Progress on Optical-Field Ionisation soft x-ray lasers at LOA


1 LOA, Université Paris-Saclay, 91762 Palaiseau cedex, France
2 LPGP, CNRS-Université Paris Sud 11, Orsay, France
3 ELI Beamlines Project, Prague 8, Czech Republic
4 APRI GIST, Gwangju 500-712, Korea,
5 LULI, 91128, Palaiseau, France

*E-mail: Stephane.sebban@ensta.fr

We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton [1] obtained by optical field ionization focusing a 1 J, 30 fs, circularly-polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d^94p (J=0) −→ 3d^94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons.

The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum [2]. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized.

The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays [3]. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 10^{18} cm^{-3} up to 1.2 × 10^{20} cm^{-3}. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 µJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 µJ.

References