QST-R-7

FME=E2017

2017 Report on PET Imaging Physics Research

ESTAFRREFEAN EFRIFERIATFRATE RAREFE ST

T3 | f Radiological (j ST
- National Institute of Radiological Sciences, - Q
NIRS o ological S 5

National Institutes for Quantum and Radiological Science and Technology




BX Contents

AA=D VTR RTF— L
HeTEEEE 2017

WEFAJLAYS PET:
Chin #2528 vs. Neck & 2%

ANILAYNEY PET &ERD
PEBERTM

BRAB PET IRUNAHIER YT
BEUEALEFEDRSE

ANILAYNE PET £EBIZHITS
TOF 1E# DA Mtk

MRI BEFRIGED=HD
2 B AEAE PET A —hDR st

OpenPETHAMT DR RER:
in-beam PETHFZEEDOIE H 25657 5

T EKICBTEERRENHLR
RO "C RETE 150 RBEtEL
89 % in-beam PET =&

RREA~NODREMBEAZLD
PET # 2RO MRENE

BRHBABMIELEZN
PET BIfg~5Z2 5528

BRIANAF—FREBERAVNE
BEHFHRE—LDEHA

MianBREEZRICAIT =
RATAPAA—D T EBEDRFE

AA=S VTR RF — L
W 2017

Imaging Physics Team:
Research action report 2017

Improved helmet-type PET:
chin detector vs. neck detector

Performance evaluation of the
helmet-neck PET prototype

Automated image fusion algorithm of
emission images and attenuation
maps for brain PET

Feasibility of a helmet-type PET with
TOF information

A prototype oval PET insert for MRI
systems targeted for body imaging

In-beam PET study of RI beams and
detector development

Washout effect in rabbit brain:
in-beam PET measurements using
"C and 0 ion beams

Improved PET detector by coupling
reflectors on the bottom of a crystal
block

Effect of the inter-crystal scattering
on PET images

Organic photodiode detector for
heavy ion beam

Development of a micro imaging
system for dynamic observation of
cells

Achievements of Imaging Physics
Team in 2017

ARE

Taiga Yamaya

H &35

Hideaki Tashima

D/ il

Go Akamatsu

MK

BN Z=<

Yuma lwao

HARIX
Sodai Takyu

ILTA vNEN RKYAY TUOTA
Md Shahadat Hossain Akram

EBNITA TUILA
Akram Mohammadi

BT
Chie Toramatsu

MMEEF
Naoko Inadama

FrHRE
Munetaka Nitta

WEXE
Fumihiko Nishikido

EETE
Genki Hirumi

13

18

23

25

28

32

37

40

42

46

50

55



PET

AA—=DVTYBHRT—L HIREBHE 2017

Imaging Physics Team: Research action report 2017

ILARE F—L)—H—
Taiga Yamaya, Team Leader
(On behalf of the Imaging Physics Team)

1. [FC®HIZ

PET(BEFMBERR L) L. HNAZR XTI, 2
FAA—DU TR REHET HFELLTHFIA T
%, A REZR AR (RED) I, 1979 FI2H
AHOPET £EBEFIFLTLE, PET I ESKIT. 5
PDFAA=D U THREOH RN ) —T 4V THEDVED
Eigot=,

PET Z£EIC DT, ZEDMRECRRE., JRANMIED
RCRENEINTHY, RERFMOBF IR R H
R BEETIZHD, (A= T B EF— AL,
MBET7ATA7DRIHEEREZARIC, REFYE
HEEHEL TS, 2017 FOREDNATANILLT
DEBYTH D,

>t Tk whole gamma imaging (WG #1585
fEHBASIC M Th

Depth-of-interaction (DON#& H 288N EA{EI=DLN
TEXEEEWHEREELEFTHAEEIZE

OpenPET ORI OVTIFEHMOLBDOX
B AXERERZRMEMRTM)IZE

DOl ¥ HH 88 H LU OpenPET £, #hZFh 2000 FRE
HEY 2007 EENILEFLET—ITHY, REIZEY
WML CE-AREARN TSN ZEDTH D, NEE
FOEREFIC, RES— XD HE BN TIERSA,

mnxﬂm
et SRR B
i

2017 Report on PET Imaging Physics Research

1. Introduction

Positron emission tomography (PET) plays important roles in
cancer diagnosis, neuroimaging and molecular imaging
research. The National Institute of Radiological Sciences
(NIRS) has been focusing on PET research since 1979 when
NIRS developed the first PET scanner in Japan. Now NIRS is
recognized as one of the world’s leading institutions in the field
of molecular imaging research.

Regarding instrumentations, potential points remain for which
big improvements could be made, including spatial resolution,
sensitivity and manufacturing costs. Therefore, research on
next generation PET technologies remains a hot topic
worldwide. The Imaging Physics Team (IPT) is engaging in
nuclear medicine physics research by realizing innovative
ideas. Highlights of achievements in 2017 are:

First prototyping of the novel concept “whole gamma
imaging”

Recognized as a Person of Collaboration Merits by
the Minister of Health, Labour and Welfare, for the
realization of a depth-of-interaction (DOI) detector

Awarded the Science and Technology Prize by the
Minister of Education, Culture, Sports, Science and
Technology, for research on OpenPET

Both DOI and OpenPET are long-term research projects which
were started in 2000 and 2007, respectively. These awards,
which celebrate the fruits of our labor, remind us to plant new
seeds for the next generation research.

FH20EE HERHABOLMHERERE 5

Figure 1 Award ceremonies: recognizing our works for DOI realization (left) and for OpenPET research (right).
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2. Historical overview (2001-2017)

In the first midterm plan of NIRS (2001-2005), IPT succeeded
in developing a novel 4-layered DOI detector, which is a key
technology to get any significant improvement in sensitivity
while maintaining high spatial resolution. This DOI detector is
the base for Shimadzu’'s new line of positron emission
mammography products.

In the second midterm plan of NIRS (2006-2010), IPT
expanded PET application fields by making full use of DOI
detectors. IPT invented the world’s first, open-type PET
geometry OpenPET, which is expected to lead to PET imaging
during treatment. The DOI detector itself evolved through
application of recently developed semiconductor
photodetectors, i.e., silicon photomultipliers (SiPMs). We
developed a SiPM-based DOI detector X'tal cube to achieve
the theoretical limitation of PET imaging resolution.

In the third midterm plan of NIRS (2011-2015), IPT made big
progress with these technologies. In the OpenPET project,
which received the German Innovation Award in 2012, IPT
finally developed a full-scale OpenPET prototype. In addition,
the flexible detector system of the OpenPET prototype enabled
realization of an innovative brain scanner; this is the helmet-
chin PET, which is now being commercialized in collaboration
with  ATOX Co., Ltd. On the other hand, technologies
developed for the X'tal cube enabled a new idea of add-on
PET, which can be applied to any existing MR systems in
theory.

In April 2016, NIRS has reorganized as part of the new
organization, the National Institutes for Quantum and
Radiological Science and Technology (QST). In addition to
continuing work for these three on-going projects (OpenPET,
helmet-chin PET and add-on PET), IPT has started a new
development project for a whole gamma imager (WGI), which
is a new concept to combine PET and Compton imaging.

on to be made by original ideas and technologies
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Figure 2 Historical overview of research projects done by the Imaging Physics Team
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3. Whole gamma imaging (WGI) concept

PET is recognized as a successful imaging method, but in
order to meet emerging demands such as in-situ single-level
cell tracking, we need to break through an inherent limitation in
the principle of PET itself. Therefore, in collaboration with Prof.
Katia Parodi at Ludwig-Maximilians-Universitat Miinchen and
others, with support by the NIRS Open
Laboratory program and the QST President Grant, IPT started
realization of the new concept of whole gamma imaging (WGI)
in 2016.

International

WGI is a concept utilizing all detectable gamma rays for
imaging by combining PET and Compton imaging. An
additional detector ring, which is used as the scatterer, is
inserted in a conventional PET ring so that single gamma rays
can be detected by the Compton imaging method. As a wide
range of radioisotopes can be visualized, WGI is expected to
enable imaging of the targeted radioisotope therapy. In
addition, triple gamma emitters such as “*Sc, that emits a pair
of 511 keV photons and a 1157 keV gamma ray almost at the
same time, are selected as an imaging target. In theory,
localization from a single decay is possible by identifying the
intersection point between a coincidence line and a Compton
cone.

In 2017, following the simulation we accomplished in 2016, we
succeeded in prototyping the first WGI system and showed a
proof-of-concept of WGI, by visualizing a “Sc source
generated by the Department of Radiopharmaceuticals
Development at NIRS. We showed the localization accuracy of
the 12.7mm FWHM which was obtained as the intersection
point between a coincidence line and a Compton cone. Further
improvement will be possible by optimizing the detectors.

Progress in 2017
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Figure 3 Realization of the whole gamma imaging (WGI) concept
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4. Brain dedicated helmet-type PET

Life extension is now causing another issue of rising numbers
of dementia cases. To satisfy the potential demand for brain
imaging, prototypes of brain PET scanners have been
developed. However, all previous prototypes were based on a
cylindrical geometry, which is not the most efficient for brain
imaging. Making the detector ring as small as possible is
essential in PET, because sensitivity can be increased with a
limited number of detectors. Therefore, IPT developed the
world’s first helmet-chin PET, in which DOI detectors are
arranged to form a hemisphere, for compact, high-sensitivity,
high-resolution, and low-cost brain PET imaging.

In 2017, progressing towards a more patient-friendly system,
we moved the chin detector unit to the back of the neck
position. This change was based on our simulation, which
showed that the effect of additional detectors depends on the
number of detectors and does not depend significantly on their
position. In practice, a 7% improvement in sensitivity was
obtained because the safety margin, which was required for

the chin-detectors, could be removed for the neck detectors.

Progress in 2017

World’s first prototyping

Num. detector

~1/5x

Sensitivity ~3x

Healthy volunteer study
(70MBq FDG, 18 min PET)

Changing the chin-detector position to the neck

More patient-friendly geometry
7% sensitivity improvement

Figure 4 Helmet PET project
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5. Add-on PET to upgrade existing MRI

One of the major innovations made in recent years is the
combined PET/MRI, but utilization of DOI detectors has not
been studied well. DOl measurements are essential for PET in
order to exploit the improved spatial resolution and sensitivity
as well as reduced production costs. Therefore, we proposed
an add-on PET, which is a RF coil combined with DOI-PET
detectors.

In order to make the PET detector ring as small as possible
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while placing electronic parts such as photodetectors and
front-end circuits outside the RF coil, PET detector modules
were placed between spokes of the birdcage RF coil. For each
detector module, electronic parts were covered with a shielding
box with a hole in front of the photodetectors, and scintillators
were stuck out of the shielding box to allow their placement
inside the birdcage coil. In theory, the proposed birdcage coil
integrated with PET detectors can be applied to any existing
MRI.

Following the development of a head-sized prototype in 2016,
an oval detector arrangement was investigated, in particular
we focused on the RF transmission performance, for the
potential extension to whole-body PET/MRI imaging.

Progress in 2017
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Figure 5 Add-on PET (PET/MRI) project
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6. OpenPET: a future PET system for therapy
imaging

OpenPET is our original idea to realize the world’s first open-
type 3D PET scanner for PET-image guided particle therapy
such as in situ dose verification and direct tumor tracking. The
principal of dose verification for particle therapy is based on the
measurement of positron emitters which are produced through
fragmentation reactions caused by proton or '2C ion irradiation.
Even with a full-ring geometry, the OpenPET has an open gap
through which the treatment beam passes. In 2016, IPT
showed that the difference between a PET peak position and
a dose peak position could be smaller than 1 mm with the
newly established 'O beam irradiation.

In 2017, IPT continued its international collaboration.
Outstanding HIMAC experiments which made full use of the
potential of the OpenPET system were done. A PET-dose
conversion method not only for Rl beams but also for stable
("?C etc.) beams was studied in collaboration with Ludwig-
Maximilians-Universitat Minchen. Validation of Monte Carlo
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codes was investigated in collaboration with Australian Nuclear
Science and Technology Organisation (ANSTO) / University of
Wollongong. These results were presented at IEEE MIC 2017
as oral presentations, which were demonstrating the high
quality and impact of these works.

Progress in 2017
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Figure 6 OpenPET project
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7. Conclusion

This report has summarized major research activities of IPT.
Some of the research results have been presented in the
“Jisedai PET Kenkyu-kai 2018” workshop on January 22, 2018
(Figure 7). In 2018, further progress is expected by
accelerating collaboration with the Takasaki Advanced
Radiation Research Institute in QST, which is a large benefit of
the 2016 reorganization.
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Figure 7 Poster advertising the “Jisedai PET Kenkyu-kai 2018” workshop
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[Fiscal year [ 2009 2010 [ 2011 2012 2013 2014 2015 | 2016 2017 |
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Improved helmet-type PET: chin detector vs. neck detector

HEXRE FEMHEE
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1. Introduction

We are developing a helmet-type positron emission
tomography (PET), which is specialized for brain imaging, as
a high-performance and low-cost dedicated brain PET system
for widespread applications [1-5]. The main characteristics of
the helmet-type PET are improved sensitivity for the top region
of the head achieved by a helmet detector having a
hemispherical arrangement of the PET detectors and for the
central area, where the sensitivity is still low with only the
helmet detector, achieved by an add-on detector. We reported
last year that we had developed the helmet-chin PET prototype
having the add-on detector at the chin position (chin detector),
and we showed its high sensitivity and good imaging
performance by experimental evaluations including a healthy
volunteer study. On the other hand, our numerical analysis
showed that the same sensitivity improvement as the chin
detector can be achievable with a neck detector positioned at
the neck position (the back of the head). Because the neck
detector does not require anything be moved for patient setup,
we can expect an improved convenience for measurements.
In this report, we developed a helmet-neck PET prototype,
which has the add-on detector at the neck position (neck
detector), and we evaluated its performance.

