (LOR). Hence, here we propose
a total-body small animal PET scanner with a 4-layer DOI
detector for ultrahigh sensitive whole-body rat imaging.

Method

The proposed total-body small animal PET (TBSAP) scanner
had an inner diameter of 155 mm and an axial FOV of 325.6
mm. There were 6 rings and each ring had 10 DOI PET
detectors which gave a total of 60 detectors. In this study, 5 of
6 rings were used since the detector calibration for the last ring
has not been finished at this time. Each DOl PET detector
consisted of a 4-layer GSOZ crystal array and an 8x8 array
multi-anode PMT. Each single crystal had dimensions of
2.8x2.8x7.5 mm?® (pitch = 2.85 mm) yielding 30 mm in total
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crystal thickness (Figure 5).

The spatial resolution and sensitivity were measured using a
NEMA #2Na point source with an activity of 0.42 MBq. The
coincidence window of 20 ns and energy window of 400-600
keV were used. The PET images were reconstructed by using
the OSEM algorithm with 8 subsets and 10 iterations. The
effect of DOI information on the reconstructed PET image
quality was investigated by using a Derenzo phantom that
included a ?2Na source (0.63 MBq).

Results

The radial spatial resolutions were 1.52 mm and 1.75 mm at
the center and 30 mm radial offset, respectively, with the
OSEM algorithm (Figure 6). The peak sensitivity was 16.7% at
the center of the axial position which was 2.4 time higher than
that of the Inveon PET. The Derenzo phantom image obtained
at the center of the FOV showed a clear identification of 2.2
mm rods. The rod diameters of 4.0 mm and 2.2 could be
resolved with the peak-to-valley ratios of 3.2 and 1.6,
respectively.

Radial resolution improvement with 4-DOI

The 2.2 mm rods could not be resolved without DOI information
due to the parallax error as the Derenzo phantom was placed
at the 30 mm radial offset position (Figure 7). However, the 2.2
mm rods were resolved with the 4-layer DOI information.

Axial resolution improvement with 4-DOI

The effect of DOI information on the axial resolution was
investigated by flipping the Derenzo phantom to align it in the
Y-direction (Figure 8). The coronal image (X-Z plane) of the
Derenzo phantom without DOI information showed 2.2 mm
rods could not be resolved due to the parallax error in the axial
direction. In contrast, the 2.2 mm rods could be resolved with
the 4-layer DOI information.

Discussion

The proposed total-body small animal PET scanner with 4-
layer DOI detectors provides a uniform spatial resolution of
around 1.87 mm across the FOV and the peak sensitivity of
16.7%. In the future, we will perform real-time dynamic animal
imaging with the prototype PET scanner.
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Figure 4 The Inveon preclinical PET from SIEMENS (left), and our proposed total-body small animal PET (right).
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Figure 5 The proposed total-body small animal PET (a) and 4-layer DOI detector configuration (b).
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Figure 6 The measured radial spatial resolutions (a), axial sensitivity profile (b), and the reconstructed Derenzo phantom image
at the center of the FOV obtained using the 4-layer DOI information (c).
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(c)a Dol

Figure 7 The Derenzo phantom with a 30 mm radial offset from the center (a), and reconstructed PET images without DOI (b)
and with 4-DOI information (c).
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Figure 8 The Derenzo phantom aligned in coronal plane (X-Z plane) after 90° flipping (a), and the reconstructed PET images
without DOI (b) and with 4-DOI information (c).
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Conclusion

We successfully developed two types of prototype preclinical
PET systems: mouse brain PET and total-body small animal
PET which outperformed the commercial preclinical PET
scanner in terms of spatial resolution and sensitivity,
respectively. In conclusion, the DOI encoding technology is the
key factor for the next generation preclinical PET scanners

featuring high-resolution and high-sensitivity.
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Introduction

To improve PET image quality, depth-of-interaction (DOI)
information [1], which can reduce the parallax error, and time-
of-flight (TOF) information [2], which can enhance the signal-
to-noise ratio in a reconstructed image, are key technologies.
However, it is difficult to realize and employ both technologies
at the same time without degradation of the information
obtained. In this work, we developed a DOI-TOF detector,
called the crosshair light sharing (CLS) detector [3] [4], based
on our original single ended readout scheme.

Crosshair light sharing detector

The proposed CLS detector consisted of 14 x 14 GFAG (C&A
Co., Japan) arrays coupled to an 8 x 8 MPPC array (S14161-
9865, Hamamatsu Photonics K.K) as shown in Fig.1. The size
of the GFAG crystal was 1.45 x 1.45 x 20 mm?®. The optical
reflector was Toray Lumirror (70-E20, Toray Industries Inc.) of
0.07 mm thickness. The optical reflectors with three different
arrangements were inserted between crystals. On the other
hand, the boundary between crystals without the reflector was
coupled by optical glue (KE420, Shin-Etsu Chemical Co., Ltd)
with a refractive index of 1.45. Top and middle arrangements
made a loop structure of single-ended readout. For the bottom
arrangement, optical glue between GFAG crystals spreads
scintillation photons to neighbor GFAGs connected to the
same MPPC to reduce the saturation effect of the MPPC.
Crystal identification of paired crystals is obtained from the
output rate of two MPPCs. The responses of each crystal have
a continuous broad distribution.

Performance evaluation

The data acquisition system used was the PETsys SiPM
readout system (PETsys Electronics S.A.) [5]. Fig. 2 shows 2-
D position histograms of the 14 x 14 GFAG array from 662-keV
slit irradiations after applying the simple energy window. The
662-keV slit beam (1 mm in the front of the scintillator block)
was irradiated from left to right on the 2-D position histogram.
For the slit irradiation, each crystal was projected onto the spot



PET 2020 Report on PET Imaging Physics Research

LEICRRy b EICEEZIN, Z2NZENDRXY v
FRBEDIZAZ—IZE RN LETRGICHH
AlgETH V. F DOl HEREIX 4.7 £ 2.2 mm TH
-7z, Figure 3 ICHRHERIRIEEZD 8x8 O GFAG 7
LADIRNF—IRT FLERAIV T RN
7 LY, TRILF R L RENBEEITZN
ZFN 14.0% & 402 ps TH - 7=,

distribution. For the summed 2-D position histogram of each
slit irradiation, clusters of each slit irradiation were identified
clearly. The average DOI resolution was 4.7 £ 2.2 mm FWHM.
Fig. 3 shows energy spectra and timing histogram of 8 x 8
GFAG arrays after applying detector calibration. Energy
resolutions and timing resolution were 14.0% and 402 ps,
respectively.
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Figure 2 2-D position histograms of the CLS detector (20 mm total thickness) obtained from the 662-keV slit irradiation.
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Imaging test

Fig. 4 shows a photograph of the benchtop prototype using 32
CSL detectors. In this prototype, we changed the crystal
thickness to 15 mm. This benchtop prototype was designed
with two detector rings of 16 CLS detectors. The ring diameter
and axial field-of-view were 14.2 cm and 4.88 cm, respectively.
Since the ring diameter was 14.2 cm, only DOI information was
used in the image reconstruction. We implemented the list-
mode ordered-subsets expectation-maximization (OSEM).
Fig. 4 shows reconstructed images and intensity profiles of the
small rod phantom (1MBq #Na, JRIA, Japan). The rods of 1.6
mm diameter were more clearly separated by using three layer
DOl information.

Conclusion

In this work, we developed a DOI-TOF detector (CLS detector)
with the single continuous layer with 1.45-mm GFAG crystals.
The obtained results demonstrated excellent performance with
both DOI and TOF. In the near future, we plan to develop
several PET scanners using the developed CLS detector.
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Figure 4 Photograph of the benchtop prototype using 32 CLS detectors (15 mm total thickness). Reconstructed images of the

small rod phantom and intensity profiles. The voxel size was 0.5 x 0.5 x 0.5 mm?.
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Introduction

Whole-body PET imaging with '"®F-FDG is useful for
management of patients with breast cancer. In addition, local
breast imaging with a dedicated PET system can more clearly
visualize extent of the primary cancer and axillary lymph nodes

metastasis.

Many breast PET systems have been developed to achieve
high spatial resolution and high sensitivity"). Dedicated breast
PET systems are categorized into two types: a ring-shaped
detector arrangement and a dual flat-panel detector
arrangement. The flat-panel arrangement allows imaging of
axillary lymph nodes from the same view as X-ray
mammography. An open space of the flat-panel arrangement
allows easy access to the breast and image-guided needle
biopsy for suspicious lesions. However, in the flat-panel
arrangement, PET images are blurred in the direction
perpendicular to the detectors due to the limited angular

coverage.

To compensate for this issue, we have proposed a dual round-
edge detector arrangement (Figure 1b). This third-type
arrangement is expected to reduce image blurring while

keeping the open space.

In this study, using Monte Carlo simulation, we evaluated the
imaging performance of the three detector arrangements: the
ring arrangement, the dual round-edge arrangement, and the
dual flat-panel arrangement. Then, we investigated the
impacts of time-of-flight (TOF) and depth-of-interaction (DOI)

information on breast PET image quality.
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Figure 1 Simulated detector arrangements: (a) the ring
geometry, (b) the round-edge geometry, and (c) the flat-
panel geometry.
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Figure 2 (a) A coronal image of the digital breast
phantom and (b) a sagittal view of the phantom position in
the case of the flat-panel geometry.

Methods

The Geant4 simulation toolkit was used for simulation?. The
scintillator was a 30x30 array of gadolinium aluminum gallium
garnet (GAGG) with the density of 6.63 g/cm®. The cross
section of the scintillator element was 1.5x1.5 mm? and the
thickness was 15 mm. As shown in Figure 1, each
arrangement consisted of 50 of the same detector blocks. The
energy resolution was 12% at 511 keV and the energy window
was set to 400-600 keV. The coincidence time window was 4
ns. Normalization, attenuation correction, scatter correction
and random correction were included in the reconstruction
algorithm. We evaluated spatial resolution, sensitivity, and

image quality.
Spatial resolution measurements

8F point sources were placed in 30-mm steps over the field-
of-view (FOV). The full width at half maximum (FWHM) values
in horizontal, vertical, and axial directions were measured as
the spatial resolution.

Sensitivity measurements

An '8F point source was placed at the center of the FOV and
the sensitivity was calculated as the ratio of true coincidence
counts per total decay counts.

Image quality evaluation

Figure 2 shows the digital breast phantom and the imaging
position. The sphere-to-background radioactivity concentration
ratio was 4. The total radioactivity was 10 MBq and the scan
duration was 5 min. In addition, TOF and DOI information were
incorporated into the image reconstruction to investigate their
impacts on image quality. The coincidence timing resolution
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was 300 ps. The simulated DOI measurement capability was a
2-layer DOI with equal scintillator thickness (7.5 mm x 2
layers).

Results and discussion

Figure 3 shows the PET images of point sources placed at
various positions. The vertical spatial resolutions at the center
were 4.0 mm for the flat-panel arrangement and 1.9 mm for the
dual round-edge arrangement. At the peripheral position (red
arrows), the dual round-edge arrangement presented good
spatial resolution although the ring arrangement showed
degraded radial spatial resolution, which was due to the
parallax error.

The sensitivities at the FOV center were 8.3% for the ring
arrangement, 7.4% for the dual round-edge arrangement, and
7.3% for the flat-panel arrangement.

Figure 4 shows the coronal and sagittal PET images of the
digital breast phantom. The blurring of small uptakes was
reduced in the round-edge arrangement, compared with that in
the flat-panel arrangement. The 300-ps TOF information
almost eliminated the image blurring. This result was
consistent with the report by Surti, et al.®. By incorporating 2-
layer DOI information, the contrast of the 4-mm sphere at the
peripheral position increased (red arrows).

