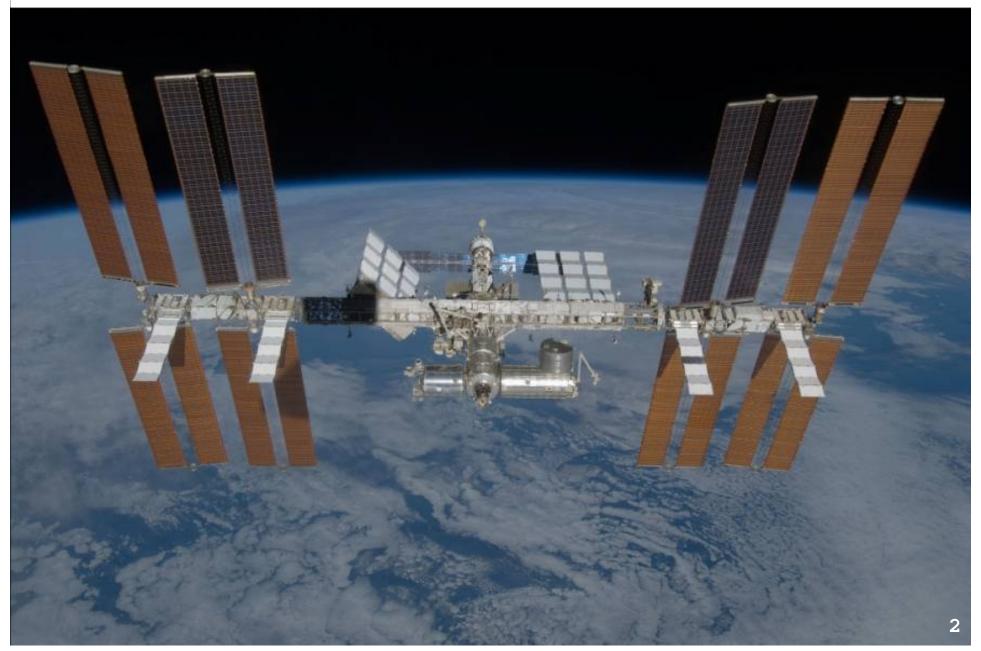
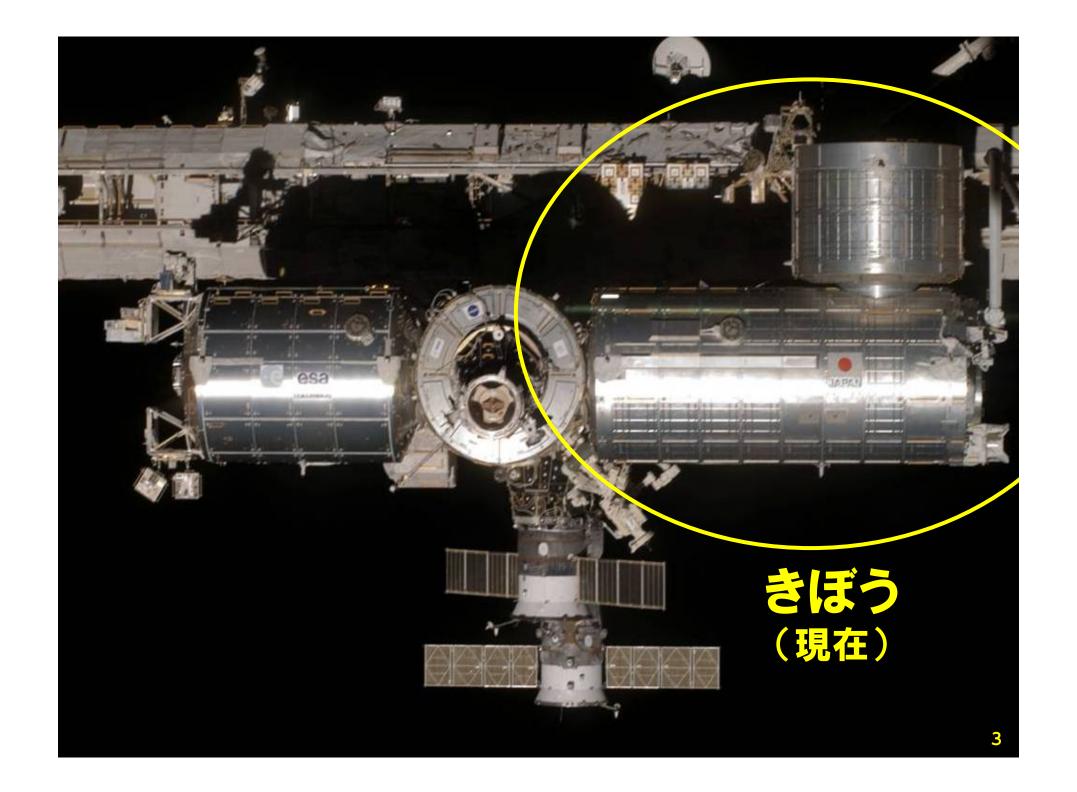