2. Method
(1) Development of the prototypes

The helmet-type PET prototype has a compact gantry design
so that it fits the patient head. We have developed the
prototype using depth-of-interaction (DOI) detectors, which
enable high spatial resolution throughout the field-of-view
(FOV) even when the detectors are close to the patient head.
In total, 54 DOI detectors are used, each of which is composed
of a 16x16x4 array of Zr-doped GSO crystals (2.8x2.8x7.5
mm?3) and a high-sensitivity super bi-alkali 64ch flat-panel
photo multiplier tube (FP-PMT) (R10551-00-64: Hamamatsu
Photonics K.K.). For the helmet detector, 47 out of the 54
detectors are used, while 7 detectors are placed as the add-on
detector. After we first developed the helmet-chin PET
prototype, we developed the helmet-neck PET prototype by
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remodeling the chin detector to the neck detector (Figure 1).

Figure 1 The helmet-chin PET prototype (left) and the helmet-neck prototype (right).
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(2) Sensitivity comparison

We measured a hemispherical pool phantom with the diameter
of 20 cm filled with '8F solution using the prototypes to compare
the sensitivity for the brain PET imaging region. We compared
the sensitivity with the helmet-chin PET, the helmet-neck PET,
and the helmet detector only (helmet only) where the data
acquired by the add-on detector were excluded.

(3) Healthy volunteer study

We conducted the first clinical test using the helmet-neck
prototype with a healthy volunteer. Because the helmet-neck
PET prototype has high sensitivity, the injection activity was
lowered compared with a normal scan. The volunteer was
measured for 26 min using the helmet PET prototype 140 min
after injection of '®F-FDG of 72 MBg. An image of the helmet
PET prototype was reconstructed by the list-mode ordered
method. The
number of subsets was 21 and the number of iterations was 3.

subset expectation maximization (OSEM)

We applied normalization, random correction, attenuation
correction, and scatter correction as data correction methods
[6]. Because the helmet-type PET was a stand-alone system
based on a compact design concept without other modalities
such as CT, a separately acquired CT image was used for the
attenuation and scatter corrections. This study was approved
by the institutional review board.
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3. Results
(1) Sensitivity comparison

Figure 2 shows the hemispherical pool phantom used for the
sensitivity comparison and the results of the sensitivity
measurements. Compared with the helmet detector only, the
helmet-chin PET increased the sensitivity by 12%, and the
helmet-neck PET increased it by 20%.

(2) Healthy volunteer study

Figure 3 shows the '8F-FDG image obtained in the first clinical
test of the helmet PET prototype. As the "®F-FDG was
distributed throughout the entire brain in the case of the healthy
subject, the obtained image showed detailed structures of the

brain clearly.
20% UP
12% UP
Helmet only Helmet-Chin  Helmet-Neck

PET PET

Figure 2 Sensitivity comparison using a hemispherical phantom (left) indicating the brain imaging region measured by

the prototype with the chin detector, with the neck detector, and without any add-on detector (right). The area indicated by

the dashed red line was filled with 8F solution.

High

Low

Figure 3 The first clinical image obtained by the helmet-neck PET prototype fused on the CT image.



PET

4. ER

RELLROER. EMNERHIREHEOMEBEIYEEKEE
HOMEBEOANEWVRER EREF/ONDIIENHL
Mg of=, ChiF, HTHE. VN7V TRERRIERD
WBREDLEDH. HEIREI—IUERITTHRESR
EEB T DLIICHKETLATRIERS AN >f=DIZx L,
FRERTBDIZEICE, BMREHB[BORIBEBERTIEN
TE, WNEEANEDITAIENTELZOTHD, Tl2o N
JLAYNEH 2L EBERD Neck HRIESBDREIETE S
(FINEKFBHILET, REFARNDEFILKRLESLER
FTED,

BIRLIZAILAYN PET AEHILZRE D EEENSL.
NOERETHD, — kM7 *F-FDG 2L PET &
BLUENBRYD BN SETHIICHELL T EEBAARE
BEBDIENTRETH o=, TN, WRHEITH TS
WEROER®, BFI AN ER, REBREOERERE
AEIEEIND, Ffz, PET EBOIANIRH S HIZKE
RIELTLNDA, NILAYSPET (&, £ 5 A PET £8D
8 1/4 OREBHTRTTES120, ARMNEMZ DL
MAETBETH B, Lo T, EIARM DB MREAR L R E PET
ELTHIRFTES,

5. F&oH

~NILAyh PET BHAEROEMKREBREHEDLEL D
HEEE DM BICHAEL. AIEEE RO D DR H AR %X
SEFIE DTN R B ET o=, TOMER. XNFEEIC
S AREAEBIZME LU, BB BN ELBIIENT
7=, Helmet-Neck PET [ZERBELMKAA—SUTEIR
JRANTEBAIRETH D,

Acknowledgements
Collaborators

2017 Report on PET Imaging Physics Research

4. Discussion

The sensitivity comparison revealed that the add-on detector
positioned at the neck position has a higher effect for improving
the sensitivity than that at the chin position. This is because the
chin detector requires a safety margin for patient setup and
measurement in the design, while the neck detector can be
placed closer to the brain region. Also, we can remove moving
parts for the add-on detector. The effect of expanding the FOV
toward the neck detector was achievable.

The developed helmet-neck PET prototype has high spatial
resolution and high sensitivity. Therefore, we could obtain clear
images even though the injected dose was significantly lower
than conventional studies using '®F-FDG. Because we could
obtain high definition images with significantly lower injection
dose, we can expect reductions of not only the patient dose,
but also, the cost for tracer drugs and measurement time. We
concluded that the helmet PET can provide highly accurate
brain function measurements with about one-fourth the
number of detectors compared with a whole-body PET
scanner. Cost of the PET scanner highly depends on the
number of detectors; therefore, the helmet PET has the
potential of offering low-cost and high-accuracy brain PET for
widespread applications.

5. Conclusions

We remodeled the helmet-type PET prototype by changing the
add-on detector position from the chin position to the neck
position, reducing the number of moving parts. As a result, the
sensitivity for the brain region was further increased, and we
could obtain a good effect from the FOV expansion. The
helmet-neck PET is a promising tool for realizing high-
accuracy brain imaging at low cost.
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1. Introduction

Dementia is a huge social issue in Japan, as it is in many
other advanced countries. The Ministry of Health, Labour
and Welfare of Japan has suggested a comprehensive
strategy to accelerate dementia countermeasures (the
New Orange Plan) [1]. It is required to establish a
mechanism to enable society to provide long-term care to

elderly people.

From a consideration of social situations, the National
Institute of Radiological Sciences (NIRS) proposed a new
(PET)
concept as an innovative functional imaging tool for

helmet-shape positron emission tomography
dementia [2]. We have already developed the world’s first
helmet-neck PET prototype, which has high sensitivity and
high resolution [3]. Currently, in collaboration with ATOX
Co., Ltd., we are working toward obtaining regulatory
approval for the helmet-neck PET as a medical device

Safety and utility of the device are important matters to
secure the regulatory approval for a medical device.
Therefore, we have to objectively evaluate imaging
performance of the helmet-neck PET scanner using a well-
established and a widely known methodology. However,
the only existing standard method is for whole-body PET
scanners. Standard phantoms, which simulate an actual
human body, are not applicable to brain-dedicated

compact PET scanners. Therefore, new standard

phantoms are required for objective performance

evaluation of the helmet-neck PET prototype.

Here, we report the development of two types of new brain
phantoms for performance evaluation of the helmet-neck
PET prototype.
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Hemispherical
detectorarrangement

Neck detectors

Figure 1 Photograph (left) and schematic drawing of the detector arrangement (right) of

the helmet-neck PET prototype.

2. H&
(1) ~JLAvhPET EEH#

ANILAYh PET SHEMIIRERREORESE
BHL. AUVMEA 2563 cm OV /OGRS ER
2TW5(Figure 1), FMIZOWTIL, AELDHE
(REFERTBE)ESRINTL,

Z iR

(2) aAVNSARNTFZURL

PET XBOEKRMREEL T, BHE/INEEDOKRH
BEIEZE OO TEETHD, — MG PET MEREFEME
$R# T 5D NEMA(National Electrical Manufacturers
Association) NU-2 [4] Tl [REEERLEZRX
% 30 cm OFV)ILEIIERARERIC 6 DOIKK(ER
37, 28,22, 17, 13, 10 mm)AFHASINIF=T7UMA
(NEMA body 77 URL)EFERT 5, L, I/
MR HEBRELBE B T 5L AN PET REHTIE
B ARBRBLABIZ 7N AR B TERLIEIZM
Z. BESCIEGIRAREE B L =77 L THDI L
Mo, REAEEOMREFTHMICCOTI7UNLEAWNDS
DIFBEYITIE7EL,

FOTHALIL, BT REZEELEZER 165
cm OF VLR EARB/EERL. LY/NSZEHE
SREEEERLEZ 6 DOBRK(ER 22,17, 13,10, 8,
5 mmAHASNEHFLWI 7oA (OIS ANT 7
UML) EVER L= (Figure 2), 6 DDEREADSH, 4D
[ EE NEMA body 77 bLDEKEEFR ALK,
NEMA $RIRICELTEL DH A RDERKEFERT S
CEMNATRETHY. NEMA FRA&LRBRDMEBEETHMZSE
I BENRIBETH B,

EERIZAIILAYNPET R E#E ATV ANT

19

2. Methods
(1) Helmet-neck PET prototype

Figure 1 shows the helmet-neck PET prototype which has
a compact helmet-shape detector arrangement. Detail
specifications are described in the former report (Tashima,
et al.) on this journal.

(2) A small sphere contrast phantom

Small lesion detectability is an essential metric as one of
the imaging performance characteristics. In the National
Electrical Manufacturers Association (NEMA) NU-2 which
is a standard PET performance measurement [4], spheres
of different diameters (37, 28, 22, 17, 13 and 10 mm) in a
simulated body phantom (NEMA body phantom) are
scanned to evaluate image contrast, background
variability, and accuracy of the attenuation and scatter
corrections. However, the NEMA body phantom cannot be
inserted into the gantry of the helmet-neck PET prototype
because the detector arrangement is very compact. In
addition, the phantom simulates a body-size, which is not

suitable for the brain-dedicated PET scanner.

Therefore, we developed a small sphere contrast
phantom by attaching the lid of the NEMA body phantom
onto a cylindrical container. Inner diameters of the six
spheres are 22, 17, 13, 10, 8 and 5 mm. Spheres are
exchangeable and compatible with the NEMA standards.

We scanned the small sphere contrast phantom using the
helmet-neck PET prototype. The phantom was filled with
an '8F-solution. The background activity was 1.32
kBg/mL. Six spheres were filled with three times the
activity concentration of the background. PET scanning
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was performed for 20 min in list-mode. PET data were
reconstructed using the ordered subset expectation
maximization (OSEM) algorithm with 10 iterations and 8
subsets. A Gaussian filter with 5 mm full width at half
maximum (FWHM) was applied to the PET image.
Attenuation and scatter corrections were performed with
the CT images obtained by another PET/CT scanner.
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Figure 2 An original NEMA body phantom (A) and the developed brain phantom

(small sphere contrast phantom) (B) in which the lid of the original NEMA

body phantom was used.
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(3) A hemispherical Hoffman 3D brain

phantom

The three-dimensional (3D) Hoffman brain phantom
(Hoffman phantom) [5] has been widely used for
performance evaluation of brain PET imaging. In clinical
multi-center brain PET studies primarily on dementia, the
Hoffman phantom has been used for quality control of PET
scanners and optimizing scanning and reconstruction

parameters [6, 7].

The Hoffman phantom has well-designed structures
simulating gray and white matters with 4:1 activity
concentrations. However, its cylindrical external form,
which is different from an actual head shape, may
emphasize attenuation and scattering. In addition, it is not
applicable to the helmet-neck PET prototype due to its
hemispherical detector geometry. Therefore, we cut off
inner plates so that the diameter decreased on going to
the top of the head and then developed a 3D
“hemispherical” Hoffman brain phantom (hemispherical
Hoffman phantom) (Figure 3). The hemispherical Hoffman
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phantom was compatible with the original one because
original structures which simulate brain regions were not
modified.

We scanned the hemispherical Hoffman phantom using
the helmet-neck PET prototype. The phantom was filled
with '8F-solution of 10 MBq. The PET scan was performed
for 30 min in list-mode. Image reconstruction parameters
were the same as mentioned earlier.

Figure 3 Inner plates of the original (A) and the hemispherical (B) Hoffman 3D brain phantoms.
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4. Results and Discussion

We developed two types of adaptive brain phantoms for a
compact helmet-shape PET scanner. In addition, we
actually acquired PET images using the helmet-neck PET
prototype.

Figure 4 shows a PET image of the small sphere contrast
phantom. The 8-mm-diameter hot sphere was clearly
visualized. Furthermore, the background area of the
phantom can be used for evaluating uniformity and image
noise level.

Figure 5 shows a PET image of the hemispherical
Hoffman phantom. The PET image, with visually clear
contrast between gray and white matters, was obtained by
the helmet-neck PET prototype.

In the near future, we are to evaluate the phantom images
quantitatively and to compare the performance between
the helmet-neck PET prototype and a commercial PET/CT
scanner.
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Figure 4 PET image of the small sphere contrast

phantom obtained by the helmet-neck PET

prototype.
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Figure 5 PET image of the hemispherical
Hoffman phantom obtained by the
helmet-neck PET prototype.