(c) Flat-panel

Figure 3 Point source PET images (3D-OSEM) obtained with (a) the ring geometry, (b) the
round-edge geometry, and (c) the flat-panel geometry.
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Figure 4 PET images of the breast phantom obtained with (a) the ring geometry, (b) the round-
edge geometry, and (c) the flat-panel geometry.
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Conclusion

We have proposed the dual round-edge detector arrangement
for a breast PET system. The round-edge arrangement
provided better spatial resolution compared with the flat-panel
arrangement. By using the 300-ps TOF information, we almost
eliminated the image blurring. In addition, the 2-layer DOI
information increased contrasts of small lesions. Based on the
simulation results, we are developing a benchtop prototype for
proof-of-concept.
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Introduction

Investigation of new radiation detectors is important for
developments of not only imaging modalities for nuclear
medicine ( i.e. PET and SPECT) but also various medical
applications. Therefore, we are investigating radiation
addition
developments of nuclear medicine imaging systems. In this

detectors for medical applications in to
report, we introduce our investigation of timing resolution of
TIBr detectors and organic semiconductor detectors for

carbon beam therapy.

Feasibility study of timing resolution of TIBr PET

detectors using Cerenkov light

TIBr is a high density (7.56 g/cm®) semiconductor
material composed of high effective atomic number
elements. Therefore, TIBr has sufficient detection efficiency
for 511 keV annihilation radiation that is normally detected
with PET detectors. In addition, TIBr detectors have high
energy resolution like other semiconductor detectors. On
the other hand,
detectors is not high compared with scintillation detectors

timing performance of semiconductor

because semiconductor detectors detect electron/hole
the
semiconductor detectors are not suitable for PET detectors.

pairs using a high electric field. Therefore,
However, it was found that detection of Cerenkov light from
the TIBr could improve the timing resolution. Therefore, we
are investigating improvement of the timing resolution in a
If the
timing resolution can be made the same as that of

collaboration with Tohoku University researchers.

scintillation detectors, the TIBr PET detector can achieve a
high performance PET system thanks to the high energy
resolution. Here, we report our feasibility study of the timing
performance of a TIBr detector.

Experiments

Figure 1 shows the TIBr detector we used in experiments.
The TIBr crystal was fabricated by the Tohoku University
group and was 3 mm x 3 mm x 3mm. Five surfaces of the
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TIBr crystal, i.e., excluding the surface for photon detection,
were covered with Teflon tapes. Cerenkov light was
detected with a multi-pixel photon counter (MPPC,
Hamamatsu S13360-3075CS). The coincidence detector
consisted of LYSO scintillator and another MPPC (S13360-
3050CS). Signals from both detectors were amplified with
high frequency amplifiers and then waveforms were
recorded with a digitizer (CAEN, DT5742). A Ge radiation
After the
measurement, energy (photoelectron) spectrum and timing

source was used in the measurement.
spectrum were calculated from the waveforms by home-
build software.

Experimental results

Figure 2 shows the photoelectron spectrum obtained with
the TIBr detector. Peaks in the spectrum indicated the
numbers of the photoelectrons detected in the TIBr
detector. The highest peak shows a single photoelectron
events and we can observe up to seven photoelectron
events. The typical energy spectrum obtained in a usual
gamma ray measurement was not obtained in the TIBr
detector due to low light yield by Cerenkov radiation. Figure
3 shows a timing spectrum obtained by removing noise
events in the TIBr detector and selecting the photo peak
event in the coincidence detector. Timing resolution was
570 ps from the spectrum. When threshold level was
increased to six photoelectrons, the timing resolution was
improved to 435 ps. This means that increasing the light
correction efficiency can improve the timing resolution. In
the future, we will improve the timing performance of the
TIBr detector by optimizing light collection methods.

Counts
8 & 8

B

5DIAEXB [L=g]

Figure 1 TIBr detector and amplifier.

Figure 2 P.E. spectrum of TIBr detector.
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Figure 3 Timing spectrum of TIBr detector.
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Organic semiconductor (4HCB) detector for dosimeter

of carbon beam therapy

Organic semiconductors have some advantages for use
as a radiation detector in carbon beam therapy. For
example, they are thinner, more flexible and less expensive
and they consist of human equivalent materials. There
have been some reports of radiation measurements using
organic semiconductors; however, characteristics of the
ion

organic semiconductors for high energy heavy

measurements have not been investigated deeply.
Therefore, we are investigating organic semiconductors as
radiation detectors for the 290 MeV/n carbon beam which

is typically used in carbon beam therapy.

Previously, we obtained experimental measurement
results with PCBM:P3HT organic photodiodes, and we
succeeded in obtaining signals induced by the carbon ion
beam irradiation. However, high LET dependence was
observed [1]. One possible reason for this is that bias
voltages could not be applied to those detectors which had
very thin organic layers (thinner than 1 ym). Now, we are
4-

hydroxycyanobenzene (4HCB) single crystals as a detector

investigating  another  organic  semiconductor
for the carbon beam therapy. The thickness of the 4HCB
crystal can be increased to more than 1 mm easily. We
have summarized some initial results of the carbon beam

measurement with the 4HCB detector in the following.
Materials and method

The 4HCB crystal size was 5 mm x 2 mm x 2 mm (figure
4(a)). The 4HCB crystal was fixed on a 10 mm % 10 mm x
1 mm ABS plate which was black to avoid detecting light
emitted by interaction with the carbon ions. Readout wires
were connected to both sides of the 4HCB crystal with
silver paste. In the measurement, induced charges in the
4HCB crystal were measured with an |-F converter. The
counts were recorded in 0.1 s intervals. The bias voltage
of 5.0 V was applied to the 4HCB detector in the
experiment.

The experiment was performed in the PH2 course of the
Heavy lon Medical Accelerator in Chiba (HIMAC) at NIRS.
The 4HCB detector was irradiated by the 2C beam that
was passed through an ionization chamber which was used
to normalize the number of irradiated particles. The energy
of the '2C beam was 290 MeV/u. The beam intensity was
1.8 x 10° particles per second (pps). The diameter of the
2C beam was 1 cm at the detector.
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Results

Figure 4 (b) shows collected charges by the carbon beam
irradiation in the 4HCB signal crystal obtained during each
0.1 s period. The beam spill structure of the 3.3 s cycle
could be clearly observed. Average collected charge per
spill was 3.04 nC. The collected charges between each
beam extraction were due to the dark current component of
the 4HCB detector. Figure 4 (c) shows collected charges
by the carbon beam irradiation for the collimated beam. The
2 mm beam size means that the carbon beams were
irradiated to only the 4HCB (without the silver paste and
wires). The beam spill structure of the 3.3 s cycle could be
clearly observed. This means that the obtained signals
were from the interactions in 4HCB, and neither in the silver
paste nor in the wires.
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Figure 4 The 4HCB detector connected with the wires (a). Collected charges in the 4HCB crystal during the carbon beam
irradiation without collimation (b) and with collimation (c).
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Summary

Here, we have introduced our findings on timing
performance of TIBr PET detector by detecting Cerenkov
light and our development of an organic semiconductor
dosimeter for carbon beam therapy. In the future, we will
develop and improve the TIBr detectors and the organic
semiconductor detector for this medical application.
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Motion correction method for brain PET
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Introduction

In recent years, new positron emission tomography (PET)
radioactive tracers have been developed to image tau
protein or amyloid-beta plaque, which are essential in
diagnosing dementia types such as Alzheimer's disease,
and the demand for brain dedicated PET scanners has
been increasing. Several prototype PET scanners have
been developed. In our teams, we are developing a helmet-
type PET scanner with a 4 mm ToF MPPC module as a
brain dedicated PET scanner. The PET examination
usually takes 10 to 30 minutes. During this period, the
subject is forced to remain stil, and in some cases,
constraints have to be imposed on the subject to prevent
movement. However, such motion suppression and
restraint may increase the burden on the subject. The
problems related to these head movements are expected
to become more severe in dementia patients, who are the
target recipient of future brain dedicated PET examinations.

If it is supposed that the head motion is properly measured
and corrected during reconstruction, the need for motion
suppression and restraint will be eliminated, and the
burden on the subject will be greatly reduced. Several
studies on motion correction in PET measurements have
been reported. The method using an external sensor is a
method in which head motion is measured using an
external sensor and correction is performed for each list
mode event [2][3]. While the method using an external
sensor can be expected to make high-precision body
motion measurements and include the correction effect, it
is necessary to perform a calibration between the PET and
the external sensors because they have different
coordinate systems. This calibration is generally performed
using pre-measured data with dedicated markers. Still, it is
a very delicate process that needs to be performed strictly
because the accuracy of calibration greatly affects the
reconstruction image quality accuracy. Therefore, it is
necessary to fix the positions of the PET system and the
external sensor in order not to lose the calibration
parameters once they are set, which is challenging.

In this research summary, we propose a new motion
correction method using the external sensor that eliminates
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the need for pre-calibration and uses only the patient's
measured data to overcome the difficulties in applying the
motion correction method. This approach eliminates the
fixed positional relationship between the PET system and
the external sensor. Below, we describe details of our
motion correction method and we evaluate its effectiveness
by experiments using a mannequin head and a phantom.

Proposed calibration method, (a) setup in world coordinates (b) coordinate system overlay, (c) matching the reference

and head surface models.
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Methods

In this research, the motion data acquired by an external
sensor use the surface shape of the face used for tracking as
a reference. In the PET reconstruction process, an attenuation
correction map provided by CT is required, from which the
head shape can be extracted by threshold processing. By
matching the two head models, we derive calibration
parameters that unify the coordinate systems of the PET
and external sensors (Figure 2).

The reconstruction method is based on the motion-
compensation OS-EM list-mode algorithm the
resolution-recovery/reconstruction (MOLAR) method [4,5]
proposed by Carson et al.

for

Phantom experiments were performed using a mannequin
head and a sealed source. As shown in Figure 2, Azure
Kinect (Microsoft) was placed in front of the helmet type
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Helmet ToF PET
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PET for motion tracking. The mannequin used in the
experiment was cut off near the forehead, and the Derenzo-
like and pool phantoms were placed inside, as shown in
Figure 3. The mannequin head was subjected to a periodic
30-degree rotation using a motor stage for 30 minutes, and
results were compared with static condition measurement
results.

Results

Experimental results are summarized in Figure 4. The
Derenzo-like phantom was visually evaluated by line
profiles. A Gaussian fitting was performed for the largest 6
mm rod profile and the full width at half maximum was
derived as a quantitative evaluation value of resolution.
None of the results were significantly different from the
static condition results, indicating the effectiveness of our
proposed method.

Azure Kinect

Resolution (pixels) 1920X 1080

Color

Frame rate 30 fps
640X576
30 fps

0.5~3.86 m

. Resolution (pixels)
Depth

Frame rate

Range of depth

Measurement method

Time of flight

*NFOV unbinned mode

Figure 2 Schematic of phantom measurement setup.
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Figure 3 Derenzo mannequin setup: a photo of the mannequin model (a) and drawings of the Derenzo-like phantom (b), the
cylindrical phantom (c) and mannequin setup (d).
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Conclusion

We proposed a motion compensation method for helmet-
type PET without
effectiveness by the phantom experiments.

pre-calibration and showed its
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Introduction

Positron emission tomography (PET) is an effective modality
for revealing aspects of pathophysiology including cancer
diagnosis, and PET scanners with high resolution have been
developed. For an example, “helmet type PET” featuring a
hemispherical detector arrangement, which was developed at
NIRS, has a spatial resolution of approximately 2mm by
iterative reconstruction [1].