ISS計画の最新状況と 新たな知見の創造

平成21年3月26 日

宇宙航空研究開発機構有人宇宙環境利用ミッション本部(講演当時)


山浦 雄一


講演内容

- ISS計画とは
- ■日本の役割とISS計画参加の意義
- 日本実験棟「きぼう」(JEM)
- 宇宙飛行士搭乗計画
- 宇宙ステーション補給機(HTV)
- 有人宇宙技術
- ■「きぼう」の利用
- ISS計画参加により得たもの/得るもの

現在の国際宇宙ステーション(ISS)

ISS計画: 国際合意と建設の経緯

ISSの目的: 宇宙空間の科学的、技術的及び商業的利用を促進

- ▶ 科学的探究・応用・技術開発のための宇宙の実験室
- > 地球や宇宙の常設観測施設
- ▶ 将来の月面基地、火星有人ミッション、惑星ロボット探査等のためのテストベッド
- > 宇宙の商業利用を促進する研究施設

(政府間協定・了解覚書)

1984年: ロンドンサミットでレーガン米大統領 が提唱し、西側先進国に参加招請

1989年: 政府間協定を国会承認し、批准

1993年:ロシアも宇宙ステーション計画へ参加

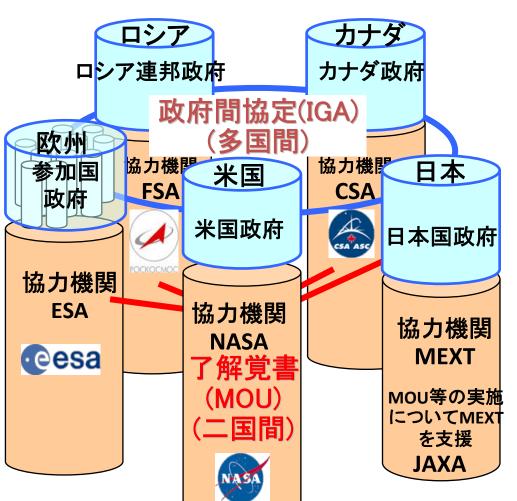
1998年: 新政府間協定を国会承認し、批准

1998年:軌道上の組立て開始

2000年:宇宙飛行士の常時滞在開始

2008年:参加全パートナの施設がISSに設置

2009年:「きぼう」完成


2010年:ISS完成

運用継続(~20XX年)

ISS計画: 国際合意の枠組

NASA: 米国航空宇宙局 FSA: ロシア連邦宇宙局 ESA: 欧州宇宙機関

CSA:カナダ宇宙庁 MEXT:文部科学省

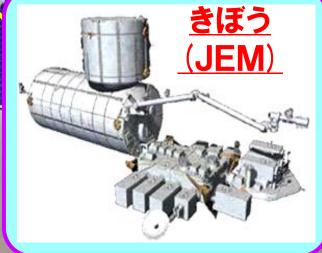
JAXA:宇宙航空研究開発機構

ISS計画 宇宙機関長会合

(2006年 米国ケネディ宇宙センター)

欧州参加国(11カ国): ベルギー、デンマーク、 スペイン、フランス、 ドイツ、イタリア、 オランダ、ノルウェー、 スウェーデン、スイス、 イギリス

ISSの構成・規模


■速度: 秒速約8km

宇宙ス一 補給機

日本の権利と義務(IGA、MOU)