5. Conclusions

We developed two types of adaptive brain phantoms for a
compact helmet-shape PET scanner. These new
phantoms are applicable to the helmet-neck PET
prototype for evaluating the imaging performance,
determining appropriate scanning and reconstruction
parameters, and comparing the imaging performance with
that of general whole-body scanners. These phantoms are

expected to facilitate commercialization of the helmet-neck
PET.
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1. Introduction

Recently, positron emission tomography which

(PET),
visualizes tau protein or amyloid beta plaque in the brain, is
expected to enable earlier diagnosis of dementia, in particular
for Alzheimer’s disease. Therefore, we are developing a brain-
dedicated, helmet-type PET system based on our novel
hemispherical detector arrangement [1].

The developed helmet-type PET does not include a CT system
to ensure the system is compact. On the other hand, the
attenuation correction, which is essential in the PET image
reconstruction process, requires attenuation factor maps (mu-
maps). However, in the helmet-type PET, we need to use the
mu-map measured by the other modality (CT or MRI), and we
need to do an accurate alignment of the mu-map and the PET
image. In this study, therefore, we developed an automated
image fusion algorithm between a PET image with no
attenuation correction (referred to as initial-PET) and a mu-
map. Then, we evaluated the proposed algorithm by
comparing its results with manual alignment results.

0.98 0.99
A 1.00 0.95
L X ,
0.80
@ 0.60
After alignment s
S0.40
=
N
0.20
0.00
Volunteerl Volunteer2 Volunteer3

Figure 1 Alignment results: (a) Before and after alignment slice of volunteer data and (b) ZNCC value of 3 volunteers
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2. Methods

In the process of an initial-PET and a mu-map alignment, the
head can be considered to have a rigid structure. Then,
alignment parameters are reduced to 3 shift values of the x, vy,
z directions and 3 other rotation values in each axis. In the
proposed method, a mu-map is translated using these 6



PET

Bl u<yrE PET BREDELYEEEIERIEER
153 & (Normalized Mutual Information : NMI) [2]CsE
fliL. 20O NMI NRESERB/INTA—REEH T D, BIK
MIZlE, B/XTA=EDEYSHEDEFETHRE NM OfE
NREGDEEDNEELLTHREL. COMBAEEDLLIC
Nelder-Mead ;&[3lck 2 EIL st E £ 4T o1=,

3. REBR

ALY PET &3 3 £0fEgEE RS T7 FDG
AEBRT—AEANT, ARLEFEOFTMET o=, ¥
I Initial PET EL CIRINAH E L CHRERLEZT—4%2%
YL, MlR®D PET-CT — (AR EBE Ik >TEELZ 1
RYTEDNEBEADLBET o, EROFMDI=. K
FHER OB HDEE, 2T ILIZkBNBEELEE
Tof. BBBEESbLESN -y Y TE RZaTILIC
FUNBEbEEN -y vy TEDBE UM EEOESIE
HIEHEAEHRBEIC K> TESNITTEL=,

RO 1 FIOLBAHLERIRDEKRE, TOTHIE
HIEEREEO—&% Figurel IZ7R9, Figurel(a)k
Y, THBRETRERTNAH o/ Initial PET Eu <y
2L, EBEAHLEABEREBEYIERO>TNDIIEN
b, XZaTINEBEEDLEDHEREDLEEIZDONT
., COTHEFIEERRBHRE 0.95 LLELFERITHL
BLlEERLTOSFigurel (b)),

4, T

NILAYRPETIZET 2RI IEDT=HD 1 v T E B
MEBALEFEEDEREET oL, SEIE. 7IO(RB P
2R I OBHERC L > TRGINFZ PET T—4
[ZDWNT, BEFEABFRICENERKRETL, ONIME
DALz,

Acknowledgements

Collaborators
Taiga Yamaya (NIRS-QST)
ATOX Co., Ltd.

Grants JSPS KAKENHI 17K18376.

References
1]
Phys. Med. Biol., vol. 61, no. 19, pp. 7205-7220, 201
(2]
137-154, 1997.
(3]

6.

24

2017 Report on PET Imaging Physics Research

parameters, and the similarity with the PET image is calculated
by the normalized mutual information (NMI) [2]. Then the
alignment parameters with the highest NMI value are obtained.
At first we change each parameter in the possible range to
detect the highest NMI value in each parameter, and we use
this value as an initial value of optimization, then the
parameters is optimized by the Nelder-Mead algorithm[3].

3. Results and discussion

We evaluated the developed alignment method using 3 data
sets obtained in a healthy volunteer study of the helmet-type
PET. In the volunteer study, we use fludeoxyglucose (FDG)
tracers which are used in cancer diagnosis. First, we
reconstructed a PET image without attenuation correction and
we used it as the initial-PET, then we aligned it with the mu-
map obtained using a commercial PET-CT system. We
calculated the alignment parameters of initial-PET and mu-
map using the developed method. Furthermore, to evaluate
the alignment accuracy, a radiologist performed the manual
alignment for each data set. Then, we compared the Zero-
means Normalized Cross-Correlation (ZNCC) of the mu-maps
aligned by the developed method and by the manual operation.

Figure 1 shows one set of example images before and after
the alignment and summary of ZNCC values. In Figure 1 (a),
there were big position gaps in the initial-PET and the mu-map
before the alignment. On the other hand, after alignment, 2
images were well overlapped. In the comparison of the manual
alignment, the ZNCC value was higher than or equal to 0.95,
showing very high similarity (Figure 1 (b)).

4. Conclusions

We developed the automated mu-map alignment method for
the helmet-type PET. We applied the method to the data
obtained in a volunteer study, and we showed its good
alignment performance. In the future work, we will test the PET
tracer for the amyloid beta or tau protein, and we will increase
the robustness of the proposed method.

Hideaki Tashima, Eiji Yoshida, Hidekatsu Wakizaka, Takamasa Maeda, Fumihiko Nishikido, and

H. Tashima, T. Yamaya, “Proposed helmet PET geometries with add-on detectors for high sensitivity brain imaging,”
P. Viola, W. M. Wells Ill, “Alignment by Maximization of Mutual Information,” Int. J. Comput. Vis., vol. 24, no. 2, pp.

J. A. Nelder, R. Mead, “A Simplex Method for Function Minimization,” Comput. J., vol. 7, no. 4, pp. 308-313, 1965.
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1. Introduction

There is a strong demand for a high-performance and
affordable brain-dedicated PET scanner to enable early
diagnosis of dementia. Therefore, we are developing a
compact and high-sensitivity brain-dedicated PET scanner
helmet-type PET, which consists of a hemispherically arranged
detector unit and an add-on detector unit [1]. We have
developed the prototypes of the helmet-chin PET and the
helmet-neck PET, having the respective add-on detector at a
chin position [2] and at a neck position [3], using the 4-layered
depth-of-interaction (DOI) detector (with 2.8x2.8x7.5 mm?3
sized Zr-doped GSO (GSOZ) scintillators and a 64-ch PMT,
R10551-00-M64), which can identify the three-dimensional
interaction positions of gamma rays, and we showed the
prototype has good imaging performance.

On the other hand, PET scanners using time-of-flight (TOF)
information are being commercialized due to the recent
emergence of photo sensors with excellent timing performance
[4]. The TOF information is defined as the difference in
detection time (flight time) of a pair of annihilation gamma rays.
The TOF-PET scanner is able to obtain an image with a better
SN ratio by using the TOF information to identify the position
where the annihilation gamma rays are generated, compared
with conventional PET scanners. However, the image quality
improvement effect by TOF information is known to be small
for small measurement objects. Therefore, in this report, we
investigate the feasibility of a helmet-type PET with TOF
information.

2. Imaging simulation

As a TOF-PET detector, we considered using a MPPC (multi-
pixel photon counter) TOF PET module (C13500-4075LC-12)
[5]. The configuration based on this module was compared
with that of the current prototype by Monte Carlo simulation.
This module has a 12x12 array of 4.1 mm sized lutetium fine
silicate (LFS) scintillators which is coupled to a 12x12 array of
MPPCs in a one-to-one manner. Although this module cannot
obtain DOI information, it is able to achieve a 280 ps (FWHM)
coincidence resolving time (CRT) according to the catalog
specifications when using a 20-mm scintillator crystal length.

At first, the helmet-neck TOF-PET with a 20-mm crystal length
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(TOF 20 mm) was modeled as the helmet-type TOF PET in
GEANT4, and the performance results were compared with
those of the current helmet-neck PET prototype (non-TOF,
DOI). Table 1 summarizes simulation parameters. We
simulated the contrast phantom shown in Fig. 1 a) and we
evaluated a trade-off between the coefficient of variation
(COV) and the contrast recovery coefficient (CRC) for the
region-of-interest (ROI) for the sphere of each diameter. Fig. 1
b) shows image quality evaluation results for the 10-mm
sphere. In the case of TOF 20 mm, the image quality
improvement effect by using TOF information was canceled
due to the parallax error by non-DOI information. Therefore,
we shortened the crystal length to 10 mm (TOF 10 mm), which
can reduce the parallax error, and that crystal size gave the
best image quality. In summary, we found the image quality of
TOF 10 mm was the best among the spheres of all six
diameters in the contrast phantom, compared with TOF 20mm
and non-TOF, DOI.

Table 1 Parameters of the simulated geometries
Crystal size [mm?] Scintillator Array DOI TOF No. of detectors

TOF 10 mm 41x4.1x10 LFS 12x12x 1 No  280ps 48

TOF 20 mm 41x4.1x20 LFS 12x12x1 No 280 ps 48

non-TOF, DOI 2.8x28x75 GSOz 16 x 16 x4 4 No 54
a) b) 100 |
80
60
< ]
G 40 ]
20

O ] T T T T T T T T T T T T T T
0 0.1 cov 0.2 0.3

Figure 1 An example reconstructed image of the contrast phantom for TOF 10mm (a) and image quality evaluation

result obtained through the simulation for the 10-mm sphere (b).
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3. Detector performance

Based on the simulation results, we developed a one-pair
prototype of the MPPC TOF PET module with a 10-mm crystal
length (Fig. 2 a)) and we evaluated its basic performance [6].
For energy correction, a relationship between gamma ray
energy and the ADC channel was investigated using point
sources with different energies (?*Na, '¥’Cs, >*Mn and '3°Ba).
The averaged energy resolution at 511 keV after the energy
correction was 11.7 £ 0.7 %. Next, timing spectrum for each
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7= RIZ. 2Na #&BERNICEEELT 10 2RBORIE:ST channel was obtained from the coincidence measurement data
HATETN. BLDOF vy RILTDRAIVT AR for 10 minutes in which a 2?Na point source was placed at the
LERELE, XEE—IRE LT RILE—AURY center. The averaged CRT value at the range of the
=543 CR-_foli 24 B DT CEAEIZ 2508 + 8.4 photoelectric peak was 250.8 + 8.4 ps (FWHM) (Fig. 2 b)).

'O BR <2 (=:] . L .
ps TH-o7=(Fig. 2 b)),

a) b) [ps]
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Figure 2 A photo of the experimental setup (a) and the 2D-distribution of CRT values (b).

4, £ 4. Conclusion

MPPC TOF PET module ZRBU\=AJLAYREI TOF- We confirmed the feasibility of a helmet-type PET with TOF
PET EEE®ETLT=, ysll/—c/gy(-;g,giwﬂgg:a) information. In the simulation, the helmet-neck TOF-PET with
BEEEEFN. LFS OEH#%E 10 mm ELF=#aHE8A  a 10-mm LFS length showed better imaging quality than the
BWIEEMHRLE, TOEMOR iR %%’éu-l_-ﬁﬁb current helmet-neck PET prototype. A 250 ps CRT value was
250 ps CRT MERINMBEEE B, CHDODIEEMND, A obtained for the prototype module with a 10-mm LFS length.

JLAYRE TOF-PET E£EDHA AL E o=,
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1. Introduction

Simultaneous positron emission tomography (PET) and
magnetic resonance imaging (MRI) systems have shown
complementary benefits of diagnostic imaging, especially, in
the fields of neurology, oncology and cardiology [1-3]. PET
uses radioisotope tracers to image the metabolic function
related to different diseases. On the other hand, MRI is
superior in anatomic and functional imaging. Simultaneous
PET/MR imaging can provide these complementary data in
one patient set-up to better understand the disease
progression. Since its adoption in 2010, only around 70
commercially-available body PET/MRI systems have been
installed, mostly in research centers [4]; this is in sharp
contrast to the more-than 60,000 MRI systems that are
already installed around the world. One of the reasons for this
scarcity is the extremely high cost of this multimodal system.
Another reason is that the installation of new PET/MRI
systems requires extra space and logistics. One potential
affordable alternative solution is to develop PET as an insert
for the already-installed MRI systems — an approach similar to
using different RF coils with the patient bed of the MRI
systems. Previously, we reported on the PET insert for brain
imaging with a 3 Tesla clinical MRI system [5-6]. In this report,
we introduce an oval shape prototype PET insert [7] targeted
for body imaging or pediatric imaging with the existing patient
bed of already-installed MRI systems. The oval shape
matches well with the human body as well as head shapes.
With this shape, the detectors become closer to the imaging
region, thereby increasing the sensitivity and spatial resolution
in PET.