PET imaging performance is usually assessed quantitatively
by phantom experiments. However, it is difficult to imitate all
the in vivo radiation-interactive events in the human body such
as out of field-of-view radioactivity, scattering and attenuation
by bone, muscle and fat. In practice, PET imaging performance
is evaluated by visual inspection for clinical images, but this
lacks objectivity because the evaluation depends on an
observer. Therefore, the purpose of this study is to try to
establish a quantitative evaluation method for PET device
performance from clinical images.

Methods

We proposed a quantitative evaluation method based on a
medical feature in brain FDG-PET of healthy volunteers.

The medical feature we used is the complexity of the boundary
between white matter and gray matter areas. The gyri are folds
along the surface of the brain [2]. We evaluated the ability to
depict the white matter area because we considered the
detailed structure of the cerebral cortex would be more clearly
depicted with a higher resolution imaging system.

Itis necessary to establish a way that enables the derivation of
appropriate evaluation values even in cases where there is no
gold standard such as MRI. We used the white matter areas
extracted by deep learning as true values. We derived
quantitative values which may reflect the system spatial
resolution by evaluating the difference between the true values
and the extraction results obtained from the simple
thresholding method, which is expected to have a strong

impact on the system spatial resolution. This schematic is
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shown in Figure 1. The rectangular region shown in the figure
represents the true boundary between white and gray matter
and this is derived from deep learning while (a) simulates a
state with higher resolution. The false positive area obtained
by the thresholding process will be small (Figure 1 (a)). On the
other hand, when the system has lower resolution, the false
positive area increases (Figure 1 (b)). Actually, we can see that
the range of false positive by threshold variation is equivalent
to the false positive area in (a) and (b) when processing with
different thresholds from (c). We considered we could evaluate
the quality of an image, specially resolution, by comparing the
hypothetical true value obtained from deep learning with the
region obtained from the thresholding process and evaluating
the ratio of the false positive area.

PET image
after thresholding

IS

Threshold A ----1 >

values \_B_‘/“

+—>
>

False positive

(c)

Figure 1 A conceptual drawing of the proposed method. The difference between a PET distribution and a true distribution
estimated by deep learning becomes smaller in a higher resolution system (a), while it becomes larger in a lower resolution
system (b). The difference of the false positive can be quantified by the different threshold values.
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The specific process steps are shown below. In the
thresholding method we segmented the white matter area by
“Otsu’s method” [3] to determine the threshold value that
maximizes the separation between white and gray matter from
the entire head region. In the deep learning method, we used
a network called “U-net” [4], which is widely used for
segmentation. We used the white matter area extracted from
MRI on the same healthy volunteers by SPM (brain function
image analysis program) as the true values.

The process of obtaining an evaluation value from the 2 white
matter extraction results is shown in Figure 2. In this proposed
method we evaluated the ratio of the area of the false positive
region to the total area in the obtained results by the
thresholding method with the results obtained by the deep
learning true values.

We created reconstructed images with reduced resolution by
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Figure 2 The evaluation method of the ability of depicting the white matter area
based on the deep learning method and the simple thresholding method.

Scintillation crystal block

Each crystal size (mm?) 2.85x2.85x7.5 5.7x5.7x7.5 11.4x11.4x7.5
Crystal array 16x16x4 8x8x4 4x4x4
(Prototyped) (Simulation) (Simulation)

(a)

Figure 3 Examples of hypothetical crystal conditions and reconstructed images of the helmet type PET.
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Results and discussion

We created reconstructed images with intentionally degraded
image quality by changing the crystal size as shown in Figure
3. The boundary between white and gray matter of (c) image
became vaguer than that of (a) by quadrupling the crystal size.
Actually, with the degradation of the image quality the
increasing trend of the FWHM and the evaluation values could
be seen in Figure 4. The correlation coefficient between the

B 4=] \FES -z == z
ﬁﬁiﬂ_@iﬁL‘W? R TE T OJLH% BN & T FWHM and the evaluation values was about 0.5 and a certain
EDFEDIEFEIRBIL 0. SRETHY, HEEENE degree of correlation was shown.
A REINT,
100
80 °
g 60 . [
Qo 40
e e 16x16x4 © 8x8x4 e 4x4x4 e 2x2x4
0
1.5 2.5 3.5 4.5 5.5 6.5 7.5
FWHM[mm]
Figure 4 A graph of indices (the area difference) for each FWHM in the helmet type PET.
o)) Conclusions
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FEMICTHET 2 EAIRE L, ~L Ay FE resolution from clinical images based on medical knowledge
existing behind. We evaluated the ability to depict the white
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Introduction

Functional and anatomical information of a living body can be
imaged by positron emission tomography (PET) and magnetic
resonance imaging (MRI), respectively. PET/MRI can image
the information simultaneously. We are developing “add-on
PET/MRI”, which enables PET/MRI imaging using an existing
MRI system by integrating PET detectors into an MRI
transceiver coil. An imaging target is heated due to energy
absorption of irradiated electromagnetic wave (radio
frequency: RF) pulses during MRI imaging. This is called RF
heating. Since add-on PET/MRI is a unique design that places
electromagnetic shield boxes containing a PET detector close
to the MRI transceiver coll, it is essential to investigate the
degree of RF heating prior to clinical use. A parameter map
correlated with temperature to be imaged using MRI can
produce the temperature map in the imaging target. The
currently available evaluation phantom causes a dielectric
resonance phenomenon due to its high relative permittivity. If
the size of the phantom is close to the diameter of the MRI
transceiver coil, the RF pulse irradiation (B4) becomes
inhomogeneous, which causes problems such as a decrease
in the signal-to-noise ratio of the entire MRI image. Our
purpose in this study is to investigate a method to accurately

measure the RF heating for the add-on PET/MRI.

Development of a phantom and investigation of its
electrical characteristics

The American Society for Testing and Materials (ASTM) has
presented a phantom standardized for safety evaluation of RF
heating (ASTM phantom) [1]. In last year's report, we
succeeded in acquiring the temperature map of a rectangular
parallelepiped ASTM phantom (width 15 cm, length 27 cm,
height 9 cm). Considering the ratio of the diagonal length to
this axial section (17.5 cm) and the diameter of the cylindrical
phantom used in this study (24 cm), and the wavelength with
the ASTM phantom’s relative permittivity of 86.4, we developed
a phantom with relative permittivity of 45.9 or less. The
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conductivity, which is a parameter that affects RF heating, was
0.47 £ 0.047 S / m, which is similar to that of the ASTM
phantom. Conductivity and relative permittivity were adjusted
by changing the weight ratio of water, twin substance, and
sodium chloride [2]. In addition, gelatin, which can increase the
viscosity to suppress convection caused by RF heating, and
manganese chloride, which adjusts the relaxation time of MR
signals, were added to realize the Twin phantom. Table 1
summarizes the components of the ASTM phantom and the
Twin phantom. These conductivity and relative permittivity
values were measured using a network analyzer (Keysight
Technology Co., Ltd., P9373A). The measurement frequency
was 128 MHz, which is the resonance frequency of 3 T MRI.

Table 1 Components of the phantoms

ASTM phantom

Twin phantom

Substance Ratio [wt%] Substance Ratio [wt%]
Water 98.88 Water 43.1824
Polyacrylic partial sodium salt 0.99 Twin 54.7243
Sodium chloride 0.13 Sodium chloride 1.5920
Gelatin 0.5005
MnCl2 0.0008

ESFEREDHER

ASTM 7 7 >v b Lk Twin 7 7> b LOEEXR, Lt
FEXREZTNZENATE L 7=FR % Figure 1 ITRT,
EEXRIEDOKEIL, ASTM 77> LT 051
S/m, Twin 77> F LT 047 S/m TEHICERE
LB EXRER-L W, HBEXITOFER
I, ASTM 77> h LT 86.36, Twin 77> F LT
4250 £ otz, THICEK Y, HEFEEXRA 51 %IKR
L, BELLE77 Y MLEREIT DI ENTEL,
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ot
o
—
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e e
w B
—

Conductivity [S/m]
e ©
= N

o

ASTM phantom  Twin phantom
(a)

Figure 1

64

Measured electrical characteristics

Figure 1 shows the measurement results of conductivity and
relative permittivity of the ASTM and Twin phantoms. The
respective conductivity values were 0.51 S/ mand 0.47 S/ m,
both of which agreed with the targeted conductivity. The
respective relative permittivity values of ASTM phantom and
the Twin phantom were 86.36 and 42.50. The relative
permittivity was reduced by 51% for the Twin phantom.
Consequently, we developed the targeted phantom.

100

[= 2B ]
o o

{ Target

N B
o o

Relative permittivity

o

ASTM phantom Twin phantom
(b)

Measured (a) conductivity and (b) relative permittivity




PET

B, 4 DEH & 5l

ASTM 77> kL& Twin 7 7 > b AT B, OFH
— &L L7, w®m&RICIE, 3TMRIOAY FUR
ICEREB L7~y R4 L %EFB L (Figure 2), %
NENDT7 7> bLhZE~y FOALDODBERICEDE
7-ARAIERSE (AR 25cm, WE 24cm, BEITZ 20
cm) ICANTH|RE L=, Byofmiz 7V v 7ANER
%2 MoRE Yy Ta—EHR, RO (Figure 3)
(3], By o ILkEBHEIER (NEMA) L5171
—MEEX DEFERL CGFRmLA [4] .

(Smax-Smin)/ (Smax+Smin) * 100

2020 Report on PET Imaging Physics Research

Calculation and evaluation of B1 map

We compared the B inhomogeneity of the ASTM and Twin
phantoms. A head coil installed in the gantry of the 3 T MRI
system was used for imaging (Figure 2). We placed each
phantom in a cylindrical container (outer diameter 25 cm, inner
diameter 24 cm, depth 20 cm) matched with the diameter of
the head coil and we obtained images. The By map was
calculated from two spin echo images with different flip angles
(Figure 3) [3]. The B{ maps were evaluated using an
inhomogeneity index (Equation 1) provided by the National
Electrical Manufacturers Association (NEMA) [4].

(1)

Z 2, Smax & Smin i dZFNEFN B, DT DETRAME L &  Here Smax and Smin are maximum and minimum values in the

IMETH S,

Normal head coil
(Siemens)

B+ map, respectively.

Target:Phantom

20 cm
é

—>

cm

(MAGNETOM Verio, Siemens)

Figure 2 Experimental setting.

Flip angle 60 deg 120 deg

sin30,

sin30,

v

92 - 291

B,(6,) map

Figure 3 Calculation of B1 map.
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B L THRMBETE L, ABBEETELL A>T
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Results of B1 map

Figure 4 (a) shows the By maps of the ASTM and the Twin
phantoms. We confirmed that the B4 values of the ASTM
phantom were high in the center area and low in the outer
circumference compared to the value at 60 °. However, those
of the Twin phantom were suppressed and the inhomogeneity
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4(b), ThIckY, BFELAE Twin 77>~ b L%F]  index was reduced by 67% (Figure 4 (b)). As a result, by using
B9 52 ¢, RFINEA SHEICEREET 5 2 & our developed Twin phantom, it will be possible to accurately

NRIBEICR D EEZ b N D, measure and evaluate the RF heating.
25
80
. 2 20 N
3 \67% reduction
2 15
B \
08 £ 49 -
[ =
g’o
o 5
E .
o
= 4 E 0
ASTM phantom Twin phantom ASTM phantom Twin phantom
(a) (b)

Figure 4 Measured B1 maps (a) and calculated inhomogeneity indexes of the B1 maps (b).

xeH Conclusion

B9 L BEREEE LT 7 FAICE Y, By using the developed Twin phantom with reduced relative

kT 7y b E B LT B SO RY — g% permittivity, the inhomogeneity index of the B; map could be
7 5 17] NIZ)— =]

BT%ERT B ENTEL, SBIFZDT7T 7V A
%{#EFA L T add-on PET/MRI (2 & % RF fnzha =38

reduced by 67% compared to that of the existing ASTM
evaluation phantom. In the future, we plan to use our Twin
phantom to measure and evaluate the RF heating for the add-

FMHL WL FETH D, on PET/MRI.
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Introduction

In an ultra-high magnetic field (UHF) range (e.g., at 7
Tesla), MRI enables sub-mm anatomic resolution, and high
resolution and high contrast MR spectroscopy (MRS) and
functional MRI (fMRI) become feasible for a wide range of
applications [1]. Positron emission tomography (PET)
imaging is used to identify metabolic changes.
Simultaneous PET/MRI imaging have become increasingly
advantageous, especially in the field of oncology [2]. In
addition, the interest is also increasing for use of MRS (‘X-
nuclei’, like 2°Na or 3'P) with conventional 'H proton
imaging as a potential molecular marker in MR [3]. To
support progress to that end, we have started [4] a pilot
PET insert development project for a 7T MRI system in
collaboration with the National Institutes for Physiological
Science (NIPS), in Aichi, Japan. We developed and studied
a single channel microstrip coil that integrated RF shielded

PET detectors with the coil; we call it the PET-coil.