日本の権利

- a. 利用権
 - ◆ JEM設備の51%の利用 (残り49%は米国・カナダが保有)
- b. 利用リソース
 - ◆電力
 - ◆クルータイム
 - ◆ISS-地上間通信(有料)
 - ◆物資輸送(有料)
- c. 宇宙飛行士の搭乗権

(備考)

IGA: 政府間協定(参加国間)

MOU: 了解覚書(日本国政府-NASA間)

日本の義務

- A) JEM(「きぼう」) の提供
 - ◆JEMの開発
- B) 軌道上のJEMの維持・運用
 - ◆地上からの運用管制 (地上システムの維持含む)
 - ◆JEM運用のための訓練システムの提供
 - ◆JEM維持のための補用品製作・打上げ
- C) ISS共通運用経費の分担
 - ◆JEM船内実験室の軌道上検証後に発生
- D) 日本の利用(自らの必要に応じ)
 - ◆実験装置の製作、打上げ
 - ◆実験試料の製作、打上げ・回収
 - ◆実験装置の地上からの運用 (地上システムの維持含む)

我が国のISS計画参加の意義

(高齢医療)

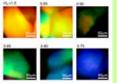
「SAC利用部会報告書「我が国の宇宙ステーション運用・利用の今後の進め方」(平成16年6月)による。]

①有人宇宙技術をはじめとする広範な技術の高度化等の促進 (大規模システム)

ISSで得られる 先端技術

有人安全技術 システム統合技術

将来の宇宙 開発への応用


地上での他分野におけるシステム の開発・管理・運用の高度化

②経済社会基盤の拡充

宇宙活動で 得られる知見・ 技術・成果

高品質蛋白質結晶

新規材料創製

飛躍的な技術革新・新技術 とそれに伴う市場の拡大

新たな付加価値を 有する産業活動

③新たな科学的知見の創造

宇宙活動で 得られる普 遍的な知 識•知見

宇宙の起源

生命の起源

知的資産

人々の探究心の醸成

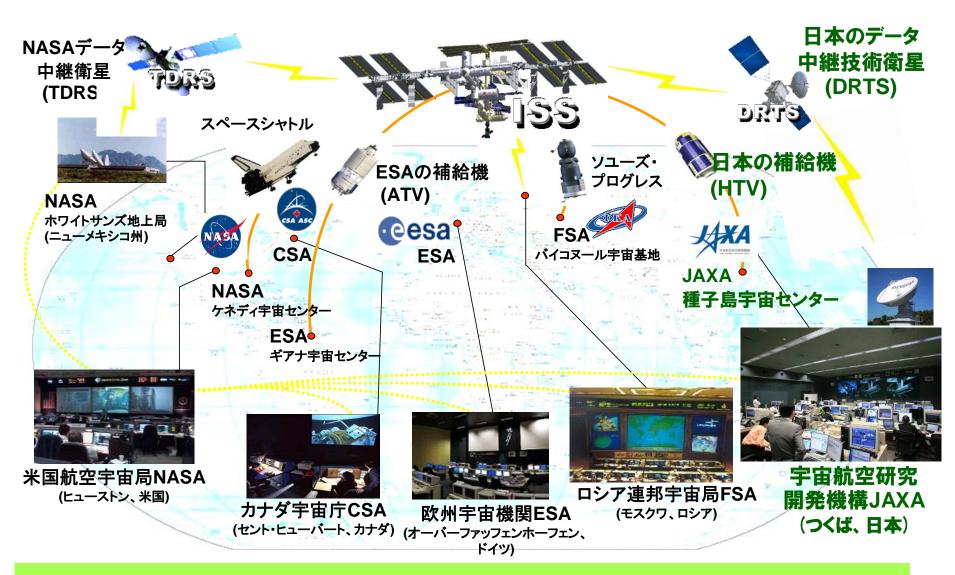
新たな文明・ 文化の源

④国際協力の推進

国際社会に おける我が国 の役割への 期待に応える

諸外国との友好

関係の維持・促進


広範な協力活動の推進

国民の自信

ISSと関連システムの運用概念

ISSへの輸送(人、物資)

有人輸送機

スペースシャトル(米国) [~2010年]

ソユーズ(ロシア)

物資補給機

プログレス(ロシア)

ATV(欧州) [2008年2月~]