2. Materials and Methods

The prototype oval PET insert was developed using 12 radio
frequency (RF) shielded PET detector modules in which 4
modules were implemented as dummies. The other 8 detector
modules had been previously implemented for a cylindrical
brain PET insert [5-6] and were reused here. The oval insert
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(a) Concept of electrically floating PET insert
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(Figure 1) had the inner dimensions of major axis 440 mm and
minor axis 350 mm; and outer dimensions of major axis of 520
mm and minor axis of 430 mm. The insert was tested in a
clinical 3 Tesla MRI system (Siemens MAGNETOM Verio) of
bore diameter 700 mm with patient bed height of 160 mm.
Each PET detector module was implemented as a 4-layer
LYSO scintillation DOI detector of axial-extent 12 mm and
each crystal in the detector block had dimensions of 2 mm X 2
mm X 5 mm. The axial-extent of each shield box was 225 mm
and the box contained separate photo-sensors (MPPCs) and
PET front-end readout circuit boards.

We performed a uniform phantom study for the MRI feasibility
test. The phantom used was a 160-mm diameter and 27-mm
axially-long cylindrical phantom. The MRI system built-in body
RF coil was used both as transmitter and receiver. To make
use of the MRI built-in RF coil, we electrically floated [8-9] the
RF shielded PET modules from the RF ground of the MRI
system (Figure 1). As a result, RF field can pass through the
narrow gap in between the shielded PET modules (Figure 1).
The experimental set-up is illustrated in Figure 2(a).

‘ Transmit RF field
Receive RF field

Built-in RF coil as
transmitter and
receiver

PET ring

Existing Patient bed

MRI system

(b) Schematic of oval insert with MRI system that shows

RF field penetration from and to the built-in body RF coil

Figure 1 Schematic drawings showing the concept of the electrically floating RF-penetrable PET insert (a) and the oval

insert (b) inside the MRI system in which the MRI built-in body RF coil was used both as transmitter and receiver.
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(a)Experimental Set-up

Figure 2 The experimental set-up of oval insert inside the MRI system (a) and results of RF transmitted field and SNR (b).
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3. Results

Transverse RF field maps (Figure 2(b)) both without
(MRI-only) and with the oval insert are given for the 150-mm
diameter central plane of the cylindrical phantom. A slight
decrease in field homogeneity was seen for the oval insert,

especially near the periphery.

Table 1 lists the SNR values for the spin-echo transverse
images taken at two different positions in the longitudinal
direction. For the oval insert case, the SNR values were
reduced by about 50% from the MRI-only values. We used the
MRI built-in body RF coil also as receiver. Because of the
shielding materials in between the phantom and the body RF
coil, the received sensitivity was low and that lowered the
SNR values [8-9]. In practical MR imaging a surface receiver
coil is usually used for better received sensitivity. We expect
that using the receiver coil inside the PET insert would
improve SNR values and we will investigate this in our future
study.

MRI only MRI with oval insert

(b) RF transmit field map

Table 1. SNR of spin-echo images for two transverse slices

Z-axis MRI-only MRI with oval insert
-60 mm 505+£35 265144
0mm 545+21 29916

4. Discussion and conclusion

The oval insert with 12 RF shielded PET detector modules
was installed inside an existing clinical MRI system and
showed compatibility as a PET insert. A study on PET
performance is yet to be done. Presently, the system includes
4 dummy modules to complete the full ring. In the future, we
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Hot-1=H. SHROHETILLTE PET ¥ 52LL PET  plan to develop a full-ring geometry with all the PET detector
HEELLTOIMEIToTINKIEEFELTLNS, £f=. modules and conduct the PET study. We also plan to extend
BEOKRE A EDOEEZHTH 12mm &5 T7ohL the PET axial FOV (which is now only 12 mm). This extension
DEBEDAEBETEEHIZIEFATEAENED, 5% is needed to perform phantom and patient studies.
FRFOIELITOTKF ETH D,
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1. Introduction

Range verification of incident ion beams in a patient body is
important for effective treatment in ion therapy. PET is
expected to enable visualization of the distribution of positron
emitters produced through fragmentation reactions [1-2].
Therefore, we are developing a dedicated PET system
OpenPET, which is being realized by the use of depth-of-
interaction (DOI) detectors. In this study, we report our
progress in the in-beam application and detector improvement
of the OpenPET system.

One of the remaining issues in in-beam PET is the difference
between a PET peak position and a dose peak position, which
is preventing straight forward understanding of PET images [2-
3]. For this problem, our solution is the use of a radioactive ion
(Rl) beam, which enables direct visualization of the beam
stopping position [4]. We have shown feasibility of this idea
through an in-beam PET study for °C, "C and 'O ion
radioactive beams using the OpenPET system [5, 6]. However,
a small difference between the beam stopping position and the
dose peak was observed. In 2017, we analyzed potential
reasons for this difference. The DOI detector itself was also
improved by adding capability of time-of-flight (TOF).

2. In-beam PET study of Rl beams

A PMMA phantom was irradiated by a 'O beam with the
energy of 312 MeV/u in the HIMAC, and the PET images were
obtained by the OpenPET [7]. The experimental setup for in-
beam PET imaging and dose profile measurement are shown
for both ion beams in Figure 1. The dose profile was measured
using a cross monitor in a water phantom.

Planar integrated activity distributions were derived by
integrating the measured activity from PET images over a
transverse plane at various depths, and they were compared
with the measured relative dose in an equivalent PMMA in
Figure 2. A difference of around 2 mm was observed between
the beam stopping position and the dose peak.

Next, we analyzed the effect of energy spread of RI beams.
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We used the particle and heavy ion transport code system
(PHITS), which is a general-purpose Monte Carlo particle
transport simulation code [8]. We simulated a 'O beam of 200
MeV/u with a Gaussian energy distribution of various full
widths at half maximum (fwhm, AE). The differences between
the Bragg peak position and beam stopping position is shown
in Figure 3. The results showed that the difference was zero
for the mono-energy beam and it was increased by increasing
the energy spread.

In this work, we observed an increase of differences between
the Bragg peak position and the position of the maximum
positron-emitting fragments when the energy of the ion beam
was broadened, although the differences were almost zero for
the ideal mono-energy beam. In the next step of this research,
we will focus on developing a conversion algorithm from the
PET peak position to the Bragg peak position for a radioactive
ion pencil beam with practical energy spread.

Figure 1. Dose measurement in a water phantom by a cross monitor (a) and experimental setup for in-beam PET imaging

by the OpenPET (b) and for a "0 beam.
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Figure 2. Comparison of relative measured dose in equivalent PMMA with planar integrated activity distribution from PET

image in an irradiated PMMA with a 0 beam of 312 MeV/u
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Figure 3. The differences between the Bragg peak and beam stopping position (DBPs) in mm for a '®*O beam of 200 MeV/u

with various AE (fwhm).
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3. DOI-TOF detector development

TOF information can greatly enhance PET image quality due
to significant improvement of the signal to noise ratio.
Moreover, DOI information increases spatial resolution of PET
images. Therefore, TOF and DOI information can significantly

enhance quality and uniformity of PET images [9].

Several types of DOI detectors have been proposed using

monolithic scintillators or segmented scintillator arrays
composed of small crystal elements for PET detectors [10-14].
We

segmented crystal bars [15].

recently developed a dual-ended detector using
Conventional fabrication of
segmented crystal bars needs complicated crystal cutting and
assembly steps; however, we obtained the segmented bars by
using the subsurface laser engraving (SSLE) technique which
provides efficient and precise fabrication [16]. We identified 13
DOI segments by two-sided readout of the multi pixelated
photon counter (MPPC). In 2017, we added TOF capability to

the DOI detector.

Scintillation crystal bars (3x3x20 mm?) of lutetium fine silicate
(LFS) were segmented in the height direction using the SSLE
technique. The crystal bars were segmented into two or four
DOI segments with an equal height. We used the MPPC array
module which was a part of a Hamamatsu TOF-PET module,
C13500-4075LC-12. The MPPCs were TSV (through silicon
via) type with an effective area of 4x4 mm? and 0.075 mm pitch

sub pixels.

Coincidence resolving time (CRT) of each crystal bar with
different numbers of DOI segments was measured using the
experimental setup in figure 4. The lateral and top surfaces of
the LFS crystals were wrapped in mirror reflectors and the
bases were optically coupled to one channel of the MPPC
module at the middle of the array. A crystal bar of LFS without
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DOI segment (3x3x20 mm?®) was coupled to another MPPC

module, and it was used as a reference detector.

The CRT for each segment of the detectors with two and four
DOI segments are shown in figure 5. The top segment was the
first DOI segment and the base segment, which was coupled
to the MPPC, was the last segment. The top segment showed
the highest value of the CRT and the segment coupled to the
MPPC showed the minimum CRT. In other words, the CRT of
the base segment was improved 10% compared with the top
segment. We expect the timing resolution of the single-readout
detector composed of a segmented crystal bar will be improved

by changing it to a dual-ended detector.

Figure 4. Experimental setup for CRT measurement for each DOI segment of the crystal bar.
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Figure 5. CRT for each DOI segment of detectors with two and four DOI segments. The 2™ DOI segment of the crystal
with two DOI segments and the 4" segment of the crystal with four DOI segments were coupled to the MPPC.
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1. Introduction

Positron emission tomography (PET) can be applied for in-situ
noninvasive confirmation of particle beam delivery. During ion
beam irradiation, positron (5*) emitters, such as ''C and '°0,
are produced by nuclear fragmentation, and they can be
imaged by PET. The g*-activity spatial distribution, however,
does not directly match the dose distribution due to the
different physical processes underlying g*-emitter production
and energy deposition. Therefore, the verification is usually
carried out by comparing observed PET images with predicted
images calculated by Monte Carlo (MC) simulations. To
establish an accurate MC model, correction of the biological
washout effect in a living body is necessary. For this purpose,
we measured the biological washout rate of implanted ''C and
0O beams to rabbit brains. We employed our OpenPET
prototypes, which allow detection of B*-emitters with good
statistics. In FY2017, we have confirmed the reproducibility
and quality of our data and discussed the mechanism of
biological washout.

2. Methods

Radionuclide beams of '"C and 'O were generated as
secondary beams in the Heavy lon Medical Accelerator in
Chiba (HIMAC). And these two radionuclide beams were used
to irradiate the rabbit brain. The biological washout rate for a
total of 6 rabbits (3 for ''C irradiation and 3 for '°O irradiation)
was measured by our OpenPET prototypes. During this series
of experiments, the OpenPET system was upgraded from the
4" prototype to the 5™ prototype. The OpenPET 4™ prototype
consisted of dual detector rings, each 660 mm in diameter, and
had a wide axial field of view (FOV) including the 90-mm gap
between the two rings [1]. The OpenPET 5™ prototype has a
single detector ring, which enables high efficiency
measurement [2]. The data of 3 rabbits for each irradiation (''C
and "®0) were acquired by the 4" prototype (2 rabbits for each
beam) and the 5" prototype (1 rabbit for each beam).
Irradiation and measurement (42 min for ''C irradiation and 20
min for '®0O irradiation) were performed under two conditions,
live and dead. The acquired data were divided into frames with
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30 s duration. For each frame, the ordered subset expectation
maximization method (OSEM) algorithm was applied. The
volumes of interest (VOIs) were selected based on the hot
region, and time activity curves (TACs) for one set of
measurements were generated. Then we applied the multiple
component model [3] to derive the washout rate.

3. Results

Figures 1 (a) and (b) show 2-dimensional spatial distributions
in the rabbit brain measured by the OpenPET 4" prototype.
Due to the washout effect, the intensity of the hot region in the
live scan was significantly lower than that of the dead scan.
TACs of each irradiation data set of "'C and 5O with fit curves
measured by the OpenPET 4™ and 5™ prototypes are shown in
Figures 1 (c) and (d). Due to the washout effect, VOI values
rapidly decreased for the live scan compared with those of the
dead scan. The TACs of the VOI could be well fitted to the
multiple exponential functions (fast, medium and slow) for the
"C irradiation. The observed biological decay constants are
summarized in Table 1. Washout rates of the medium and slow
components were 0.30+0.10 min' and 0.00440.001 min™,
respectively. These values were consistent with the results of
previous rat and rabbit studies [3,4]. The observed medium
and slow biological decay constants of the O beam were
0.724 0.006 min"'and 0.024 + 0.002 min™.

4. Discussion and Conclusion

This report represented the first study on the difference of
washout rates in ''C and 'O beams in the rabbit brain. The
observed biological washout of the %O irradiation was faster
than that of the "'C irradiation. The cerebral blood flow (CBF)
values in rabbits, which was measured by dynamic PET with
5O-labeled water [5-7], ranged from 0.3 to 1.4 ml min™' g
Because the partition coefficient was found to be 0.73 [7], the
value that was the efflux to the blood was estimated to range
from 0.3 to 1.9 min™'. This value is equivalent to medium
biological washout rate of the 'O irradiation. Furthermore, the
observed p*-emitter distribution in the whole body of the rabbit
was concentrated in the regions that had high blood volume.
These results suggested that implanted 5O ions formed H,O,
and they were washed out by blood flows.

In summary, we have provided important data to investigate
the biological washout mechanism. These results should help
to establish an accurate washout correction model.
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Figure 1. Summed sagittal images acquired by the whole-body OpenPET prototype fused with CT images for rabbit brain.

Live and dead rabbit images of the''C irradiation (a) and the 150 irradiation (b) are shown. TACs of the ''C irradiation (c)

and the 50 irradiation (d) with fitting results obtained using the multiple component model are also shown.

Table 1. Observed biological decay constant of the 'C beam and the 0 beam.