Methods and Materials

A conventional microstrip coil consists of a thin microstrip
conductor and a relatively wide ground conductor that
reflects the field generated by the microstrip to the region
of interest (ROI) [5]. We developed a novel coil in which the
RF shield of the PET detector module worked as the
ground conductor for the PET-coil. Two single channels,
one with the conventional coil and the other with the novel
microstrip coil were developed and their performance was
compared (Figs. 1a-b). The coils were fabricated using 35
pum thick copper PCB.

A PET detector with front-end electronics was mounted
inside an RF shield cage (Fig. 1c). We used a four-layer
DOI detector (14 x 14 x 4-layer LFS crystal block; crystal
size, 1.9 x 1.9 x 4 mm?3) with an 8 x 8 SiPM array
(Hamamatsu Photonics, K.K.). Cables from the front-end
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PET front-end electronics

(c) PET detector inside the shield cage

(d) 7T MRI with microstrip PET-coil

electronics were also RF-shielded.

The study was conducted in a whole-body 7T MRI system
(Siemens MAGNETOM) (Fig. 1d). No noise reduction filter
was used with the PET detector. The PET measurement
system was positioned at the back-end room outside the
MRI room (Fig. 1e€) and PET cables were passed through
the penetration panel.

All MRI experiments were conducted with a homogeneous
(NiCl26H20 and NaCl solution) cylindrical phantom (110
mm dia. and 200 mm long). For MRI, gradient-echo images
(TR/TE: 500/5.5 ms, number of slices=7, slice
thickness=10 mm, FOV = 200 mm, flip-angle = 30 deg)
without and with PET
measurements. A vendor-provided RF pickup noise
sequence was used to study any noise from the PET
measurement systems. PET data were taken for 10 min

were taken for two cases,

while using a '3’Cs point source.

PET detector RF shield cage
as ground conductor

(b) PET RF shield integrated microstrip coil

(e) PET measurement
system outside MRI

Figure 1 (a-b) Comparative figures of conventional and proposed microstrip RF coils; (c) detector and front-end
electronics PCB inside the RF shield box of the proposed PET-coil module; (d) experimental setup with the 7T MRI
system; (e) PET measurement system at the backend room of the MRI console area (outside the MRI room).
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Results

The RF reflection coefficient graph is given in Fig. 2(a).
Though the S11 parameters were almost the same, the
quality factor (Q-factor) of the PET-coil was slightly
both the
conventional and proposed PET-coil (without and with PET

reduced. The gradient echo images for
measurement) are illustrated in Fig. 2(b). No significant
change was visible. Also, no RF pick up noise was seen in
the MR images. However, noise of the MR images
increased by 10% during PET measurements. The energy
spectrums and flood histograms for the 3’Cs point source
are given respectively in Figs. 2(c) and 2(d). We did not see
any significant variations due to MR imaging.

Coil with detector
(simultaneous measurement)

Coil position
——

Coil with detector
(Only MRI measurement)

Coil position
—

(b) Gradient-echo images of a homogeneous phantom

Simultaneous PET and MRI

Flood map (Event=6159509) EW:75-255

4
PosY [index]

1000 0
1000 200 400 600 800 1000
PosX [index]

200 400 600 800
PosX [index]

(d) crystal identification flood diagram

Figure 2 (a) RF field reflection coefficients for both conventional and proposed microstrip coils; (b) MRI gradient-echo

images for different experimental conditions and configurations; (c-d) comparative PET measurement figures respectively

for energy spectrum and crystal position map.
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Conclusion

the
measurements of only MRI or PET and the simultaneous

No significant difference was found between
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>7zo SEIDEERTIE PET DEIRZ A 12/ 4 X7 PET and MRI measurements. This feasibility study was
AIIVZEFER LA TP, SHDEERTIE/ 41X conducted without any noise reduction filter for the PET
TANLZDEAZETELTWS, £72. 7 T AT D detector power supplies. In the future, we plan to install a
MRl ZFHWTEBDAED A X —2 > 7 H1TZ D & noise reduction filter with the power supplies. We also plan
SN RIAVFF RO PET A4 ILEY 2—/LD  to develop the multi-channel PET-coil module to perform
FAZETEL TW5, actual human extremity imaging with the 7T MRI system.
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Introduction

Positron emission tomography (PET) is a practical tool for
real-time and in-vivo dose verification of charged particle
therapy. PET-based dose verification
detection of irradiation-induced positron emitters (mainly '°O
and "'C) produced by fragmentation reactions in a patient.
Induced positron emitters, however, are diffused in living
tissue due to biological processes during beam irradiation and
PET imaging. Accurate modeling and correction for this
biological washout effect are required. As well, in-beam PET
imaging can be used to track the irradiated particles in living
tissue. The quantitative biological washout effect of the
induced positron emitters has a potential usefulness as a
diagnostic index that provides a unique opportunity to probe
the status of tumor viability [1]. In this study, we irradiated
tumor bearing nude rats by a '"C beam to explore the
biological washout mechanism. We derived the biological
decay constants from in-beam PET data by applying a
radiopharmaceutical kinetic model.

is based on the

Method

C6 glioma cells (2x107 cells/mL, 1.5 mL x 2 tubes) were
implanted into left shoulder subcutaneous regions of 4 nude
rats (Rats A, B, C and D). Tumors in each nude rat grew to as
much as 2 cm in diameter in two weeks. Radionuclide ion
beams of "'C were irradiated onto tumor bearing nude rats in
the secondary beam lines of the Heavy lon Medical
Accelerator in Chiba (HIMAC). The biological washout rate
was measured by our original depth-of-interaction (DOI)-PET
prototype [2], which allows detection of positron emitters with
high sensitivity. Figure 1 shows the experimental set-up. The
ring (660 mm in diameter) was positioned
perpendicular to the beam direction to enable in-beam use. A
nude rat was fixed in an acrylic cylinder and connected to an
anesthesia machine. A ''C beam was irradiated on the tumor
tissue (left shoulder) and in-beam PET scanning was
performed for 40 min. After 120 min, which was enough time
for ''C to decay out, the normal tissue (right shoulder) was
irradiated by the same procedure. The acquired list mode data

detector

71



PET

VA PE=FT—XIE30#TO27L—LlFL.E
BB % 1T > 7=, Computed Tomography (CT)
BfRE 72— 3 v L-BEBRERLE BB
&2 VOI (Volume of Interest) ZEBE, #F DMETHR
BEOREE (Time activity curve: TAC) % EnfS
L7ze 2L T2 20ORERD (FRRERKD. EL
HERS) %RE L7 multiple component model
[B]#FWTAS ''C b — LOEYFERERRHS % E
H L7z, /-, BEERZIC. EEEBOURBEK
(HEA bF Uy - 36) #B5 L. R
BREBZEHR LT,

2020 Report on PET Imaging Physics Research

were divided into frames of 30 s duration. For each frame, the
ordered subset expectation maximization method (OSEM)
algorithm was applied. The reconstructed image was fused
with the computed tomography (CT) image. The volumes of
interest (VOIs) were set on the irradiated area, and the time
activity curves (TACs) were generated. The biological
washout rate was quantified based on a multiple component
model assuming medium decay component and slow decay
component [3]. As well, pathological
observed from the image of tumor tissue section (HE:
hematoxylin and eosin staining).

morphology was

Figure 1 The experimental setup with our original DOI-PET prototype for rat irradiation.

e S

Figure 2 A)-D)I2. ZNZhDORBEERTE SN
TAC % multiple components model IC& 27 14 v T
A VIREREEHICTRT, ¥, EHINAEYF
FI%E L LRE O &Y F 0 BRI R 2 (P R AR
P Abio(med)\ EL\E}EEX%\ : Abio(slow))% Table.1
12T o Apiomeay P FIME T FESZHERIZ 31T 0.026
£0.019 min' TH Y., EBHEHEREFDE (0.26*
0.023 min™) TH o7 AU L Apiosiow) PF
HME L EEHERICH LT 0.015+0.00083 mint, 1E
ERBICH LT 0.0055+0.00043 mint TH o 7=,

zE
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Results

Figures 2 A) to D) show the TACs of tumor tissue and normal
tissue irradiation with fitting results obtained using a multiple
components model. The calculated biological decay constants
(medium decay component: Ap;oemeqy and slow decay
component:A,io(siow)) @re summarized in table 1. The derived
Apio(meay Value was 0.26+0.019 min-' on average for tumor
tissue irradiation which was consistent with that of normal
tissue irradiation (0.026+0.023 min"' on average). While the
derived  Apio(stow) irradiation
0.015+0.00083 min™ on average and that of normal tissue
irradiation was 0.0055+0.00043 min-' on average.

value of tumor was

Discussion

In a multiple component model, A,;,(meq) iS speculated as
the component which spreads out via interstitial fluid, and
Abio(stow) 1S speculated as the trapping component by the
stable molecules in the tissue [1, 3, 4]. In this study, we
observed a larger A,o(si0w) Value in tumor tissue irradiation
compared with normal tissue irradiation, especially for Rats A,

2
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B and D. The result suggested that the component, which is
usually trapped in normal tissue, diffused out more smoothly
from tumor tissue due to vascular hyperpermeability which
characterizes pathological tumor-angiogenesis. Necrosis of
tissue was observed in the tumor tissue section of Rat C. This
suggested that the biological washout rate in tumor can be
affected by loss of blood flow in the necrotic region.

T T T T T T T T T T T
Control —=— Control F—=—1
Tumor F—*+—
— 1r - 1 ]
= =
= =
E E
2 g
g g
1 1 1 L L L L 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Frame mid time [s] Frame mid time [s]
T T T T T T T T T T T
Control —=— Control —e—
Tumor F—*—
~ [ -1
2 | S5 [
= = [
- 2
g 2
g g
1 Il 1 L L L L L L L Il 1 1 1

0 200 400 600 800 1000 1200 1400 1600

Frame mid time [s]

400 600 800 1000 1200 1400 1600

Frame mid time [s]

Figure 2 Time activity curves A) to D) for the respective Rats A to D. The results of normal tissue irradiations are shown by open
circles and the results of tumor tissue irradiations are shown by filled circles.

Table 1 Observed biological decay constant of the "'C beam.

