Symposium 2019 on the ITER/BA Activities Fusion Energy Forum of Japan

Progress of ITER Procurement Activities and JT-60SA Construction

QST Naka Fusion Institute Yutaka Kamada

ITER BA成果報告会、2019年12月19日、東京大学伊藤国際学術センター

Japanese Strategy of Fusion Energy Development

ITER(Burning Plasma)+JT-60SA(High Pressure Plasma)=DEMO Japan can study Fusion with 'ITER + JT-60SA'

Key Points of Fusion Plasma Research

ITER: World Wide Joint Project of 7 Parties

Demonstration of continuous fusion burning Output: 500 MW, Fusion Energy Gain of 10 (external heating: 50 MW)

Under construction by CN, EU, IN, KO, JA, RU, US

Site: Saint Paul les Durance, France

ITER Organization established in 2007 Procuremnt of components are shared among each member's domestic agencies.

QST is designated as the Japan Domestic Agency.

Start Construction 2007 First Plasma 2025 DT Fusion Operation 2035~

State-of-the-art Main Body Components Shared by Japan

1 Accelerator (About 33%)

Equipment (All)

WP fabrication status (1st + 2nd fabrication factory)

1st TF Coil near Completion with High Accuracy

gap misalignment : only ±0.25~0.75 mm

Confirmation of alignment between upper & lower structure (Jan. 2018)

Leakage : $< 5 \times 10^{-8}$ Pam³/s

Cold Test of the Winding Pack (Nov. 2018)

Integration of winding pack & structure: Started Mar. 2019

Resin Impregnation (Completed Sep. 2019)

Final Machining Completed in Dec.2019

Completion of High Voltage Power Supply System for the Neutral Beam Injector

Neutral Beam Test Facility (NBTF) is under construction in Padova in advance of ITER for full scale R&D of 1 MV, 40 A hydrogen negative ion beam injector. JA procures the DC ultra high-voltage power supply: 1MV, 60A, 3600 sec.

JA Completed

Transmission

- manufacturing of all component
- installation of all component (2015 2019)
- voltage holding test of at 1.2 MV in November

JA)

~ 100 m

Progress of Radio Frequency Heating System

High-power mm-wave oscillator: <u>GYROTRON</u> JA procures 8 Gyrotron out of all 24 sets.

4 Gyrotron: manufacture completed 2 of them has been tested => satisfied the requirement

[Requirements of factory acceptance test (FAT)]

- Frequency/Power/Efficiency: 170GHz/ ≥ 1MW/ ≥ 50%
- Full-power modulation:
 1~5kHz/ ≥ 60sec
- Duration time: \geq 300sec
- Operation reliability: \geq 95%

1MW power CW-injection

JA-GYROTRON system

Output beam

1.04 MW, 51.2% Efficiency 300 sec pulse length was confirmed for the 2nd Gyrotron

1st, 3rd, 4th Gyrotron

Progress of divertor outer vertical target

Plasma-facing material: Tungsten Actively cooled by water Heat flux: 20 MW/m²

Manufacturing of full-scale prototype on going

Tungsten monoblocks

Manufacture of 3,600 tungsten monoblocks have been completed.

Stainless-steel forgings

XM-19 forging material is being manufactured. **Cooling Pipe**

Manufacture of CuCrZr cooling pipe completed

Progress of Plasma Diagnostics

Among five diagnostics procured by Japan, Poloidal Polarimeter and Edge Thomson Scattering systems are at the final design stage through prototyping of major components

Layout of Poloidal Polarimeter

Retroreflector made by grinding tungsten material

fire resistance test

FIR laser prototype

Laser transmission line Automatic Adjustment with the actual length. of Laser Alignment

Progress of Blanket Remote Handling System

- A large robot arm to handle a Blanket module (max. 4 tons) with high accuracy
- Challenges :
 - Developping Various tools
 - ✓ Large torque (10kNm) fastening tool
 - Remote access weld / cut / inspection tool for 43mm diameter tube
 - Precise Positioning method
 - Gap between Blanket Module and the Vacuum vessel is 0.5mm
 - Radiation resistant devices

Bolt fastening tool for large torque (10kNm) tolerates strong electro magnetic force

JT-60SA: First Plasma expected in Sep. 2020

The distance

JT-60SA Project Mission

Large Super Conducting Tokamak with

'Plasma Shape suitable for high pressure plasma stability'

1. Support ITER

⇒ 'Risk Mitigation & Efficient Operation of ITER' using break-even-equivalent class high temperature D-plasmas

2. Complement ITER toward DEMO with long sustainment (~100s) of high pressure steady-state plasmas necessary in DEMO

3. Foster Next Generation leading ITER & DEMO

ITER

Burning

Plasma

JT-60SA

Plasma

High Pressure

DEMO

Economically

Attractive

+ JT-60SA

EU & JA Share Procurements of JT-60SA Components

JT-60SA Assembly is on schedule

Assembly Completion March 2020 & First Plasma September 2020

Excellent Accuracy of Manufacture and Assembly

Allowable magnetic field error : $\sim 10^{-4}$ => Manufacture & assembly accuracy is ~ mm

EF, Deviation from exact Circle 0.3-1.3mm

CS, Deviation from exact Circle 0.3-0.4mm

VV ±2 - 5 mm

Achieved

TF assembly : $\pm 1 \text{ mm}$

Laser tracker

JT-60SA Research Plan

JA-EU JT-60SA Research Unit organized in 2009 with the JA and EU fusion community. Research Plan Activity operated by young generation.

JT-60SA Research Plan Ver. 4.0 was documented in Sep. 2018 by 435 co-authors, JA 174 (18 institutes), EU 261 (14 countries, 33 institutes)

Live

Naka Fusion Institute JT-60SA Central Control Room

'JT-60SA Discharge Sequence'

Director, Dep. Advanced Plasma Research S. Ide

Manufacture / Assembly /System Evaluation Experiments/ Analyses/ Modeling => ITER

ITER & JT-60SA Collaboration Arrangement Signed on 20th Nov.

JA & EU University 'On-site Laboratory' at QST Naka

Thank You for Your Attention