Beam Biological Decay Constant (min-')
Abio(cm) Abio(cs)
ne 0.30+0.02 0.004+0.001
50 0.72+0.006 0.024+0.002
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1. Introduction

In a PET detector composed of large photomultiplier tubes
(PMTs), there is a general technique to determine the
scintillation crystal element of radiation detection that consists
of coupling a transparent plate such as an acrylic plate under
the scintillation crystal block as a light guide to promote
scintillation light spread to neighboring PMTs (Figure 1(a)).
The light guide plates, however, tend to cause a decrease of
light output. We proposed to have light spread not in the light
guide plate but inside the crystal block by removing reflectors
from between scintillation crystals and putting additional
reflectors on part of the crystal block bottom (Figure 1(b)). We
call the bottom reflectors parallel reflectors because they are
set parallel to PMT surfaces.

(b) Without

Reflector 77 reflector Without
reflector
Parallel
reflector L / Parallel
Parallel  reflector
PMT1 PMT2 reflector =

(a) Conventional detector structure with a light guide. (b) Proposed detector structure with parallel reflector

2. Methods

We prepared a PET detector to measure the effect of the
parallel reflectors. In the detector, a 2 x 2 PMT array was
PMTs (R1548,
Hamamatsu Photonics K.K.) as shown in Figure 2(a). The

formed with two dual-photocathode
crystal block was composed of a 9 x 10 array of 2.45 x 5.00 x
15.00 mm LGSO crystals with chemical etched surface
(Hitachi Chemical Co.,

mirrors  (Sumitomo 3M, Ltd.,

Ltd.). The reflectors used were
98%
reflectivity, 0.065 mm thickness).Figure 2(b) shows the

multilayer polymer

location of each crystal on the PMTs. It suggests that the light

from the second outer crystals needed to spread at distances
of 7 mm and 18 mm in the x and y directions, respectively,
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which would be difficult without an appropriate light guide.
Figure 2(b) also shows that central and outer crystals located
half out of the PMT useful area. And in the y direction, the
boundary of the center elements was located on the PMT
boundary. We irradiated 662 keV gamma-rays from '3’Cs point
sources and obtained 2D position histograms by using the
center of gravity calculation with the four PMT signals.
Crystals can be identified in case corresponding responses in
the 2D position histogram are not overlapped.

3. Results

Because covering too much of the crystal block bottom with
parallel reflectors will reduce light output, we first chose air or
optical grease between crystal boundaries appropriately and
then inserted parallel reflectors to get further light spread.
Figures 3(a) and 3(b) show the histograms without and with
parallel reflectors. In Figure 3(a), we saw a large distance
between center responses in the y direction, which caused
overlap of other responses. The distance was caused by the
location of the center crystal boundary which was just on the
PMT boundary. Parallel reflectors decreased the distance
enough to get response separation (Figure 3(b)).

These results proved that the parallel reflectors were effective
enough to replace for a light guide.

(a) 8 mm by (a) Top view Response (b) 245 mm(uxstal )
T——re— Llunun
8 AT T
! mrrn‘ 5 mmf [f [ T
PMIL] el Rt
1.5 mm SZETSEE Sm?ﬁl _‘l
g b I 5 mm ” |
& AT crystal
= PMT L - Y (clzmant)
—F— YI % T T
24 mm 9x10 —x — X Parallel — 11
Dual- LGSO array - reflector 2 mm
photo cathode — Reflector — Air - Grease

Figure 2 (a) Dimensions of the PMT.
(b) Location of crystals on the PMT.

Figure 3 2D position histograms (a) without and (b) with parallel

reflectors.
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1. Introduction

We have developed the PET detector named X'tal cube to
achieve isotropic sub-millimeter spatial resolution [1-4]. The
X'tal cube is composed of a LYSO scintillator block and multi
pixel photon counter (MPPC, Hamamatsu Photonics K.K.) as
the photo detector. Six MPPC arrays are optically coupled on
six surfaces of the scintillator block (Figure 1). Segmentation
of the LYSO scintillator block was done by the laser engraving
All MPPC
signals are used for the Anger-type calculation which is

technique of Hamamatsu Photonics K.K. [5].

plotted onto the 3D position histogram as the detection
position of the gamma-rays (Figure 1 right). We previously
succeeded in developing the finest position resolution X'tal
cube which was segmented into the 17 x 17 x 17 array of
segments with the size of (0.77 mm)3 [4].

On the other hand, inter-crystal scattering (ICS) events must
be considered to bring out the maximum performance of the
high spatial resolution PET detector [6-8]. The ICS events
produce scintillation light at multiple crystal segments. The
results of the Anger type calculation of the ICS events lead to
incorrect information for the gamma-ray interaction position
(Figure 2). In this report, we simulated PET measurements
with the X'tal cube and investigated the effect of the ICS

events on reconstructed images.

X’tal cube

Scintillator block

MPPC

D P

3D position histogram

Segment

Segment response
N

SN

cintillator block

Figure 1 Photo of the LYSO scintillator block and MPPC (left), illustration of the X’tal cube (center) and the 3D

position histogram obtained by the Anger calculation (right).
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Figure 2 Schematic illustration the ICS events providing incorrect information for the interaction position.
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2. Method

We simulated the X’tal cube with the segment array of 17 x 17
x 17 whose crystal size is (0.77 mm)® with Geant4. We traced
only gamma ray interactions and did not model the scintillation
light. Therefore, the interaction position of the gamma ray was
determined by using the center of mass of energy deposited in
the segment. Figure 3 shows schematic illustrations of the
simulation geometry. We simulated the PET device composed
of 3 rings, each with a diameter of 50 mm. The gap of each
ring was 3.0 mm. Then a water phantom with the diameter of
15 mm and thickness of 10 mm was set at the center of the
PET. A sphere hot spot with diameter of 0.8 mm -1.6 mm
positron source was placed at the center of the water
phantom. We set background (BG) source outside of the hot
spot in the water phantom. The ratio of the density of
generated particles of the hot spot to BG was 5 : 1. We
generated 1 x 108 particles. We also set a uniform distribution
of sources in the phantom as the reference. We reconstructed
images from the acquired data both with and without the ICS
events. The ordered subset expectation maximization
(OSEM) algorithm was used for the reconstruction. The
number of voxels was 115 x 115 x 117. Voxel size was 0.385
mm x 0.385 mm x 0.385 mm. The number of subsets was 8
and the number of iterations was 10 for the reconstruction.
The contrast recovery coefficient (CRC) was defined as
equation (1). Ps is peak value of the hot spot, Mgs is mean
value inside the region of the circle with diameter of 3.0 mm at
the center of the uniform distribution source and rs is the ratio
of density of generated particles of the hot spot to the
background ratio (rs = 5). Ideally, the value of CRC is 1.

(1
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3. Results

Figures 4 show reconstructed images with and without the
ICS events for the hot spot with sizes of 0.8, 1.0, 1.2, 1.4 and
1.6 mm. Each image was a slice in which there was a hot
spot. We summarized the CRC values and that is plotted in
Figure 5. The CRC values were improved about two times
after eliminating the ICS events for each signal source. The
CRC value of the hot spot with the diameter of 1.6 mm
exceeded 1 because of deviation of the Ps.

(c)

Water
phantom

15 mm

Figure 3 (a) Over view of the simulation setup. (b) Frontal view of the setup. Diameters of the PET rings and the phantom

were 50 mm and 15 mm respectively. (c) Side view of the PET ring. The gap between the rings was 3 mm.

Diameter of hot spot 0.8 mm

1.0 mm

1.2 mm 1.4 mm 1.6 mm

' ‘ ' ‘ ' ‘ ' ‘ ' ‘
]5 ]5 ]5 ]5 ]5
‘! ‘! ‘! ‘! ‘!

" " " " "
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Figure 4 Reconstructed images of the water phantom with and without the ICS events. Hot spot diameters of 0.8 mm, 1.0

mm, 1.2 mm, 1.4 mm and 1.6 mm were placed in the phantom with the diameter of 15 mm. The signal to BG ratio was 5:1.

44



PET

1.2

m with ICS

CRC

m without ICS

0.8

0.6

0.4
O' J
0
0.8 1.0

N

2017 Report on PET Imaging Physics Research
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Figure 5 Constant recovery coefficients of the images with and without the ICS events for the hot spots with diameters of

0.8 mm — 1.6 mm.
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4. Discussion and conclusions

The CRC value of 1 was not obtained even if we eliminated all
ICS events for the small hot spot due to the partial volume
effect. However, we found that the ICS events provided
underestimation of the signal value of the hot spot.

In summary, we simulated the effect of ICS events on
reconstructed images with PET measurements using the X'tal
cube with the position resolution of sub-millimeter level. The
simulation results indicated that elimination of the ICS events
improved the contrast of the reconstructed image two-fold.
Next, we are going to develop the method to eliminate the ICS
events.
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1. Introduction

Recently, many groups have been developing organic devices
such as photodiodes, electroluminescence cells, photovoltaic
cells, and transistors as various imaging devices. These
organic devices have some advantages compared with other
devices: for example, they are thinner, more flexible and less
expensive and they are printable. If they can be used in
radiation measurements, it is expected that many innovative
radiation detectors can be fabricated due to their favorable
characteristics. Especially, organic photodiodes (OPDs) work
like conventional Si semiconductor photodiodes. Therefore,
the OPDs
measurements have been researched for some years.

radiation detectors using for radiation

We are testing the feasibility of making measurements with
the OPD detectors for heavy high energy ion beam irradiation
in order to apply the OPD detector as a dosimeter in the
carbon therapy. There are some reports about radiation
measurements with the OPD detector for low energy a-rays
and X-rays [1]. We have also developed an x-ray detector
which consisted of a plastic scintillator and an OPD working
as a photo detector [1][2]. On the other hand, direct
measurements of heavy ions in the high energy region have
not been investigated in detail.

Currently, we are testing OPD detectors using the 290 MeV/n
carbon ion beam which is typically used in carbon ion therapy.
In this report, we describe the details of an evaluation
experiment and its results.

2. Material and methods

A photograph of the OPD is shown in Figure 1 (a). The OPD
detector consisted of layers of 1ZO (100 nm)/ PEDOT: PSS
(30 nm) / PCBM: P3HT (200 nm) / Al (70 nm). The size of the
sensing surface areas for the evaluated detectors was 8 mm x
4 mm. The OPDs were fabricated by spin coating on 10 mm x
10 mm black ABS boards. The fabrication was done 3 days
before an experiment.
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(a) A photograph of the organic photodiode. (b) The experimental setup for the OPD detector.
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In the evaluation experiment, the OPD detectors were placed
in aluminum boxes for shielding as shown in Figure 1 (b). The
Al and 1ZO electrodes were connected to readout wires with
silver paste.

No bias voltage was applied in any

measurements.

(b)

The measurements were performed in the PH2 course of
HIMAC at NIRS (Figure 2 right). The OPDs were irradiated by
the '2C beam that passed through an ionization chamber to
normalize the number of irradiated particles. The energy of
the '2C beam was 290 MeV/u. The intensity of the carbon
beam was 108 particles per second (pps). The diameter of the
2C beam was 1 cm at the OPD which was larger than the
sensitive regions of all the OPD detectors. Finally, induced
charges of the OPD were recorded at 0.1-s intervals. In the
Bragg curve measurement, acryl blocks having various
thicknesses were put between the ionization chamber and the
OPD detector to change incident energy as shown in Figure 2
(left).

lonization chamber OPD
290MeV C-12 '
108 pps PMMA

Beam size:1cm

Figure 2 Photograph of the measurement setup and the OPD in the aluminum shielding box (left) and a schematic of

beam line setup for evaluation of the OPD detectors (right).
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3. Results

Figure 3(a) shows collected charges in the ionization chamber
(top) and the 8 mm x 4 mm OPD (bottom) obtained during
each 0.1 s period. Beam spill structure of the 3.3 s cycle could
be clearly observed. The collected charges between each
beam extraction were due to the dark current of the OPD. This
result indicates that the OPD detector is useful for heavy ion

beam measurements.

Figure 3(b) shows the Bragg curves measured with the OPDs
and the reference ionization chamber (Cross Monitor). All data
were normalized at 0 mm. Similar Bragg curves were
observed and Bragg peaks were found for all measurement
conditions. However, compared with the reference ionization
chamber, the results of the OPDs were saturated around the
Bragg peaks which were in the high LET region. In the tail of
the Bragg curve for the OPDs, their induced charge was
overestimated. This means that the OPD detectors have high
LED dependence. In the measurements, no bias voltage was
applied. Therefore, recombination probability is high due to
the low velocity of the electrons and holes around the Bragg
curve. It is expected that the high LET dependence can be
resolved by applying bias voltage.

5 + 4mm x 8mm (1078 pps)
4 -+Cross Monitor
3
2
1 ¢— ¢ T
e d

0

0 50 100 150

PMMA Thickness [mm]

(b)

Figure 3 Measurement results. (a) Collected charges in the ionization chamber and OPD during the carbon beam

irradiation. (b) Bragg curve measured with the OPD detector and cross monitor.
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4. Conclusion

We tested use of OPD detectors for a carbon ion dosimeter
and we successfully obtained the signal from the 290 MeV/n
carbon beam. Our results indicate that the OPD detector is
useful for heavy ion beam measurements. On the other hand,

saturations were observed in the Bragg curve measurements.

BHTHINAOREBLLTHARMEER>T
BIEERET B, —HTT TV A—TORETIERL
LET &iEMERLTEY, NMMTPRABEEEANTTRAET S
BEDREEDRBDBENHD,

In the future, we plan to apply bias voltages to improve the
performance of the OPD detectors.
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system for dynamic

1. Introduction

Studies on cell regulation, for example iPS cells, are attracting
worldwide attention in order to realize regenerative medicine.
Therefore, imaging of single cells is required to elucidate their
characteristics and mechanisms. Fluorescence microscopy is
commonly used to realize these purposes, but the tracers that
are used have large molecular masses and they may not be
able to confirm cellular uptake directly. Therefore, as an
alternative to them, a nuclear medicine imaging technique,
which can use tracers having substantially the same
composition as a target biomolecule, is required.