2-bia(med) (min-1 )

Normal tissue

Tumor tissue

lbia(slow) (min-1)

Normal tissue Tumor tissue

Rat A 0.30+0.030 0.26+0.020 0.0012+0.00024 0.019+0.00098

Rat B 0.31+0.027 0.26+0.019 0.0016+0.00025 0.013+0.00100

Rat C 0.26+0.019 0.24+0.014 0.0093+0.00070 0.014+0.00098

Rat D 0.27+0.015 0.30+0.023 0.0120+0.00025 0.016+0.00035

Average 0.26+0.023 0.260.019 0.0055+0.00043 0.015+0.00083
Conclusion

e

BEEX—-RFZ7y ML T C E—LZAWE
FHERZITL, EMERVHE LEREZAE L7
EEEf e EEEB~OBHTIIERIBERENES
N, MERENRLEINTWSE Z EHNRBE N,
AEER L, M TFHRRAED in-beam PETSHIE IS & W &
BOREBHIERNE SN AREMEE R LT,

We measured biological washout rate in four tumor bearing
nude rats when irradiated by the "'C beam. The physiological
difference of tumor tissue and normal tissue reflected the
biological washout rates. This study showed there was a
possibility that the biological washout effect may be used as a
clinical diagnostic index for charged particle therapy to
monitor the dose response of tumors in individual patients.
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Introduction

Lung transplantation (LTx) is one of the important treatment
choices for patients with end-stage lung diseases. However,
the 5-year survival rate of LTx is only about 50%, which is lower
than that of kidney transplant or liver transplant [1]. The main
cause of the poor survival is the decline in lung function due to
chronic rejection, called CLAD (Chronic Lung Allograft
Dysfunction) [2]. Currently, a decrease in FEV1 (forced
expiratory volume in one second) is used as an indicator for
the diagnosis of CLAD, however, by the time the FEV1 is
decreased, the clinical condition is often so progressed that
treatment is already too late, so lack of sufficient time for
treatment after diagnosis is a major issue.

FDG-PET imaging is widely used in diagnosis of various
cancers by visualizing the distribution of glucose metabolism
throughout the body noninvasively, and is also useful to
localize inflammatory changes. In 2018, Japanese health
insurance coverage was expanded to include large vasculitis,
one of the inflammatory diseases. Inflammation is the main
cause of rejection after LTx, and FDG-PET may be useful to
diagnose the early changes of CLAD [3].

In this study, we propose a new method for predicting
inflammatory changes after LTx using deep learning for FDG-
PET data obtained in LTx model rats that can be pathologically
analyzed.

Methods
Animal PET and pathological classification

This study was approved by the Experimental Animal Ethics
Committee of The University of Tokyo (No. H19-027). The left
lung transplantation was performed for a total of 32 rats. FDG-
PET data were obtained for 20 rats at 1, 3, and 6 weeks after
LTx, and for 12 rats at 1 and 3 weeks after LTx. For pathological
classification, 20 rats were sacrificed after the 6-week FDG-
PET and their transplanted lung was extracted. Among them,
19 rats were classified into mild or severe acute rejection
according to the International Society for Heart and Lung
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Transplantation criteria [4]. Immunosuppressive treatment was
applied using four different protocols after LTx to induce
various degrees of inflammatory changes.

FDG-PET was performed using animal PET (ClairvivoPET,
Shimadzu Corp., Kyoto, Japan), in which the matrix size was
128 x 128 x 213 pixels and the voxel size was 0.8 x 0.8 x 0.7
mm, and the image of the coronal section was resized to 256
x 256 pixels.

Lung segmentation

The pulmonary region was determined on the FDG-PET
images using a deep learning method as preprocessing. FDG
also physiologically accumulates in the heart, so high values
are output around the heart. Therefore, over-extraction of the
heart in the pulmonary region mask has a significant impact on
analysis accuracy. To avoid this over-extraction, the cardiac
region was also identified and clearly separated from the
pulmonary region. The network model was fine-tuned using
DeeplLabv3+ (Figure 1), which has ImageNet-pretrained
Resnet18 [5][6][7]. The optimization method was RAdam, and
binary cross-entropy was used for the loss function [8].

To validate the segmentation accuracy, SUVs from the ROls,
which a nuclear medicine expert delineated manually, were
calculated as standard-of-truth, called the “manual method” in
this study, and these SUVs were compared with SUVs
calculated by the deep learning method.

Classification

Pathological classification, severe or mild, at week 6 was
predicted from the extracted pulmonary region dataset of week
3 FDG-PET using deep learning. The network model was fine-
tuned using ImageNet-pretrained VGG16 (Figure 2) [5][9]. The
optimization method was SGD, and binary cross-entropy was
used for the loss function.

Results

As shown in Figure 3, the pulmonary and the cardiac regions
were well extracted on visual evaluation. The SUVs calculated
from the deep learning method and the manual method are
also shown in Figure 4. Correlation coefficients were 0.94 for
the left lung and 0.93 for the right lung, indicating high
correlations. The learning curve to predict week 6 pathological
classification from week 3 PET data is shown in Figure 5. Using
the weight parameters in the most accurate epoch, the
sensitivity and specificity were calculated to be 96% and 91%,
respectively.
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Conclusion

We applied a deep learning method to predict the pathological
classification from FDG-PET in LTx model rats. The method
was able to achieve high accuracy with the sensitivity of 96%
and specificity of 91%. Additional study on the visualization of
the decision-making basis of deep learning will be required to
refine this method for clinical practice applications.
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Deep learning approach to chronic pain SPECT
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Introduction

Chronic pain, which persists beyond the expected time frame
for treatment, or is progressive non-cancer pain, is considered
as a pathological state with various factors involved, and the
diagnosis method which leads to exact treatment has not been
established yet. The cause of the pain is identified after
applying a variety of approaches to its treatment. Recently, Ito
et al.[1] reported that some patients with chronic pain can be
treated using drugs for attention deficit hyperactivity disorder
(ADHD). Accurate diagnosis for patients who are responders
or non-responders to the ADHD-drugs can help medical staff
lead their patients to appropriate treatment and avoid un-
effective drugs. Cerebral blood flow SPECT (CBF-SPECT) is
one of the modalities to investigate central nervous system
abnormalities, however, the usefulness of CBF-SPECT for
realizing chronic pain treatment has not been established yet.
Therefore, we focus on deep learning, which is useful in the
field of image recognition, to analyze CBF-SPECT data. We
have carried out the study described here in which patients and
healthy controls were classified and the causal regions were
analyzed as a preliminary step to investigate the usefulness of
deep learning in predicting the effects of chronic pain

treatment.

alafelaldo

Figure 1 Three proposed methods to apply VGG16 to multi-slice SPECT data: (a) a single slice copy (SSC) method, (b) a
neighboring slice selection (NSS) method, and (c) a random slice selection (RSS) method.
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Methods

Cerebral blood flow SPECT images of 14 healthy controls and
14 patients with chronic pain as labeled by physician interviews
and diagnosis were used as the original data (IRB approval 20-
011 (QST) and 2020221NI (University of Tokyo Hospital)).
Patients were selected from a group of responders to ADHD-
drugs.

Deep convolutional neural networks (DCNNs) were used to
classify chronic pain patients and healthy controls. To deal with
the issue of limited data size, which is often seen in patient
studies, we used the fine-tuning method [2] and the mix-up
method [3] to improve generalization performance. The fine-
tuning method retrains a previously trained model on a
different dataset. We chose the VGG16 [4], which was trained
on the ImageNet dataset, as the classification model. The mix-
up method is used for data augmentation, where two data and
labels are linearly complemented to create new data. We
verified the accuracy of the classification model by double
cross-validation [5].

In general, central nervous system abnormalities are
considered to appear as three-dimensional (3D) information.
Therefore we think that training with 3D information is expected
to improve performance. However, using the patient's 3D
image as input is problematic in terms of both computational
complexity and the number of data, and we decided to use 2D
slices of data. On the other hand, the VGG16, which was
originally developed for color image analysis, has three
channels of input, red (R), green (G) and blue (B). In order to
utilize fine tuning properly, we proposed three different
methods of the slice selection for each R, G and B input
channel. We created three datasets and trained them to
compare the accuracy of three methods: (a) a single slice copy
(SSC) method in which all three channels contained the same
slice information, (b) a neighboring slice selection (NSS)
method in which three sequential slices were input as data for
three channels, and (c) a random slice selection (RSS) method
in which three randomly selected slices were combined to form
three channels. All images were 224x224 three-channel
images, and each dataset consisted of 1148 pairs. The

configuration of each dataset is shown in Figure 1.

We used Grad-CAM [6] to visualize the regions focused on by
deep learning and to analyze which regions of the brain are
involved in the chronic pain mechanism. In Grad-CAM, we
obtained a heatmap of which parts of the input image
contribute the most to being determined as the class.
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Results and discussion

Table 1 summarizes the results. The accuracy (ACC) indicates
the overall classification accuracy, the true positive rate (TPR)
indicates the percentage of correctly classified patient images,
and the false positive rate (FPR) indicates the percentage of

incorrectly classified patient images.

High accuracy is obtained for each of the three datasets,
suggesting that the deep learning approach is effective for
diagnosis of chronic pain. In particular, datasets (b) and (c),
which have a three-dimensional structure, show better ACC,
TPR and FPR than dataset (a), which only has information on
a single slice. This suggests that the information in the axial
direction of the data has an advantage in making decisions.
Furthermore, we compare (b), which selects sequential slices,
with (c), which selects random slices, and we see that (c) is
superior. In other words, a randomly selected slice from a large
area, although continuity is lost, is more advantageous for
decisions than information from a continuous but very limited

area.

On the dataset with the best results (c), the basis for the
model's decision visualized by Grad-CAM is shown in Figure
2. High attention is given to the patient image's frontal lobe
region. This correlates with medical findings of frontal lobe
abnormalities in ADHD patients [7], suggesting the validity of

the proposed method.

Table1 Accuracy (ACC), true positive rate (TPR) and false positive rate (FPR) of each dataset.

Dataset ACC[%] TPR[%] FPR[%]

(a) single (SSC) 90.53 85.53 4.46

(b) neighboring (NSS) 92.85 89.46 3.75
(c) random (RSS) 93.39 89.82 3.04
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Figure 2 Examples of Grad-CAM results (left) and original images (right) in the RSS dataset for a patient (upper) and a healthy
control (lower). The areas that the deep learning algorithm watched with care are visualized in a color scale.
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Conclusions

In this study, we applied a deep learning approach with fine
tuning to CBF-SPECT and showed it to be effective in the
differential diagnosis of healthy controls and ADHD-drug-
responder patients with chronic pain. As for the method to
select three slices from a volumetric SPECT image, the
random slice selection method showed the most accurate
results. Furthermore, by using Grad-CAM to visualize the basis
for the model's decision, we observed similarities between the

model's decision and the medical perspective.
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Introduction

Anti-cancer therapies are now mainly composed of surgery,
chemotherapy, radiotherapy, and their combinations. If an
appropriate candidate is selected, surgery is still a mainstay in
the cure and control of most solid cancers.

However, surgical therapy cannot avoid being invasive, and
that can lead to postsurgical complications, which result in poor
prognosis. The Japanese Society of Gastrointestinal Surgery
investigated cases for patients who underwent gastrointestinal
surgery from 2011 to 2017, and 3,800,000 cases [1], where the
Society found the operative mortality rates had been
decreased gradually, but the postoperative complication rates
were increasing. Higher complication rates of around 20%
were observed in esophagectomy and pancreatico-
duodenectomy. These two surgeries have a common aspect
that they involve deep and large areas where nerves and blood
vessels are densely located. The Society said that one of the
factors for the gradual increases of complication rates was
probably due to more elderly people becoming a candidate for

surgery in recent years.

Less-invasive surgery is expected to reduce the
postoperative complications [2]. One method is to reduce the
degree of invasiveness of surgical procedures themselves. A
combination of thoracoscopic and laparoscopic surgery is
promising compared to the conventional open thoracic and
open abdominal surgery. Furthermore, robot-assisted surgery
is now available, and it has been demonstrated that have
lowered the rate of postoperative complications, such as
pneumonia, cardiac disturbance, and postoperative pain.
Therefore, the less-invasive surgical procedures can be

effective to decrease the severity of complications [3].