HTV(日本) [2009年秋~]

「きぼう」組立と日本人宇宙飛行士の搭乗

2008年 2009年 2010年 2011年 2012年

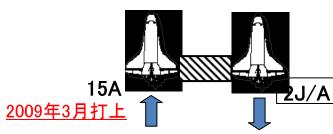
船内実験室、 ロボットアーム 2008年6月打上

船内保管室 2008年3月打上

星出飛行士

19A

2010年2月頃 飛行予定


山崎飛行士

土井飛行士

2009年12月頃 から6ヶ月間滞在

野口飛行士

ソユーズ

ソユーズ

古川飛行士

2009年3月中旬から3ヶ月間滞在

船外実験プラット フォームなど 2009年6月 打上予定

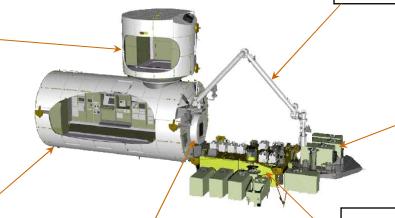
若田飛行士

AX.

日本実験棟「きぼう」(JEM)

■地上の室内と同様に1気 圧の空気が温湿度管理 された有人宇宙施設

船内保管室


船内実験室

国内宇宙企業の総力をあげた国産開発:三菱重工、川崎重工、石川島播磨重工、三菱電機、IHIエアロスペース、NTSpace(IBNEC、旧東芝)、日立、NTTデータなど国内約300社が参画

日本独自の 宇宙ロボット アーム 船外活動によらず装置の交換が可能

エアロック

船内一船外 間の実験装 置等の出し 入れが可能 船外パレット(船外実験装置等の輸送・保管に使用)

船外実験プラットフォーム (ISSで最も高機能な船外 実験設備)

「きぼう」船内実験室

- ●10個の実験ラック(装置収納棚)を搭載
- ●システム維持機能は2系統確保
 - > 大規模制御コンピュータ
 - ▶24kWの大電力供給
 - >水冷による熱制御
 - >空気循環・温湿度制御
- ●軌道上でラック・機器の交換可能
 - ▶故障時の修理
 - > 実験ラックの交換
- ●宇宙飛行士が安全に活動しやすい環境(人間 工学、火災検知・消火、低騒音)を維持
- ●宇宙ロボットアーム

宇宙医学と地上への応用

宇宙での予防医学等

生理対策技術

- •骨量減少対策(徳島大学)
- •筋萎縮対策(東大、久留米大)

長期閉鎖実験

精神心理面対応

- •人間行動学*
- ・心理リスク管理*(産総研、日本大学)*計画中

JAXAハイビジョンカメラ

軌道上遠隔医療

- •HDTVの活用
- •ポータブル医療機器

日本の宇宙食

- •独自の技術開発
- •日本ならではの品目

飛行士の健康管理

- ・過酷な環境下での健康管理
- •長期宇宙滞在時のパフォーマンス維持

宇宙日本食

地上からの健康管理

地上の生活への応用

保健・予防医学の実践

- •高齢者の健康維持
- ・健康増進への活用
- •予防医学への応用

心の健康対策

- •ストレス対策への応用
- •不眠対策など

医療の充実

- 医師不足への貢献 (遠隔地医療)
- •災害医療、救急医療

食の安全・安心

- •安全な食品製造
- •健康機能食、災害食
- •環境に優しい容器

産業保健の充実

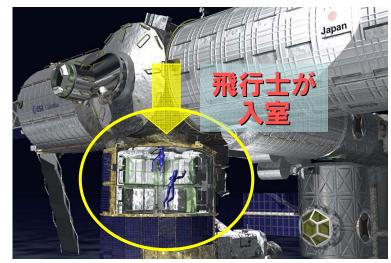
- •長時間勤労者の健康管理
- •有害環境リスクからの保護
- ・メンタルヘルス対策

世界の有人技術による スピンオフ例

- •診断装置
- > 赤外線式体温計
- > 錠剤型体温計
- •小型治療機器
- ▶ 体内外間データ 通信・測定
- >ペースメーカー
- その他
- ➤ 食品加工管理手法 (HACCP:ハサップ)
- ▶ 空気/排水浄化 システム
- ▶ 冷却スーツ