The size of the target cells is about 10 uym. Therefore, PET
systems that have a few mm spatial resolution are not useful
for this purpose. Autoradiography is a high-resolution nuclear
medicine imaging method. In this method, a distribution of
radiation sources is transcribed onto an imaging plate (IP) by
B-rays or y-rays emitted from radiation sources. After that, the
IP is irradiated with ultraviolet radiation to excite it, and then
an image is obtained from the luminescence that was
generated. This method does not have a dynamic imaging
capability.

The purpose of this study is to develop a nuclear medicine
imaging system consisting of an imaging device and a thin
scintillator for dynamic cell observations. In this report, we
describe the experimental confirmation of the imaging
capability of the proposed method with a CMOS camera. In
addition, we optimize the scintillator for cell imaging by
simulation to improve S/N ratio for clearer imaging.

2. Prototype device

Figure 1 has a schematic illustration and a photograph of our
prototype system. This system consisted of a thin scintillator,
lenses and a CMOS camera. At first, 8 -rays from the
observed object interacted in the scintillator. Then scintillation
light was generated in the scintillator. Finally, the scintillation
photons were detected by a CMOS camera.
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In order to prevent broadening of the scintillation position
because of 3-ray spreading in the scintillator, thin scintillator is
better for detecting B-rays. The scintillator of our prototype
was a Csl crystal with 150 um thickness connected to an
optical fiber array 6 um in diameter. A scientific CMOS camera
(C11440-22CU, HAMAMATSU) with low readout noise was
used to detect scintillation light as the imaging sensor. A
high-speed imaging lens and a conversion lens were used as
imaging lens. Working distance and rate of magnification of
the lenses were adjusted to change the optimum conditions.

Figure 1 Schematic illustration and photograph of the prototype of the proposed imaging system
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3. Experiment

(1) Methods

Figure 2 shows a photograph and illustration of the sample
source for this measurement. The sample object consisted of
8F_solution molded with 0.4 mm thick by a chamber. Then,
the bottom surface that contacted with the scintillator was
covered with polyimide film of 7.5 ym thickness. Imaging
resolution was adjusted to 6.5 x 6.5 mm? per pixel. Images
were taken for 60 s.

18F_solutions

7.5 um polyimide film

(to protect Csl from denature)

—

150 um Csl scintillator

N

Optical fibers

Figure 2 Photograph and illustration of the imaging sample containing '8F solution in 0.4 mm thick
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(2) Results

As an example of a cell uptake measurement, we assumed
that cells incubate 0.2-1.0 % of the radiopharmaceuticals of
250 to 400 kBq. For this condition, the required sensitivity was
3.5 MBq / mL (0.2 Bq per single cell) for our imaging system.
Figure 3 shows the imaging results at the time when the
activity of the '®8F-solution was 3.5 MBq / mL. In this image, the

51



PET

Figure 312, #RIREREA 3.5 Mog/mL &&= R D
AA=DUTHERERT HOLAIZRULEZEEIZS N
T. ASHZNYITSUREX BRI BER HH AN ELNT=
ZENHMD, £1=. Figure 4 (1, & BERES CMOS £
Y THBLNEHADERIZOVNTEED D, ZOTFTH
5, REBZEDA A=A 3.5Mba/ml 5 TR
HER->THY, IFBYOREEBL T EIEN DA

-7,

= 3.5 MBg/mL
0 60

Figure 3 Imaging results

4, SOFL—ALFEOBRE

SUFL—BDMBEEHRMN, A A—DU T DZEE DR
BECREICKEEETIHEEZOND, £IT, JUSW
AA—DVTERRERRT DEOICIE, Y FL—2E%
DREFE(T o1z,

B &Rz, Csl & GPS(Gadolinium pyro silicate:
Ce:Gd,Si07) D 2FEEBD YV FL—ARIZDNT, Geantd &
AnTyIal—2avaEfTlh, BER2E3Cx T 5
DEAbERFEEL o=, GPS &i&, Csl LHERLTEEEN
DEHAT MEMERLBRVYUFL—2THD, &
7=. 50 um BEDEHDOMIEELNHY, EAKELT
BEDTHBIEEZT=,

QPES:

F3 Geantd LOFHEMS, SUFL—EREBD B #R
ICEBITRILF—REDTEER LIz, CDEE VT
L—ARIZE 1084 RUbD B IREREL, V0 FL—2AER
TIRILF—DFEINELMABE, ZTTOIRILF—
BEREL, RIZ. COIRILE—RHEDOHHERL
T, RBEOA A= T ER BT BB EER LIz, V>
FL—BDEME, LY XD ERREIZERTHRIZ/N
W, ZDH, TRILF—FELTHEEHFFRNEKRE
LD, EBDAA -V THEREXNIST S, 2T,

2017 Report on PET Imaging Physics Research

shape of the active area 3.5 MBq / mL surrounded by red line
was clearly imaged. Figure 4 shows the relationship between
activity and the average of the image value of the ROI area in
Figure 3. From this graph, we saw that sufficient linearity was
obtained around 3.5 MBq / mL. These results confirmed that
our system had the required imaging capability.

u N
o o o o

Image Value
s &

N
o

3.5 MBg/mL

=
o

o

0O 1 2 3 4 5 6 7 8 9 10
Activity (MBqg/mL)

Figure 4 Relationship between activity and average of

the image value of the ROI area

4. Simulation for optimizing scintillators

The material and the thickness of the scintillator greatly
influence the spatial resolution and the sensitivity. In order to
achieve higher imaging capability, we optimized the scintillator
as our next development step.

We evaluated the imaging performance of two scintillators
(Csl and GPS) which had different thicknesses by a simulation
with Geant4. GPS scintillator has to be processed as a crystal
thinner than around 50um. GPS has both a higher density and
a higher light yield than Csl does, and it is not hygroscopic. In
addition, because GPS can be thinly machined, we expect
that it will allow improvement of the spatial resolution of the
images.

(1) Methods

At first, distributions of energy deposition inside the scintillator
were calculated by Geant4. Then, B-rays were emitted to the
scintillator in 108 events. Deposited energy and the interaction
position were recorded. Next, from the distributions of the
energy deposition, the relative pixel value for measurements
with our system was calculated. The thickness of the
scintillator was much smaller than the focal depth of the
imaging lens. Therefore, the projection of the distributions in
the thickness direction corresponds to the actual imaging
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Figure 5 Spatial resolution in simulation results
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results. Expected images were calculated from the projected
image and the ratio of light yield (Csl : GPS = 1 : 1.65). Pixel
size of the projected images were (1 um) 2.

(2) Results

Figure 5 shows the spatial resolution of Csl and GPS for each
thickness. Full width at half-maximum (FWHM) and full width
at tenth maximum (FWTM) were improved for the scintillator
crystals thinner than 50 um. Figure 6 shows the relative light
output of both scintillator materials from the simulation. The
output value saturated at 40um. In this simulation, the relative
light output of GPS was around 2.5 times higher than that of
Csl. That Improvement was higher than the specification (i.e.
1.65 times higher than that of Csl). The reason for the
difference was the higher density of GPS than that of Csl.
Spreading of the beta ray range was suppressed by the higher
density GPS. Then the light output on the unit area was
increased.
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Figure 6 Total light output at each thickness of scintillators

5. Conclusions

We proposed a B-ray imaging system to obtain functional
images of single cells. In the performance evaluation
experiment, the results showed that the prototype system had
sufficient sensitivity for single cell observation. Simulation
results showed that the GPS scintillator had more than 2.5
times higher light output than Csl did. For future tasks, we will
evaluate the new scintillator made by Prof. Kaneko of
Hokkaido University. Also, we want to observe real cells for

performance evaluation.
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“Radioactive Primary Beams for Treatment Delivery in Heavy Ion Therapy,” 2017 IEEE Nuclear Science
Symposium and Medical Imaging Conference, M-11-3, 2017. (2017/10/27, oral, Atlanta)

G. Akamatsu, Y. Ikari, H. Wakizaka, T. Yamaya, Y. Kimura, K. Oda, M. Senda, “Phantom test procedures and
criteria for standardization of brain PET imaging across different cameras,” 2017 IEEE Nuclear Science
Symposium and Medical Imaging Conference, DBIS-01-6, 2017. (2017/10/28, oral, Atlanta)

faiE ((RRXA2—%XK) International conference (poster presentations) (15)

Md Shahadat Hossain Akram, Craig Levin, Takayuki Obata, Genki Hirumi, Taiga Yamaya, “Experimental study
for efficient RF-penetration through electrically-floating PET insert for MRI systems,” ISMRM 25™ Annual
Meeting & Exhibition, #2699, 2017. (poster, 2017/4/26, Honolulu).

A. Mohammadi, E. Yoshida, H. Tashima, F. Nishikido, A. Kitagawa, T. Yamaya, "Range verification of 3O
beam using OpenPET," the 56" Annual Conference of the Particle Therapy Co-operative Group (PTCOG56), P
320, 2017. (poster, 2017/5/12, Pacifico Yokohama)

Masao Yoshino, Kei Kamada, Yasuhiro Shoji, Yuki Furuya, Shunsuke Kurosawa, Yuui Yokota, Akira
Yoshikawa, Fumihiko Nishikido, Taiga Yamaya, "Scintillation and timing characteristics of 1-inch diameter
CeBr3 scintillator single crystal," Programme book of SCINT 2017 - 14th Int. Conference on Scintillating
Materials and their Applications, p. 87,2017 (SCINT2017, poster #42, 2017/9/21, Chamonix)

Koyama, K. Shimazoe, H. Miyoshi, Y. Otaka, M. Nitta, F. Nishikido, T. Yamaya, H. Takahashi, “Stability of
IGZO based thin film transistors under heavy ion irradiation,” 2017 IEEE Nuclear Science Symposium and
Medical Imaging Conference, N-23-121. (2017/10/25, poster, Atlanta)

G. Hirumi, F. Nishikido, H. Tashima, H. Wakisaka, T. Higuchi, H. Haneishi, T. Yamaya, “Development of a
dynamic micro RI imaging system for single cells,” 2017 IEEE Nuclear Science Symposium and Medical
Imaging Conference, M-03-005. (2017/10/25, poster, Atlanta)

M. S. H. Akram, T. Obata, C. S. Levin, F. Nishikido, T. Yamaya, “Study on a prototype oval body PET insert
for a 3T MRI system,” 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, M-03-037.
(2017/10/25, poster, Atlanta)

G. Akamatsu, H. Tashima, H. Wakizaka, T. Maeda, Y. Iwao, E. Yoshida, T. Yamashita, T. Yamaya, “New brain
phantoms suitable for brain scanners with hemisphere detector arrangement,” 2017 IEEE Nuclear Science
Symposium and Medical Imaging Conference, M-03-065. (2017/10/25, poster, Atlanta)

S. Takyu, S. Liprandi, F. Nishikido, A. Mohammadi, E. Yoshida, S. Aldawood, T. Binder, M. Mayerhofer, R.
Lutter, I. I. Valencia Lozano, G. Dedes, K. Kamada, K. Parodi, P. G. Thirolf, T. Yamaya, “Development of a
DOI-based Compton camera for nuclear medicine application,” 2017 IEEE Nuclear Science Symposium and
Medical Imaging Conference, M-08-003. (2017/10/26, poster, Atlanta)

S. Liprandi, S. Takyu, S. Aldawood, T. Binder, G. Dedes, K. Kamada, R. Lutter, M. Mayerhofer, A. Miani, A.
Mohammadi, F. Nishikido, D. R. Schaart, I. I. Valencia Lozano, E. Yoshida, T. Yamaya, K. Parodi, P. G. Thirolf,
“Characterization of a Compton camera setup with monolithic LaBr3(Ce) absorber and segmented GAGG
scatter detectors,” 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, M-08-110.
(2017/10/26, poster, Atlanta)

M. Safavi-Naeini, A. Chacon, H. Rutherford, S. Guatelli, A. Mohammadi, M. Nitta, F. Nishikido, Y. Iwao, H.
Tashima, E. Yoshida, T. Yamaya, T. Hofmann, M. Pinto, K. Parodi, M. - C. Gregoire, A. Rosenfeld, “Evaluation
of Geant4 Monte Carlo toolkit physics models for use in heavy ion therapy,” 2017 IEEE Nuclear Science
Symposium and Medical Imaging Conference, M-08-122. (2017/10/26, poster, Atlanta)

S. Takyu, A. M. Ahmed, E. Yoshida, H. Tashima, T. Yamashita, T. Yamaya, “Suitability of a 280 ps-CRT non-
DOI detector for the helmet-neck PET,” 2017 IEEE Nuclear Science Symposium and Medical Imaging
Conference, M-15-001. (2017/10/27, poster, Atlanta)

A. Mohammadi, S. Takyu, E. Yoshida, F. Nishikido, K. Shimizu, T. Sakai, T. Yamaya, ”Timing performance of
a DOI detector using crystal bars with subsurface laser engraving,” 2017 IEEE Nuclear Science Symposium
and Medical Imaging Conference, M-15-009. (2017/10/27, poster, Atlanta)

Y. Iwao, H. Tashima, E. Yoshida, H. Wakizaka, F. Nishikido, T. Yamashita, T. Yamaya, “Seated vs. supine:
optimum measurement pose for brain-dedicated PET,” 2017 IEEE Nuclear Science Symposium and Medical
Imaging Conference, M-15-058. (2017/10/27, poster, Atlanta)