Another approach to avoid complications is to reduce the
area of surgery or to leave the high-risk lymph node (LN) area
without dissection. Generally, surgical invasion depends on the
extent of the area of dissection [4]. As nerves and blood
vessels are located densely near LNs, LN dissection is
associated with their impairments. Especially, the impairments
of recurrent laryngeal nerves, which is responsible for the
movement of laryngeal intrinsic muscles, alters swallowing
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functions, leading to aspiration and pneumonia, which can be
a cause of postoperative death. Intraoperative methods to
diagnosis for metastatic LNs have not been established yet.
Therefore, in order to realize curable surgery for cancer, LN
dissection for 2- or 3-fields, namely, cervical, thoracic and
abdominal node regions, is accepted as a standard [5, 6].

Then, we focused on FDG-PET, which is widely used for
diagnosis of various malignant tumors. If we identify metastatic
LNs accurately, we can leave non-metastatic LN regions
without any invasion, leading to a reduction in postoperative
complications. First, we tried to apply pre-operative FDG-PET
images for intraoperative LN diagnosis, but the patient's
posture was different, and organs were shifted by the operative
procedures, making it difficult to identify LNs which were
suspected of metastasis on preoperative FDG-PET images. In
addition, LN region-based analysis showed that preoperative
FDG-PET diagnosis of metastatic LNs had a sensitivity of 24%
and specificity of 97% [7]. This sensitivity was too low to realize
curable surgery. Then, we had an idea that intraoperative
measurement of FDG would allow us to diagnose LNs with
better sensitivity.

There are numerous commercially available gamma-ray
measurement devices, though all of them are a probe type;
they have been developed for sentinel node detection [8].
Recently the devices have also been applied for detection of
annihilation-radiation emitted from positron-emitters such as
'8F, 88Ga and 89Zr [9-12]. Moreover, the combination of the
probe-head and a da Vinci surgical system has been
proposed, in which a forceps type arm of the da Vinci surgical
system folds the probe-head to detect radioactivity [13].
However, probe-type devices detect all incoming gamma-rays
from the probe-axis, which can cause false-positive
judgements. Then we propose a new type radioactive
PET".

detectors are mounted on the top of the forceps, which detect

measurement device, a “Forceps-type mini Two
a pair of annihilation-radiation using the two detectors. This
approach makes the best use of advantages of PET
technology.

We performed a preliminary study for 20 patients with
esophageal cancer, who underwent FDG-PET followed by
surgery on the same day. All LNs were harvested from
extracted specimens, their radioactivity was calculated, and
they were pathologically diagnosed. In this study, we
determined the performance specifications of the proposed
forceps-type mini PET based on these LN data. Next, we
estimated the diagnostic capability using the detector
the
characteristics between the radioactivity and other metrics of

the LNs.

performance, and finally, we further investigated
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Preliminary study for determination of performance
specifications

Our preliminary study was conducted in the University of
Tokyo Hospital from 2014 to 2016. The protocol was as follows.
FDG-PET was performed for patients with esophageal cancer,
in which 4.5 MBqg/kg of FDG was injected intravenously at 10
am. At 1 pm on the same day, esophagectomy with curative
intent was started. After the dissection of the LNs, we
harvested all LNs from the extracted specimens and measured
their radioactivity using a well-type counter (Figure 1). Among
the total of 1073 LNs, 38 (3.5%) metastatic LNs were included.
Decay-correction was performed for the counts measured by
the well-type counter to those at the time of FDG injection
according to the time relapses. The metastatic LNs had higher
radioactivity than non-metastatic LNs (metastatic LNs vs. non-
metastatic LNs; 4,753 vs. 256 decay-corrected cps. p<0.001).
This result suggested that FDG is a potentially useful marker
for navigation surgery in esophageal Receiver
operating characteristic (ROC) analysis showed the most
appropriate threshold was 840 decay-corrected cps, which
provided higher diagnostic ability compared to the weight of the
LNs or their shortest diameter [7].

cancer.

To convert “decay-corrected cps” into “radioactivity [Bq]” at
the time of surgery, the cross-calibration factor between the
FDG-dose calibrator and the well-type counter was calculated
as 5.9 Bq/cps, then 840 decay-corrected cps was converted to
620 Bq at the assumed time of intraoperative measurement,
which is 6 hours after the FDG injection. This threshold
provided sensitivity of 94% and specificity of 79% for the LNs
obtained from this preliminary study.

Intraoperative measurement time is probably up to 30 s. In
order to obtain more than 100 counts from a subject with 620
Bq for 30 s, the detector sensitivity needs to be 0.5% or more.

Pathological
diagnosis

Meta- or Non-
metastatic LN

Well-type counter

Figure 1 Flow chart of the preliminary study.
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Plotting radioactivity of all lymph nodes

A plot of radioactivity of all LNs is shown in Figure 2. The X-
axis means the number of LNs according to the amount of each
radioactivity. From 800 Bq to 8400 Bq, the data of metastatic
and those of non-metastatic LNs were overlapped, and it
seemed to be difficult to separate them. LNs lower than 800 Bq
were almost non-metastatic LNs.

Bl
10,000 5
8
&

&

5,000 &

1,000
LN's#

Figure 2 Radioactivity [Bq] plots of each lymph node (LN). Red circle, metastatic LN. Blue square, non-metastatic LN.
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Details of false-negative LNs

The LNs obtained from the preliminary study included 38
metastatic LNs. Among them, two LNs had lower radioactivity
than the threshold of 620 Bqg, one was 55 Bq, and the other
was 538 Bq. The former was a recurrent laryngeal nerve LN,
in which metastatic tumor cells were only 2 mm, and classified
as micrometastasis [14, 15]. It is still controversial whether
such micrometastasis will develop recurrence or cause further
metastasis. In this preliminary study, six LNs were
micrometastasis or isolated tumor cells which were defined as
a tumor cell cluster smaller than 0.2 mm. Five of them showed
higher radioactivity than the threshold of 620 Bq. The cause of
the false-negative is not only due to the partial volume effect
but also due to FDG accumulation mechanisms such as low
glucose transporter expression.
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Details on false-positive LNs

The LNs obtained from the preliminary study included 1035
non-metastatic LNs. Among them, 222 LNs had higher
radioactivity than the threshold of 620 Bq. The false-positive
rate was 21.4%. According to the node station, the highest rate
was found in subcranial LNs with 53.8%, followed by main
broncus LNs with 39.6%. These areas frequently showed mild
to moderate FDG accumulation in routine clinical practice, in
which it is considered to be a slight inflammation related with
slight pneumonitis or non-specific inflammation occurred when
inhaled foreign substances to prevent them entering into the
lungs[16]. Other false-positive rates of representative node
stations are shown in Table 1.

Table1. Representative node stations and diagnostic results using the threshold of 620 Bq

Name of node station LNs [n] True False False positive
Positve  Negative Positive Negative rate [%]
Cervical paraesophageal 52 4 39 9 0 18.8
Supraclavicular 178 2 146 30 0 17.0
Recurrent nerve 116 4 86 25 1 225
Tracheobronchial 21 0 17 4 0 19.0
Subcranial 44 5 18 21 0 53.8
Main bronchus 110 4 64 42 0 39.6
Left cardiac 92 3 81 8 0 9.0
Lesser curvature 205 11 161 32 1 16.6
Common hepatic artery 21 0 13 8 0 38.1
WETREEHANE L fthap Y v/ EREHBIIEIE & D ELE Comparison between radioactivity and other metrics
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Radioactivity and weight

A plot of the radioactivity and the weight of each LN is shown
in Figure 3. Two outliers of radioactivity (237098. 99668
[decay-corrected cps]) , which is higher than the average +
2SD, were excluded. There were significant correlations
between the radioactivity and the weight, both in metastatic
LNs and non-metastatic LNs ( Spearman’s correlation
coefficient, p<0.001) . ROC analysis on LN weight provided
the appropriate cut-off value of 126 mg, by which sensitivity of
82% and specificity of 76% were obtained. Diagnostic
capability using weight was less effective compared to the
radioactivity.

Radioactivity and short diameter

A plot of the radioactivity and the shortest LN diameter is
shown in Figure 4. Two outliers of radioactivity were excluded.



PET

% Figured ([TRT, 2 DDANEIZBRA L 7=, BETEE
SHAME S ) BT RBRICIZE R R EEBERE RS
7= (spearman correlation coefficient, p<0.001)),
SRICKDEB Y v EZkTREEEATIHEA. RO
CHEENTIC K 2RERIME(IL 5.5mm T, BE 84%., FFE
B 74% TR SN, AEEEHAMEIC & 2 ¥R & WK
WERTH -7,

R AR OFIE & REHER

PUFL—RIEREETET S BEBIIC. 600Bg DK
BEExXH D bmm BROERAE Y »RETE BT, 4%
8x10mm® A D GAGG, LYSO, BGO #48E L. E
vFALAY I Al —YarEToT, TDER. B
HEEFZNZF N, 0.157%. 0.609%. 0.96% & & H
SNz, Lo T, BEHLEVLWEENEF SN/ BGO

(Bi,Ge;0y,) BT H e Lt ¥ VFL—%
ik, SHFEmE—E L, BR 12mm (BEF0ER
BR—FORR) ZBXT. HOHFOLD ITHEAT]
BERPEE A ML LIER LTz ERA X =Y &L T
BEGOHFOLIHICHEREZRH L - REDEE%
Figure 5 IZ/R 9,

BGO #5 &3 3mm A DZFHETF MPPC (GEMK b
Z U AME) LHEASERHESBREREERL T,
2Na SR (21.38kBq) #HWTREH%#1T- 72

Ay

EZAH RHBRE 1.27T% %57,

[Bd]
40,000
O Metastatic LNs y= 10.0><..,
© Non-metastatic LNs o
30,000

o

LNs’ radioactivity

[mg]
4,000

2,000
Weight of LNs

3,000

Figure 3 Distribution of LNs’ radioactivity and weight.
Lines are the first-order approximation equations. There is
significant correlation in metastatic LNs (r=0.726, p<0.001)
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There was a significant correlation between the radioactivity
and the shortest LN diameter ( Spearman correlation
coefficient=0.754, p<0.001) . ROC analysis on the shortest LN
diameter provided the appropriate cut-off value of 5.5 mm, by
which sensitivity of 84% and specificity of 74% were obtained.
Diagnostic capability using the shortest diameter was less
effective compared to the radioactivity.

Prototype and detector sensitivity test

To select a scintillator crystal, Monte Carlo simulation was
performed under the conditions as follows: 5 mm diameter
sphere as LN, 4x8x10 mm? rectangular column scintillator
crystal made of GAGG. LYSO. or BGO. As aresult, respective
values of 0.157%. 0.609%. or 0.96% were obtained, and we
decided to use BGO (BisGe3;0+,) for our detector. The detector
was made under the following conditions: not to exceed 12 mm
in diameter, which is the same as a trocar inner diameter for
laparoscopy, and to keep the strength for forceps-like-use. An
image of our prototype is shown in Figure 5, in which the
detector was mounted on the tips of the forceps.