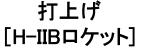
JAXA

宇宙ステーション補給機(HTV)


- ■<u>ISSの運用・利用</u>や<u>宇宙飛行士の生存</u>に 不可欠な<u>船内・船外の機器や水・食料</u>など をISSに輸送。
 - ●有人宇宙施設の安全要求に適合
 - ●打上げ後、自立飛行しISSに接近(ランデブ)、結合、ISS係留
 - ▶国際連携による飛行運用
 - ▶ISSに徐々に近づき、ISSのロボット アームで把持、結合(世界初)
 - ▶ISSから飛行士がHTV内に乗り込み、 作業を実施
 - ●制御された大気圏再突入(廃棄)
 - ■ISS計画での<u>共通運用経費</u>負担義務を 物資輸送により履行(国内に技術還元)

・HTV重量: 16.5トン

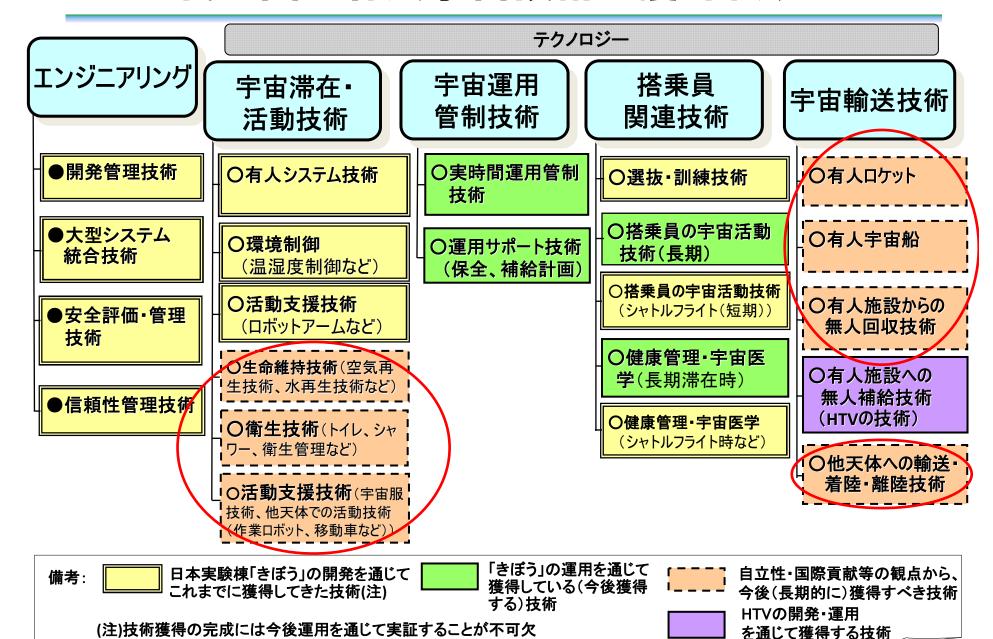
•HTV寸法: 全長10m、直径4.4m


・物資補給能力: 6トン

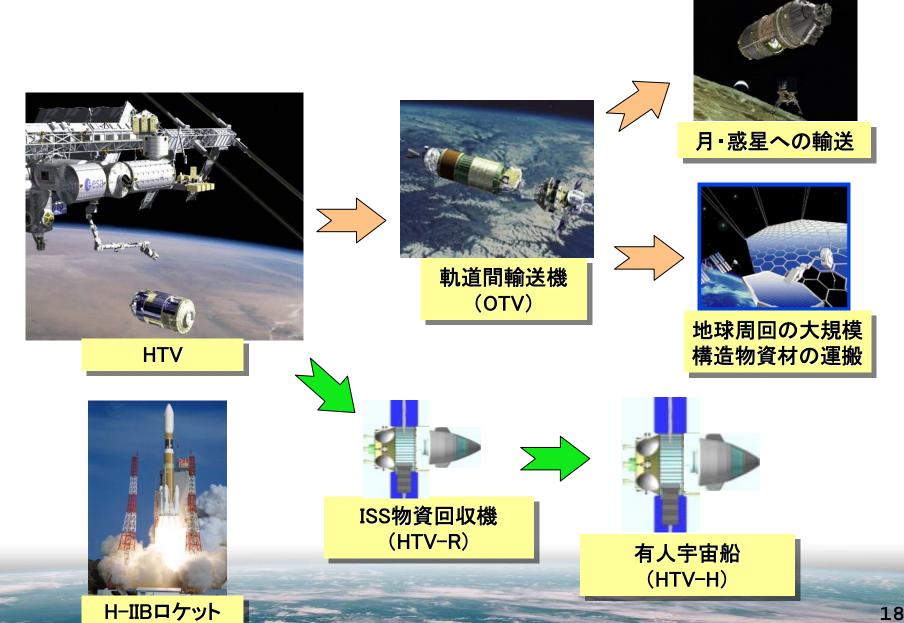
•打上げ: 平成21年から毎年1機を予定

接近

運用管制 (筑波宇宙センター)



廃棄

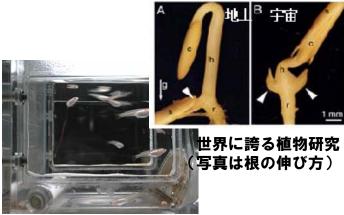

LAXA

我が国の有人宇宙技術の獲得状況

HTVの発展構想(アイディア)

- (1)「きぼう」の特徴
 - 1) 宇宙の無重量環境を利用した研究・実験
 - 2) 地球及び天体の観測施設
 - 3) 誰もが使える施設 専門家から一般人まで 多彩・多様な利用
 - 4) 宇宙飛行士が常に滞在 人間の能力をフルに活用可能 (「目」、「手」と「判断力」)
 - 5) 実験装置が交換でき、 先端技術のテストベット 定期的な打上げを可能

「きぼう」の利用 (2/3)

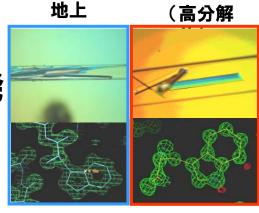

宇宙

宇宙

(2) 先端分野で活用

1) 世界最高水準のサイエンスを実施