R. S. Augusto, A. Mohammadi, H. Tashima, E. Yoshida, A. Ferrari, K. Parodi, T. Yamaya, “Hadrontherapy with
radioactive ion beams: Performance evaluation using FLUKA,” 2017 IEEE Nuclear Science Symposium and
Medical Imaging Conference, M-15-107. (2017/10/27, poster, Atlanta)

A. Mohammadi, E. Yoshida, H. Tashima, F. Nishikido, A. Kitagawa, T. Yamaya, “Potential of radioactive ion
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beams for therapy and PET imaging,” 2017 IEEE Nuclear Science Symposium and Medical Imaging
Conference, M-15-108. (2017/10/27, poster, Atlanta)

- @& Domestic conference (18)

(1]

(2]

(3]

(3]

(6]

[13]

[14]

[15]

[16]

EEHEIC L, SR SCE, MIRF I, Bl O FELL, PA B, IWARE, " F L—Z L CMOS B A T A
W2 BRI A A — > 7 AT LOBIFE" F 64 [BIE MBS BEFLUGRFES, 2017 (16a-E204-
7,2017/3/16, /v 7 4 2 ik

EIE, mEE, B RO, B ERE, INERE, "RERIE~OISHIZIT AT + ~ & A
F— N ORERM," 25 64 [ES BRSBTS, 2017 (16p-E204-1, 2017/3/16, /X3 7 ¢ =
TR

SR, NMUSRIE, KRIES, BIRER, B E, BEEF, W7 30G2, IWARE, B EFE, &
G2, "R G R &l T R TR R AR OB JE," 5 64 BUS AW RSB AIGREE, 2017
(16p-E204-2, 2017/3/16, 7337 4 =ik

M SIE, 5 HaEn, AR, R, I1F R, BIVEE, ILBERE, "~ A v b PET ED
PAYE : IBINR HERALE O Foiifb," 5 64 IS LA 2 R EINGET 2, 2017 (172-E204-13,2017/3/17,
N7 4 ki)

Taiga Yamaya, Eiji Yoshida, Hideaki Tashima, Yuto Nagao, Mitsutaka Yamaguchi, Naoki Kawachi, Makoto
Sakai, Yusuke Okumura4), Mikio Suga, Katia Parodi, "Whole gamma imaging concept: feasibility study of
triple-gamma imaging," EE*F#HL, Vol. 37, Sup. 1, p. 55, 2017. (4 113 [A] H ARE L BRH 24 KRS, O-
038, 2017/4/13, English oral, /337 4 = ff{jfz, Awarded for English Presentation Prize)

Yusuke Okumura, Mikio Suga, Hideaki Tashima, Makoto Sakai, Mitsutaka Yamaguchi, Yuto Nagao, Naoki
Kawachi, Taiga Yamaya, Eiji Yoshida, "Whole gamma imaging concept: Compton-PET imaging simulation for
positron emitters," [Z“=#)EE, Vol. 37, Sup. 1, p. 56, 2017. (5 113 [n] B AR LW BRF 224K 4, 0-039,
2017/4/13, oral, /X7 ¢ i

Fumihiko Nishikido, Masanori Fujiwara, Yuma Iwao, Hideaki Tashima, Eiji Yoshida, Mikio Suga, Keiji
Shimizu, Takayuki Obata, Taiga Yamaya, "Development of second add-on PET/MRI prototype: Evaluation of
PET imaging performance," %242, Vol. 37, Sup. 1, p. 60, 2017. (55 113 [0] H AREFW 252200 K4S,
0-043,2017/4/13, oral, #3377 4 =ik, Awarded for CyPos Prize)

Yuma Iwao, Hideaki Tashima, Eiji Yoshida, Taiga Yamaya, "Development of a head motion tracking system for
the helmet PET," [E“2#EE, Vol. 37, Sup. 1, p. 61, 2017. (35 113 [0] H AKEZFLLS LTRSS, 0-044,
2017/4/13, oral, /X3 7 ¢ e

Risako Tanaka, Hideaki Tashima, Abdella M. Amed, Taiga Yamaya, Takashi Obi, "Joint estimation of activity
and attenuation for a compact brain TOF-PET system : a simulation study," [E2###, Vol. 37, Sup. 1, p. 64,
2017. (8 113 [8] H RE PRI K, 0-047,2017/4/13, oral, 7337 ¢ ki

Genki Hirumi, Eiji Yoshida, Hideaki Tashima, Fumihiko Nishikido, Yuma Iwao, Munetaka Nitta, Hideaki
Haneishi, Taiga Yamaya, "Development of a four-layered DOI-PET detector with quadrisected crystals on the
top layer," =¥, Vol. 37, Sup. 1, p. 67,2017 (45 113 [a] B AR S 4220 K22, 0-050, 2017/4/13,
English oral, /337 ¢ 2 ik

Akram Mohammadi, Eiji Yoshida, Fumihiko Nishikido, Keiji Shimizu, Toshiaki Sakai, Taiga Yamaya,
"Development of an isotropic DOI detector based on two-sided photon readout," =22, Vol. 37, Sup. 1, p.
68,2017. (35 113 [0] A ARE W2 224 K22, 0-051, 2017/4/13, English oral, /337 ¢ 2 ffik
Hideaki Tashima, Yukie Yoshie, Yuma Iwao, Eiji Yoshida, Hidekatsu Wakizaka, Hiroyuki Takuwa, Aya Sugyo,
Min-Rong Zhang, Taiga Yamaya, "Development of a small prototype system toward real-time OpenPET image-
guided surgery," EZEMHL Vol. 37, Sup. 1, p. 71, 2017. (35 113 [B] B AREZLY PRS2 KL, 0-054,
2017/4/13, English oral, /337 ¢ 2%, Awarded for English Presentation Prize)

M9, & H3s, A P, RGBT, Al EH, &g, BT, Ml aEA, IR, (b
RE, "RV Ay | PET B ORIE LEFHE R T 7 ¢ 7B 5 36 [ 0 ARE G T
THALE, pp. 225-228, 2017. (oral, OP5-4,2017/7/28, U 9 AL 7T )

WEVEOCE, #SCE, M OFELL, PAFHIE, IIRRE, "B RRIC K DHINAEREA A — T T v
T L —Z R, 55 78 [BIS HEL SRR, Sp-S43-1, 2017. (2017/9/5, tEl [EFR2#55)
P CE, mHESE, B, B RO, B R, o, MAAIR, i RE, RFEHRITKT
LIGIRDEIR DEET + N Z A A— RORHEOE O ORHME," 5 78 RIS HDHE RSB AIRHE,
6a-S43-1, 2017. (2017/9/5, #& [ [E B2 #55)

WA, & HIh, HEEY], BEd, WA R, Katia Parodi, 114 RE, "HiL\ =7 > PET
EEO 3 Ho~A A=V 7y Iab—ya " 878 BB SRS LIRS, Ta-A401-1,
2017.(2017/9/5, & I [E B2 57)
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[17] HAAIK, Abdella M. Ahmed, & H5ER, HEH, BARET, LT AH, IWARE, "~ A > PET
HEE D72 D time of flight BUR HEFOMFEL" 5 78 [0t B2 AS T AANIE S, 7Ta-A401-2, 2017.
(2017/9/5, @l = BR 2> 3857)

[18] MBI, HFHEE, SHKE, BIKFEw, ATl EH, SEer, BT MaEA, 2258, (U
K, LA ZE, "Helmet-Neck PET fRIEMSIC L D E R T 7 « TRBR" 56 78 [BS B2
FRIAIN T2, Ta-A401-3, 2017, (2017/9/5, #& [ E R 3647)

1.5 BFF%E Workshop presentations (8)

(11 WWARE, “AA—T U TYEMRT — AORHRE,” KA PET #F%E4 2017, 2017/2/27 (~/VF
— LV J\E ).

[2] Akram Mohammadi, “Potential of radioactive ion beams for therapy and PET imaging,” X 1tt{{ PET %2
222017, 2017/2/27 (~vH— L JUE ).

[3] HWEEY, “EMRRERUIREZFEL TS OpenPET U A RFEMTL 2T ADBZE,” WAL PET #F5E
£22017,2017/2/27 (~vH— L JUE ).

[4] S H¥EE, “WIHS PET: Whole gamma imaging (WGI) D BR3E,” YA PET AF%E4> 2017,2017/2/27 (+X
JLH— L J\EEPN).

[5] Taiga Yamaya, Katia Parodi, “Whole gamma imaging,” International Open Laboratory Symposium 2017
Abstracts, pp. 11-12, 2017 (2017/2/28 @NIRS)

[6] Hideaki Tashima, Yukie Yoshii, Yuma Iwao, Eiji Yoshida, Hidekatsu Wakizaka, Hiroyuki Takuwa, Aya Sugyo,
Min-Rong Zhang, Taiga Yamaya, "OpenPET surgery for accurate tumor resection toward conquest of refractory
cancer,”" Abstracts of the 1% QST International Symposium Quantum Life Science, p. 9, 2017 (Tokyo Bay
Makubhari Hall, P-18, poster)

[71 Hideaki Tashima, Eiji Yoshida, Yuma Iwao, Hidekatsu Wakizaka, Takamasa Maeda, Yuhei Takado, Chie Seki,
Makoto Higuchi, Tetsuya Suhara, Taichi Yamashita, Taiga Yamaya, "Helmet PET enabling high sensitivity brain
imaging toward early diagnosis of dementia," Abstracts of the 1% QST International Symposium Quantum Life
Science, p. 10, 2017 (Tokyo Bay Makuhari Hall, P-19, poster)

[8]  FRIFERp, BEpds, R SUE, FTHEE, JIMEEZ, IWARE, /NEFEST, "PET/MRI — {8 H#5 0
BAYE : FRRGRTREE N2 D MRLICEBIT D 3 —/ b RYEREREM," 25 15 B TERBEELES VR YT L,
no. 12,2017 (2017/11/14, poster, T-HEK2)

1.6 %35 Patents (8)

- tHFE Application (2)

(1] s HRE, HEXRE, "4V 27 PET & & O PET L&, FFHE 2017-29405, 2017/2/20 )&
(Q20005JP)

[2] MBI, [IARE, "~V A v M PET 3E& " K5fH 2017-58848, 2017/3/24 HifE (474JP.1)

- &% Registered (6)

[1] Taiga Yamaya, Takayuki Obata, Mikio Suga, Hiroshi Kawaguchi, Yoshiyuki Yamakawa, "Method for
generating image for PET attenuation correction from MR image and computer program," US9342903 B2,
registerd on 2016/5/17 (428US) omission in the 2016 report

[2] Taiga Yamaya, Hideaki Tashima, Mitsuo Watanabe, Eiichi Tanaka, “INCLINED PET DEVICE AND PET
COMBINED DEVICE,” US 9,538,964 B2, registerd on 2017/1/10 (415US)

3] CEIFEE DNRET, ILARE, MAFH, @ileE =, (U, "PET-MRI 25" CN 102695450A, registerd
on 2017/2/15 (Q00399China)

[4] HEEH, ILARE, "~V Ay MU PET 4£1&," IP-Fr7F 55 6124216, registerd on 2017/4/14 (474]P)

6] s RE, NEET, EEAE, IRz, WEZ, 25T MR EgA PET WIRER RIS AR 51k,
Z1.201380017570.5, registerd on 2017/5/17 (428China)

[6] Taiga Yamaya, Hideo Murayama, “PET DEVICE AND METHOD FOR DETERMINING ARRANGEMENT
OF DETECTORS,” EP2267483B1, registered on 2017/6/14 (314EP)
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2. RERGE~NDEIRY A Outreach actions

21 R4 EDRME Hosted workshops (1)

[1]  “WH:AC PET BFES 20177 % 48, 2017/2/27 (LY — L \E) (B0 HGH 117 4, N
NIRS 25 4. mlfidiF 2 450 AES 2 44)

i

{f

RSN 87 44

2.2 =+ —FA# Hosted seminars (2)

[11  Simultaneous brain PET and behavioral response measurements in conscious unrestrained laboratory animals
(Steven Meikle, University of Sydney), 2017/8/28.

[2]  Vision-based Activity Recognition & Other Works (Md. Atiqur Rahman Ahad, Dept. of Electrical and
Electronic Engineering, University of Dhaka), 2017/12/22.

2.3 $EEZHAR Annual report publishing (1)
[1] “W AR PET AFZEHR 5 2016,”  QST-R-4, 2017/2/27.

2.4 #35% Review articles (3)

[1] A RECEFRRE), "R ITEAN - R, B OMRSEE 74 74 =2 - i
PRI 5385 2017 4F, pp. 326-452, 2017.

[2] IR ZFE, "DOI M ZE ) 0 #6 < AR D PET 2E@ OMFIERRFE," MR E SR A BFIEATAINE 60 J8
FEFLAEE, pp. 16-17,2017.

[3] =Wk, JEE, LWEXA, BN, REER, SRR, S0, 7 a4 K PET OE&F
il B9 2MF5E, 7 AABEBREAN 2 HERS. Vol. 73, pp. 1165-1174, 2017,

2.5 #=& - #E Lectures (24)

- VURD)LFIZE T H1BRF#EE Invited talks at symposium (11)

[1] Taiga Yamaya, “PET Innovation being made at NIRS,” OIST Mini Symposium - Radiation sensors and
emerging applications in medical imaging, space science and materials science, 2017 (invited, 2017/1/16@
OIST Seaside House).