The BGO scintillator crystals were coupled to the 3 mm
MPPC (Hamamatsu photonics K.K., Hamamatsu). We
calculated 1.27% detector sensitivity for a ??Na source
(21.38kBq).
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Shortest diameter of LNs
Figure 4 Distribution of LNs’ radioactivity and shortest
diameter. Lines are the first-order approximation equations.
There is significant correlation in metastatic LNs (r=0.437,

p<0.008) and in non-metastatic LNs (r=0.739, p<0.001).
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Figure 5 A prototyped forceps-type PET.
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Conclusion

We proposed a new forceps-like device, which detects
annihilation-radiation by the coincidence counting method. We
determined the detector sensitivity necessary for
intraoperative LN diagnosis as 0.5% or more. We obtained
1.27% detector sensitivity with our prototype, which would
provide us 94% sensitivity and 79% specificity for metastatic
LN diagnosis before LN resection.
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Han Gyu Kang, Hideaki Tashima, Fumihiko Nishikido, Eiji Yoshida, Taiga Yamaya, "Initial results of a mouse brain PET
prototype with a staggered 3-layer DOI detector,” 25 81 [HIJis A4 B - ST S TRIE (v 7 1 VB,
9a-Z14-1, 2020. (oral)

Han Gyu Kang, Hideaki Tashima, Fumihiko Nishikido, Eiji Yoshida, Taiga Yamaya, "First development of a total-body
small animal PET with a 4-layer DOI detector," £ 81 [Blii ¥ ERF K ZE PG S TR v 7 1 L BilfE),
9a-7Z14-2, 2020. (oral)

H R, & B9Es, R, g, a5, @i, KA RS, dHE=E, Sk, %)%, Katia Parodi,
WARRE, "WGL =27 b EEEERIC IS T 2 U > 7RISR O R O EBRAIGE," 25 81 [AlS A E 22Tk
BT AT TR Y 7 4 B, 9a-Z14-3, 2020. (oral)

HARIR, MEBSRH, &HIh, RIS, NRERTY, SifsEf -, AKHIAKRS, /2%, Katia Parodi, [LIAZRE,
"Zr-89 Whole Gamma Imaging 72 @ 2 J& DOI %! GSO #ELRHZFDBAZE," 2 81 [Bl&H B 2 Fk ZR 2R
DR TREE(CET v T A L Bilf#), 9a-Z14-4, 2020. (oral)

mIGERN T, JHEERE, SR 30, MAAIK, Kang Han Gyu, #E7#RZ, [WEFRE, "IFT Y Vo HifsBa W oo
DRI = PET OB : ME&EREL" 5 81 IS AW AR AN S TRRECT > 7 1 U Bfg), 9a-
Z14-5, 2020. (oral)

NGRERH, B BOCH, /NP SFiee, 85302, IWARE, &il—, "RIEEs U o 28 KR HG O =R L%
— I FRBECCGE," 5 81 [N MR P K RIS 3E T (v 7 1 Bilfi), 10p-Z14-7, 2020. (oral)
{CRHE, MM, HAAIK, 8Pz, Bid, ILRRE, "C B Compton-PET A4 A MU D 3WLA A —T
7y Ialb—ia ) #39 R HAREMmG LYRRE THRE, pp. 436-444,2020. (JAMIT2020. 2020/9/19, online,
poster. P4-7)

MR, & HEIR, R, ST, AKESARES, =, Hil=E, %)%, Katia Parodi, IAZRE, "WGI
RIFEIC L 270 ) T ar P oA A=V ZOEGE" & 39 BIHAREMEG THaRE TR, pp. 454-
459, 2020. (JAMIT2020. 2020/9/19, online, poster, P4-9)
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HARIR, BE5E, HHEIE, BRB, NEEET), mEERT, KEELKRES, 172, Katia Parodi, IIAZRE,
"Whole Gamma Imaging: /N H B SERERE DEL R, #2557, 57 &, Supplement, S139, 2020. (45 60 [F] H A% IE S
25242, MO1VF1, 2020/11/12, oral)

B, 5 HEE, BRFH 5, SEERT, KELKER, HEE, 8fH £, Katia Parodi, [ Z8%E, "Whole
Gamma Imaging {23515 5 =27 PET A 7 U v RERFHERL," BEF, 57 %, Supplement, S139, 2020. (55 60
0] B AR E S22 S, MO1VF2, 2020/11/12, oral)

MM, SRR, S 30E, HARIR, Bad, IWARE, "+—7 Vv 7Ma 7 h o PET EHEDY I 2 L
—3 g VR BEIESE, 57 %, Supplement, S139, 2020. (55 60 [A] H AEIE 2221 A2, MOTVF3, 2020/11/12, oral)
FREAM, FHHEIER, B, SREE, BIRF, aiHEH, SEEMF, TR, ISR, "SEiE A~
A MUTOF-PET IZBITF 5=V F—7 4 N DR#EL," $E5, 57 %, Supplement, S140, 2020. (5 60 [5] H
AMEIE F 2 P 2, MO1VFS, 2020/11/12, oral)

TREAM, HSTER, GHIEEE, Han Gyu Kang, & B &HE, HAAIK, 87302, SHIE, @EEM, LARYE,
"%tE T v v Ry DT PEM OFEE : TOF 1E# - DOIfE#H O v I = L— 3 3 V-, %=, 57 %, Supplement,
S140, 2020. (£ 60 [8] H ABZIE T2, MO1VF6, 2020/11/12, oral)

EESEANT, EATERER, W LEERRS, KeRfE—, AWEECE, WA RS, IWARE, fiih ) v EisB Sk &
AIHE L 95 72D O FHRFHAIZR O MERER E," #EIE S, 57 %, Supplement, S140, 2020. (55 60 [A] B AKZE T2 kT
¥4, MO1VF7, 2020/11/12, oral)

HHEEE, L HRETE BERY, EPEE, HHER, BEFTE, R, LARE, RUR, HEE, HEh,
"HCy KRk Y ¥~ Tk B RYIENANCKTT D Y TV F A L PET A RFEIFEORIR," BIESE, 57 &,
Supplement, S151, 2020. (5 60 [2] H AFZ & ¥ Fhfiia 2, MO2VET, 2020/11/13, oral)

Fathgn 2 ¥, ISR, BB, BREE, EHER, G, R, LaRE, \BUK, dHEE, REh,
"HCu e Y ¥ U~ IS L AN A RIS MNE DO BT, BIEE, 57 %, Supplement, S151, 2020. (55 60 [5] H
ARG E AR HiHe 4>, MO2VES, 2020/11/13, oral)

1.5 B34 Workshop presentations (12)

(1]
(2]

AN »n A
[Ru RSt B}

— |, e e e
[ sBEN |
—_

[12]

IWAFTRE, “PET A A— U 7WEAITE” AR PET WF5E4% 2020, 2020/1/18 (/L4 — /L JAE ).

Akram Mohammadi, “OpenPET (Z & B RiFHUIAIRA A — 07" IR PET #FZE2 2020, 2020/1/18 (~L4—
JVNEEY).

HHIEIR, LAy MEIPET” W PET #FZE4 2020, 2020/1/18 (/LY — L JLE).

$FSCZ,  “Add-on PET for MRI,” AR PET #F9E4s 2020, 2020/1/18 (~/LH— /L JAEE ).

H&5H,  “Whole Gamma Imaging (WGI),” AR PET BF9E4% 2020, 2020/1/18 (~X/L-H—/L )\ EEBH).

Go Akamatsu, "Geant4 simulation for organ-dedicated PET," GATE Workshop at NIRS-QST, 2020/2/15.

Sodai Takyu, "Brain-dedicated TOF PET," GATE Workshop at NIRS-QST, 2020/2/15.

Hideaki Tashima, "Small animal Compton imaging with a WGI prototype," GATE Workshop at NIRS-QST, 2020/2/15.
Takumi Nishina, "Whole Gamma Imaging (WGI) simulation," GATE Workshop at NIRS-QST, 2020/2/15.

Han Gyu Kang, "GATE simulation for medical imaging," GATE Workshop at NIRS-QST, 2020/2/15.

TEHER, AR, RRIEA, inde¥, st mas, FxR, ARERSE, AR, BETIR, &HEE, BA
ALK, MBS, 1IAZRE, "OpenPET % V2 RENICIT DB REW D 3D A A— 2 7" QST k4 A =
VAT = A4 2020, 2020/12/8-9. (online, poster)

IS8, RN B 5 PET BFZEBRZ," [ 061 o ~ MRs /22 AR BT @ R fg IR OB 98] U —2 v a >
7, 2020/12/21.

1.6 $55F Patents (8)
- tHEE Application (5)

(1]

(2]

(3]

[4]

Md Shahadat Hossain Akram, Takayuki Obata, Taiga Yamaya, "Radiation detection imaging unit as insert for hybrid imaging
with a magnetic resonance imaging system and radiofrequency shield configuration therefor," US 62/904892, 2019/9/24 H
JE. (Q20141US)

Md Shahadat Hossain Akram, Takayuki Obata, Taiga Yamaya, "Radiation detection imaging unit as insert for hybrid imaging
with a magnetic resonance imaging system and radiofrequency shield configuration therefor," PCT/JP2020/035817,
2020/9/23 HiE. (Q20141PCT)

MBS, LRRY, "EfEGABER, 2 a—270 7T AROKESER" $FH 2020-044795,
2020/03/13 Hijf. (Q20157JP)

IR ZRE, EEEML, "R SR, KR8 2020-109529, 2020/6/25 HiFE. (Q20170JP)

IWRTRE, > N F o, BT A Z," REfE 2020114954, 2020/7/2 HiFE. (Q20167JP)
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- &4§% Registered (3)
[1] Takayuki Obata, Taiga Yamaya, Iwao Kanno, Hitoshi Yamagata, Takuzo Takayama, Kazuya Okamoto, "PET-MRI-
VORRICHTUNG," DE 602011063708.8, 2019/11/27 & #&. (Q00400EP)

2] EHEIE, IIARE, "RERMER 3 T ER AR, FERFE 6694213 5, 2020/4/21 % dk (Q00508IP)

[3] Taiga Yamaya, Takayuki Obata, “PET/MRI DEVICE, PET DEVICE, AND IMAGE RECONSTRUCTION SYSTEM,” US
10,627,466 B2, 2020/4/21 %§% (Q00383US.3)

2. RRERGTE~DEY A Outreach actions

2.1 MELLG EDOFHME Hosted workshops (2)

[1] [ AR PET WFZES 20200 % 46, 2020/1/18 (~vH— L \E) (BINEEGE 117 4, O BAMER 77 4)
[2] Hosted the GATE Workshop, 2020/2/15 (NIRS) (17 participants)

2.2 ¥ X F—fi#E Hosted seminars (0)

2.3 EEHI Annual report publishing (1)
[11  AFRE R, “WHACPET #F2EE & 2019,”  QST-R-15, 2020/1/18.

2.4 #35% Review articles (9)

[1] Iwao Kanno, Miwako Takahashi, Taiga Yamaya, "Michel M. Ter-Pogossian (1925-1996): a pioneer of positron emission
tomography weighted in fast imaging and Oxygen-15 application," Radiological Physics and Technology, 13, pp. 1-5, 2020.

2] @&EERMT, HERY, (IAZRE, "PET EHEORIE £ 0 401G FHERHE," BRRZES:, pp. 23-26, Vol. 53, No. 2,
2020.

[3] EAEET, ILRIRE, "KEA PET #FZE2 2020 % # % T," Isotope News, No. 768, pp. 46-47, 2020.

[4]  EAESERT, IWERE, "BIEAIC K DR B ORIEL L U 7V Z A DIRIRA A —2 2 7 ~OJER," Jpn. J. Med.
Phys., Vol. 40, No. 1, pp. 8-12, 2020.

[51 WIARE, SHEHE, HERY, SEERNT, "BEFZORKET VI A A=V 7" ISR, 5 89
%, % 577, pp. 269-273, 2020.

[6] mEEMT, IWARE, "PET ZEEORM %O 5. PET B%MH," ERIRIZE S, pp. 42-46, Vol. 53, No. 3, 2020.

(71 WARE, HHEKE, HERE, SEEMT, KEGLKES, 1 =, Katia Parodi, "R 1L PET [Whole Gamma
Imaging (WGI) | @ ZEiiE," JSMI Report, Vol.13, No.2, pp. 11-16, 2020.

