Simulation Study on the Impact of Energy Particles on the Pedestal

R. Z. Hu¹, Z. X. Liu^{1*}, J. Liu¹, B. F. Gao³, F. F. Long¹, Y. J. Liu², J. Y. Li¹, C. C. Deng¹, P. C. Li¹, K. N. Yang¹, X. Y. Yin¹, Y. A. Zhao¹, H. Li¹, J. L. Xie¹, T. Lan¹, W. Z. Mao¹, A. D. Liu¹, C. Zhou¹, W. X. Ding¹, G. Zhuang¹, W. D. Liu¹, and EAST team

¹ Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Anhui Hefei 230026, China

² Institute of Plasma Physics, Chinese Academy of Sciences, Anhui Hefei 230031, China

³National Supercomputing Center in Jinan, Shandong Jinan 250103, China

Email: zxliu316@ustc.edu.cn

Using the hybrid simulation code MHD & Accurate Particles (MAP), the impact of energy particles on the pedestal was studied. In JET DT experiment #99896, it was observed that the plasma exhibited characteristics similar to the I-mode found in deuterium plasmas, featuring a temperature pedestal and L-mode-like density profile without the presence of ELMs. However, measurements from Mirnov coils did not show the weakly coherent mode (WCM) phenomenon, typically found in I-mode. Additionally, considering that the DT reactions in #99896 produced high-energy alpha particles and signals from high-energy particles were also detected, a plausible hypothesis is that high-energy particles affect the pedestal.

In this study, a hybrid simulation code MAP was used to directly calculate the time evolution of high-energy particles throughout the operation of the tokamak. In the EAST configuration, using the slowing-down beam ion distribution, it was found that some high-energy particles from the core region (ρ <0.3) moved to the edge region (0.9< ρ <1) and remained stable within the core-edge range. A simple magnitude estimation found that the parallel current generated by high-energy particles at the edge is about one-thousandth of the total plasma parallel current. Then the results were processed using BOUT++, and it was found that, after considering the distribution of high-energy particles, the parallel current of high-energy particles at the edge affects the peeling component of edge instabilities, thereby promoting the onset of edge instabilities. This work provides a new perspective for studying the relationship between core and pedestal instabilities.

Keywords: Energy particles, Pedestal, MAP, Simulation