[2] Taiga Yamaya, “Development of the next generation positron emission tomography,” abstract book of IEEE Int
Confon Imaging, Vision & Pattern Recognition (iclVPR) 2017, p. 7,2017. (invited, plenary talk, oral, 2017/2/13.
University of Dhaka)

[3] Md. Shahadat Hossain Akram, "State of the art brain PET inserts for the existing MRI system," abstract book
of IEEE Int Conf on Imaging, Vision & Pattern Recognition (iclVPR) 2017, p. 14, 2017. (invited, key note talk,
oral, 2017/2/13. University of Dhaka)

[4] IR RE, “GEHHEM PET ZLEOARK,” 5 73 B A KB BRBIN PSR FIRS T v ARY T A ]

[ Lo & R I L & oG - I S 2 88T ) Jfrakie, 2017 (2017/4/14, /327 ¢ 2k
#e).

[5] Taiga Yamaya, “Development of the OpenPET: a novel in-beam PET for carbon ion therapy imaging,”
International Conference on Advancements in Nuclear Instrumentation Measurement Methods and Their
Applications (ANIMMA2017), 2017. (invited, oral, 2017/6/21, Liege)

(6] UAZE, “Witfo SPECT - PET 2@ OREE,” 5 12 [ [E U [EERE G S > 7 7 L o A(MICCS)
FERIGETH, 2017/7/29 (M ILEBE ARSI o % —)

[7]1  FRRRREN, "7 2 v A R PET OEEMMMT," PET %~ —1& 2 F—2017, 2017/8/26 (KT /L B E)

[8] LA, “Whole gammaimaging(WGD) 2> 27 b —PET & a7 h A A=V U 7 it bt
T TEA~OE—,” 8B EICE Technical Report), Vol. 117, No. 220, pp. 13-14, 2017. (7115
WEFE EAEBRITIES M), FRllREE, 2017/9/25@ THRZFPE THF v > /3 R)

[9] Go Akamatsu, Keiichi Matsumoto, Kazufumi Suzuki, Naoki Shimada, Keiichi Oda, Michio Senda, "The JSNM
strategies for standardization and harmonization of quantitative whole-body FDG-PET studies," The 57%
Annual Scientific Meeting of the Japanese Society of Nuclear Medicine (JSNM 2017), JSNM-JSNMT Joint
Symposium, 2017. (2017/10/6, oral, Pacifico Yokohama)

[10] IWARE, “EEFHIL = — KRIL PET 25@E BASEMFZE DFEIT,” SMART2017 (Scintillator for Medical,
Astroparticle and environmental Radiation Technologies), 2017 (2017/11/13, Ji& F{RR, invited).

(1] WeRE, "o F b—2 B IEAM @ ET? BT W E S IR (PET) O I AR O BT FERA S8, bbb
PR OFE & B 161 ZRERE 102 BIWFFER DGR & R5dh 2 V7208l ) 2017, (invited,
2017/11/24, BRASHERBERIETTAAL)

- $#& Lectures (9)
[1]  IaRE, “GIHHMH PET EEOAK,”  BUERK PR HEHEE 2017/5/10.
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[2] Taiga Yamaya, “Whole gamma imaging (WGI) concept: simulation study of triple-gamma imaging,” lecture at
Craig Levin lab. in Stanford University, 2017/6/14.

[3] Hideaki Tashima, “Add-on detector position for the second helmet PET prototype: chin vs. neck,” lecture at
Craig Levin lab. in Stanford University, 2017/6/14.

[4] Taiga Yamaya, “PET Imaging physics research at NIRS: DOI, OpenPET and WGI,” Talk at LMU, June 19,
2017.

[5] UAFRE, “WHAPET LEOBFIIEDOMIT,” BEMKRYE ERRASMNR AL £23,2017/7/21.

[6] Taiga Yamaya, “PET Innovation being made at NIRS,” Presentaion for AINSE guests, 2017/9/25 (NIRS).

(71 WWERHE, “KRIHRBEESA A= THREGREMIFEOFI ~PET, £ L Tary 7 b B AT L O
G~ ENIRBR AT TR v X — BHRRTIE A 5 2 [l 1A A — v ThRgER, 2017/10/12
(ESZAEBR G TE & > & —).

[8] WARE, “PETA A=V I7WEHMTEO I NETE I NND,” BEEA A —Y v 7R ER S,
2018/11/8 (JA RREE i AP FERT)

91 WAFRE, “SHEEA PET HEOAREK,” HLFERRFEEGZET - EFHEBIITT Ve,
2017/11/15 CRIRZ&Z =R R Fbi)

- 8% Educational lectures (4)

[11 U FRE, “SHRETS)  TERFPRFERGER, 2017 4R a1 EE H B 16:10-17:40

2] EHHIE, “BEFET 513 BIEFYE 2 — X, 2017/7/13 (B R E A AFZEET)

3] WARE, “KKO PET HEIZOWTEZDH,” FUETKEDT SHOBEBRES #F%, 2017
(2017/11/16, R RIpET)

[4] WA ZEE, “Development of the next generation positron emission tomography”  JUM KPR FPi 5%
FIF H29 53 F-FERE MR R FRm, 2017/12/11.

2.6 &Z Book chapters (2)

[1] Taiga Yamaya, Hideaki Tashima, "OpenPET enabling PET imaging during radiotherapy,” Book capter in
Personalized Pathway-Activated Systems Imaging in Oncology: Principal and Instrumentation, Springer, pp.
55-84,2017.

2] WARE,"HRPIOBR B PET 2E OMFFER ", B E A ARZEE < part 1T RACZ i < KBLOHFTE
FHi= 5, pp. 202-210, 2017 (B I T2 HrH )

27 TLR - [LEWIBE Public relations activities (5)

[1]  THEERE L & FRAEIIT IR S AR & O QREAEEE 7 /) I3 2 B EFE ORRE IOV T, A
VU —2,2017/2/2
http://www.qgst.go.jp/information/itemid034-001721.html

(CHEROTHERR, HRITLH¥E, AREEIIETR LT OpenPET BIFH L & HIT TN AIREEIN ML

~ REDS Yy KT A TR

2] "EifgRTHAARE BEEESIRY IELBC Y AT A BRI TEETR 1, 2017/3/21.

3] HBREFREWIIEET OVFIEA DAL 29 FE TR A REREREEINEEZZH LE L, =a—
AU U —2Z,2017/4/19
http://www.qgst.go.jp/information/itemid047-002154.html

[4]  “% 113 I HAREZYIESFEMANED CyPos KEEELHRFES VB T—va VEES
ey =a—2AU U —2A,2017/5/16
http://www.nirs.qgst.go.jp/information/news_prize/2017/0516.html

[5] “¥LEESM PET % [Elmammo] OHFJE - B T [MEAEEME T ERY BEATBMREE ) 2%H”
=a2—A1 J—2%,2017/8/21
http://www.qgst.go.jp/information/itemid034-002617.html

{LEL

b

i

2.8 B E Exhibition (1)
[1] PRk 29 4R — A% ABRIC T 7 AN AR, 2017/4/23.

2.9 ZDfhiREZE Other reports (1)
[1] A RE, SHPEE, 87 0, HEEE, A, Mohammadi, 3HEE, Wik, db)IEE, MER, %
B, BIREER, NURIA, " ERLRRIBE A A — 0 Z D72 D OpenPET % BRI B3 2 #F
ZE(14H285)," Rk 28 4F B HUHBRIEE AR & W JE BT B - MR 03 AU TR e 2 18 5 3L [RR PR AR 28 8 3, pp.
188-189, 2017.
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2.10 B9 45 R bRt Foreign guest scientists (5)

2017/1/31-2017/4/28  Theresa Hofmann (LMU)

2017/2/8-2017/9/18 Victor L. J. Strijbis (TU Delft)

2017/2/12-2017/2/16 ~ Mitra Safavi-Naein, Harley Rutherford, Andrew Chacon (ANSTO)

(1]
(2]
(3]
(4]
(3]

2017/8/28
2017/12/22

Steven Meikle (University of Sydney)
Md. Atiqur Rahman Ahad (University of Dhaka)

2.11 R%%fIS Lab tours for visitors (31)

(1]
(2]
(3]
(4]
(3]
(6]
(7]
(8]
(9]
[10]
[11]
[12]

2017/1/13
2017/1/19
2017/2/8

2017/2/24
2017/3/10
2017/3/13
2017/4/11
2017/5/12
2017/5/15
2016/6/7

2016/6/9

2017/6/29

2017/6/27
2017/7/4
2017/7/19
2017/7/27
2017/7/27
2017/8/23-24
2017/9/4
2017/9/11
2017/9/13
2017/9/25
2017/9/29
2017/10/6
2017/10/13
2017/10/16
2017/10/18
2017/11/15
2017/11/27
2017/12/8
2017/12/12

BIVHIE SCREM A EITEIRBUR R 217G 3 4)

AR GRS E D TR IR BRI FE R LR

JERF i B REHIR - TIBE— SRR

Emma Louise Dyke I University Hospitals Bristol

TA—ES SCRREER P HAN - FIRBOR R AR R B P E R R R A 217G 3 40)
B2 N REMEE Z—1TGH6 4)

PISFHEENENBART A4 Y b —=Tha MARKZ—17GEH3 4)

Dr. Charalampos (Harry) Tsoumpas, University of Leeds

AR — B IN KRR AR PR A AR Sl

IEERE—AT

HIMAC SE[RIF AT FEIE s 25 B 2 ik 5

Mr. Rezky Anggakusuma, National Nuclear Energy Agency of Indonesia,

Mr. Qusai Al-Rhaifeh, Radiation protection officer Ministry of health (Kingdom of Jordan)
TN F BB R Z—1TGH4 4)

QST #y&ZE Z 117Gt 6 4)

Carl Blake X - Dr. Robert Chang X

%5 1[5 QST [HERY AR T ARESHRIEE AW FERT e 21T EF 10 4)
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il 2 A A R R (R 9 40)

SRV FEEA v — vy TR AT

rsE SCHRRHAE WFTEIR BLR AT JE IR BLEIS B A Sedm R R A e e Z AT (R 3 40)
TUIN R KA 5228 Mazen Soufi K

Ms. Michelle Durant, Managing Director, The Australian Institute of Nuclear Science & Engineering (AINSE)(7t 7 44)
University of Wollongong ¥4 = —1T (7t 12 £4)

Dr. Soren Mattsson (Lund University), Dr. Glenn Flux (Royal Marsden Hospital & Institute of Cancer Research)Fl 6 41
Dr. Feliksas Jankevi¢ius (Director of National Cancer Institute of Lithuania)lZ >3t 5 44
JASTI(H ARVEREIT Y v —FT VA BB %Y v —F U A FRAE 11 4

R BORBUIE B (L1 05 S ) S (G Y il 1 2 BRI E 26T 21 4
e R AR 2 4,
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3. SV ERETME (XREZ) Awards (8)

(1]

(3]

[7]
(8]

WARE, SHRL, AN, "BEE PET RKEDRP LR TR0 AR AISLIEORIZ," Tk
29 EERFEEMN 2B O BB FRERERFEMEGRBPFDZHE (2017/4/19).

Taiga Yamaya, Eiji Yoshida, Hideaki Tashima, “Invention of an open-type PET instrumentation and research
on visualization of particle therapy,” Awarded the Science and Technology Prize by the Minister of Education,
Culture, Sports, Science and Technology, April 19, 2017.
http://www.mext.go.jp/b_menu/houdou/29/04/1384228 htm
http://www.qgst.go.jp/information/itemid047-002154.html

ILARE, PARBL, ENEF, “UWEFA PET EE Elmammo] DBARICIRZEFEEEE," H
15 MEZEEEDFERE EASHREE ZE (2017/9/1).

Taiga Yamaya, Yuji Nakamoto, Keishi Kitamura, “Industry-academia-government collaboration for the
development of a breast dedicated PET, ElImammo,” Recognized as a Person of Collaboration Merits by the
Minister of Health, Labour and Welfare, September 1, 2017.
http://www8.cao.go.jp/cstp/sangakukan/index2.html

http://www.qst.go.jp/information/itemid034-002617.html

#5779 302, "Development of second add—on PET/MRI prototype: Evaluation of PET imaging performance," O—
043, % 113 [A] B RESLY IR FEIHTRES CyPos K EH

Fumihiko Nishikido, the CyPos General Chair Award by the 113™ Scientific Meeting of the Japan Society of
Medical Physics

H & 3<EA, "Development of a small prototype system toward real-time OpenPET image—guided surgery," O—
54, % 113 Bl A AREZYHZERFARE SGET LT —va VB

Hideaki Tashima, the English Presentation Award by the 113" Scientific Meeting of the Japan Society of Medical
Physics

(L4284, "Whole gamma imaging concept: feasibility study of triple-gamma imaging," O-38, % 113 [F] H
REZY LR E FFET VBT —va VE

Taiga Yamaya, the English Presentation Award by the 113" Scientific Meeting of the Japan Society of Medical
Physics

http://www.jsmp.org/conf/113/e_presentation.html
http://www.nirs.qst.go.jp/information/news_prize/2017/0516.html

Md Shahadat Hossain Akram, Awarded to “ISMRM Summa Cum Laude Merit Award” for his presentation
“Development and performance evaluation of the second prototype of a RF-coil integrated PET insert for
existing 3T MRI systems,”

(Given to Trainee Members whose abstracts score in the top 5% within a major subject review category)
http://www.nirs.qst.go.jp/information/news_prize/2017/0602.html

Md Shahadat Hossain Akram, IEEE NSS-MIC 2017 Trainee Grant ($500).

Paper listed in “PMB Highlights in 2016”

< http://iopscience.iop.org/journal/0031-9155/page/Highlights of 2016 >

Hideaki Tashima, ..., Taiga Yamaya, "Development of a small single-ring OpenPET prototype with a novel
transformable architecture," Phys. Med. Biol., Vol. 61, pp. 1795-1809, 2016
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