[8] Go Akamatsu, Hideaki Tashima, Yuma Iwao, Miwako Takahashi, Eiji Yoshida, Taiga Yamaya, "Simulation Study of High-

sensitivity Cardiac-dedicated PET Systems with Different Geometries," Annals of Nuclear Cardiology,
https://doi.org/10.17996/anc.20-00114, online first, 2020.

[91 mEfEEMT, WA, "Michel M. Ter-Pogossian JeA R FE5F," Jpn. J. Med. Phys., Vol. 40, No. 3, p.110, 2020.

2.5 #% - #E Lectures (14)

D URTHLEIZE T 51B%5#E Invited talks at symposium (7)

[1]  SEERT, “BEFDRIEZ 2 EROMMAK,”  BARPRHRBSE T I REE S THERBE %2 Z DI
%186 RS I 34 MG, 2020/1/11. CGRERKE)

2] ERRERT, BRI WA, MRV, (eI, (LS, "R DT S AL DR 4 12 [EE
BEHEA A — D U JIMRERITES T a s T A - PR, p. 32, 2020. (2020/1/25, HORFEEZERKY, invited)

[3] Taiga Yamaya, "PET innovation being made by novel scintillators," International Symposium on Crystals and Applications
(ISCA), 2020. (invited, oral, Hotel Clover Patong Phuket, 2020/2/7)

[4] Taiga Yamaya, "Whole Gamma Imaging: A novel combination of PET and Compton imaging," Mini-Micro-Nano Dosimetry
and Innovative Technologies in Radiation Oncology (MMND-ITR02020), 2020. (invited, oral, Novotel Wollongong
Northbeach, 2020/2/12)

[5] Chie Toramatsu, Akram Mohammadi, Hidekazu Wakizaka, Chie Seki, Fumihiko Nishikido, Shinji Sato, Iwao Kanno,
Miwako Takahashi, Kumiko Karasawa, Yoshiyuki Hirano, Taiga Yamaya, "Biological washout effect in in-beam PET:
animal studies," Mini-Micro-Nano Dosimetry and Innovative Technologies in Radiation Oncology (MMND-ITR02020),
2020. (invited, oral, Novotel Wollongong Northbeach, 2020/2/12)

[6] Taiga Yamaya, "What are Hybrid Meetings? Case study in organizing IEEE NSS-MIC2021," 2nd ICCA Asia Pacific Chapter
Summit 2020, 2020/12/16. (Yokohama)

(71  WWARE, "BEFICBT D Ry 7 2 ERBRRIGH~AK PET 2EERRIEATIED FFl~" EFWHE, 55 40 &,
Sup. 4, pp. 66-80, 2020. (Proceedings of the educational seminar of JSMP, 2020/12/19 online)
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- 8% Educational lectures (7)

(1]
(2]

2.6

(1]
(2]

2.7
(1]

[14]

Han Gyu Kang, lectuer in GATE training on medical imaging (PET, SPECT, CT), dosimetry and radiation therapy - Beginner
level (2020/2/12-14, AL KZ)

EERRA, “ERMRAT & BT, BT I — WD - RERETHEE = — 2, 5 20 B A EYS
Z K23, 2020/5/24-6/1 online.

TRARH, AR KRR ERREDRER) S, ” 5 20 [ H A EFS 2 FEF RS, 2020/5/14-6/1 online.

HHGE, BEMEET 5 16 [EEYE = — X, 2020.

PRERH, 7 7 2 b SRR, T H 13 IREE P A AHME £ < ) —,  2020/9/1-9/30 online.

SRR, “FEBE B HOPERIAL TR O BEFIG M, 2020 42 « BLUTAEHAEM PAlfbe @ P AR B TR R
T DIEHERGR &G —) SR FEER E R AR TR | 202071272,

ILAZRE, “Future PET instrumentation,” JUNKRFRFBEETFRFI 4r FHEBE B 754, 2020/12/7.

#Z Book chapters (2)

FRASH, “point-spread function (PSF) #fi1F, time-of-flight (TOF),” #ik% & F 4 ivkanm « Beififm, (LSEIRI, 2020/3/15.
TRARE, 7 JmA RA A= 7)7 PR BN - BT, LREIBI, 2020/3/15.

TLR - EWIBE Public relations activities (20)

T AY Y=, "BURK SRR Tom AR OREDS A 2B AL - RIS A 22 T & | RIS b A e
2 Wik & B %E-," 2020/3/10.

https://www.qst.go.jp/site/press/39426.html

“UECFRETHEBIL K2 AORIZET IR, B, 2020/3/20.

CHIABEDS A 1B F ARG T O B, SEACRER R, FRPESERT, 2020/3/25.

R B R b — B

https://youtu.be/aBgl6bHIMzM, 2020/09/17.

"HURESE RN 23 & D BEHFRO DR AR KV BRRIRE 2 G T & £ 2 & & ERE~ D AUTRIRIE D R b
(2 HENLOH LU PET OFEHAGELA~" QST 7 L A U U — %, 2020/10/1.
https://www.gst.go.jp/site/press/44253 html

"Timing the life of antimatter particles may lead to better cancer treatment - Japanese team aims to detect oxygen
concentration in tumors using upgraded medical imaging scan," University of Tokyo Press release, 2020/10/1.
https://www.u-tokyo.ac.jp/focus/en/press/z0508_00133.html

"Timing the life of antimatter particles may lead to better cancer treatment - Japanese team aims to detect oxygen
concentration in tumors using upgraded medical imaging scan," EurekAlert!, 2020/10/1.
https://www.eurekalert.org/pub_releases/2020-10/uot-tt1092920.php

IS PERER D B 2 IR O DT 2R 2210 K W BBRIRE 2T E 2 2 L 2 HiE - DATREIEOREL
(ZHBANLOH LW PET OFEHAA - FOR PR FBRE SULATFER « a7 L 2 U U —2,2020/10/2.
https://www.c.u-tokyo.ac.jp/info/news/topics/files/20201001sobunshibuyasa01.pdf

"Novel PET scan timer bolsters clinicians cancer treatment capabilities," Health Imaging, 2020/10/1.
https://www.healthimaging.com/topics/molecular-imaging/pet-scan-timer-clinicians-cancer-treatment-capabilities

"Timing the decay of antimatter improves medical imaging technologies," Innovation News Network, 2020/10/1.
https://www.innovationnewsnetwork.com/timing-the-decay-of-antimatter-improves-medical-imaging-technologies/7233/
"New upgrade to PET scanners may pave way for better cancer treatment," Medical News Life Sciences, 2020/10/1.
https://www.news-medical.net/news/20201001/New-upgrade-to-PET-scanners-may-pave-way-for-better-cancer-
treatment.aspx

"Timing the life of antimatter particles may lead to better cancer treatment - Team aims to detect oxygen concentration in
tumors using upgraded medical imaging scan," Science Daily, 2020/10/1
https://www.sciencedaily.com/releases/2020/10/201001090122.htm

"Timing the Life of Antimatter Particles — Less Than 1/50,000,000 Second — May Lead to Better Cancer Treatment," Scitech
Daily, 2020/10/1.
https://scitechdaily.com/timing-the-life-of-antimatter-particles-less-than-1-50000000-second-may-lead-to-better-cancer-
treatment/

"Timing the Life of Antimatter Particles — Less Than 1/50,000,000 Second — May Lead to Better Cancer Treatment,"
infosurhoy, 2020/10/1.
https://infosurhoy.com/health/timing-the-life-of-antimatter-particles-less-than-1-50000000-second-may-lead-to-better-
cancer-treatment/

"Timing the life of antimatter particles may lead to better cancer treatment," Phys.org, 2020/10/1.
https://phys.org/news/2020-10-life-antimatter-particles-cancer-treatment.html

"Timing the life of antimatter particles may lead to better cancer treatment," 7th Space Family Portal, 2020/10/1.
http://7thspace.com/headlines/1327635/timing_the life of antimatter particles may lead to better cancer treatment.ht
ml

"Timing the life of antimatter particles may lead to better cancer treatment," ecancer, 2020/10/2.
https://ecancer.org/en/news/18759-timing-the-life-of-antimatter-particles-may-lead-to-better-cancer-treatment

"Timing the life of antimatter particles may lead to better cancer treatment," Science Bulletin, 2020/10/1.
https://sciencebulletin.org/timing-the-life-of-antimatter-particles-may-lead-to-better-cancer-treatment/
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"Compton imaging opens up new avenues for diagnostic imaging," captured by physicsworld, 2020/10/5.
https://physicsworld.com/a/compton-imaging-opens-up-new-avenues-for-diagnostic-imaging/

“Positronium formed during PET scans could detect hypoxic tumours,” captured by physicsworld, 2020/10/13.
https://physicsworld.com/a/positronium-formed-during-pet-scans-could-detect-hypoxic-tumours/

2.8 HE#H E Exhibition (1)

(1]

% 60 Al H AR RS « 5 40 B H AKIEFZHINFSRESFINKRSIT TS, A=Y 7yt s v—>7
DETRR, 2020/11/12-14, #5 [EER R RS,

2.9 ZOHIREZE Other reports (0)

2.10 @54 R bt Foreign guest scientists (1)

(1]

2020/2/15 Lydia Maigne, Carla Winterhalter, David Boersma, Hiroshi Watabe, Mistsutaka Yamaguchi

2.11 RExtit Lab tours for visitors (12)

(1]
(2]
3
[
[

—

4
5]

—

[c BN
[Sh |

2020/1/20 FNAFH E 55 % HH T R R IR AR 1T G 12 40)

2020/1/22 QST MEZEB YA Fv¥y MGEH154)

2020/1/24 WNEFBORHEEE (R IBEMEY) 42 —1T7GH 12 4)

2020/2/10 #5 1 [EIBA S AGREE RIS (EE 24 49)

2020/2/17 FHSZATBOE N E B AR RIS R 1 Fn 26k - WIS ECE RS (B8l 1 /2 ~— 3 48Y)
EEE (R HY) ALREEE Z—17GHS 4)

2020/8/11 STHFHFA FHREAN « FIRBOR)R AFFEBRR AR & raf ot s =R WHERE T —1TGEH 8 4)
2020/8/12 ZOAS AR EBHGHEALE LIPE £k

2020/9/3 % 2 BIRG S AGRREIHE G 8 44)

2020/9/7 SCHFHFE I FCAR LS BT N FRIRBLEIS B Z—1T(G 6 4)

2020/9/14 STHFFFA BHAHN - SHINBOR R 03 6 R AR R M KRR 2 —1TGH 4 4)

2020/10/8 £ 112 [l BURFRE #ERRFR MR PG 19 4)

2020/12/3 55 113 [EIHUR B R AR M R .7

3. SMEBETM (R%) Awards (5)

(1]
(2]

(3]
[4]
(5]

TRARI], Web 7 271w a U H BIES Y v v oa v, 876 8 H AR BESREAN P2 2 IR 2, 2020/5/15-6/14.
Selected as a top-10 paper in IEEE TRPMS 2017. (Eiji Yoshida, Hideaki Tashima, Tetsuya Shinaji, Keiji Shimizu, Hidekatsu
Wakizaka, Akram Mohammadi, Fumihiko Nishikido, Taiga Yamaya, "Development of a whole-body dual ring OpenPET for
in-beam PET," IEEE Transactions on Radiation and Plasma Medical Sciences, Vol. 1, No. 4, pp. 293-300, July 2017.)
Akram Mohammadi, Outstanding Reviewer Awards 2019 by Physics in Medicine and Biology

Han Gyu Kang, 2020 IEEE NSS/MIC Trainee Grant.

Takumi Nishina, 2020 IEEE NSS/MIC Trainee Grant.
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