- <u>生命科学として生物の進化と環境適応能力</u>を探求 (発生・分化のしくみ、放射線影響などを遺伝子レベルで解明)
- 宇宙科学における新たな発見 (全天X線マップ、X線新星や超高エネルギー宇宙線の観測)


地上

2) 世界を先導する日本の技術を実証 メタカ(日本原産のモデル生物) を使って、様々な視点で実験

- 大型構造物技術(軌道上ロボット、軌道上膨張型構造)
- 宇宙利用技術 (低雑音受信機用冷凍機(-270度)、高感度のX線検出(20倍))

3) 社会ニーズを踏まえた実用的な研究開発

- <u>高品質なタンパク質結晶を創製し創薬</u>に活用 (筋肉萎縮に関連するタンパク質では医薬品開発が進行中)
- 宇宙の予防医学(骨量と筋量の減少)を高齢化医療に応用

タンパク質結晶の比較 (消化酵素の単結晶と電子密度図₂₀

「きぼう」の利用 (3/3)

(3) 宇宙拠点を活かした利用

1) 地球規模で起きている諸問題の迅速な把握と情報発信

- 自然災害(噴火、火災、地震等)の撮像と情報提供
- <u>地球環境変動の要因を同時観測</u> (対流圏、成層圏、中間圏から電離圏、惑星間・星間空間を観測)
- <u>地球大気や地上の継続的な監視</u> (オゾン層回復状況の監視等)

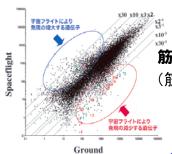
エトナ山(イタリア)の噴火(2002年10月)

2) 国民に開かれた宇宙活動の場

- 宇宙活動や未来を担う人材の育成、学生教育 (子どもたちの興味・好奇心、学生参加型の実験)
- 日本文化の発信(芸術、宇宙連詩など)
- 民間による有償利用

3) 国際協力

■ アジア利用 (我が国はアジアにおける唯一のISS参加国) NASA宇宙飛行士 による教育実験 (2002年11月)



日本の学生実験 (シャトルでのタンパク実験)

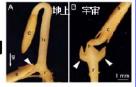
「きぼう」利用課題例 (1/2)

■船内実験室の利用 (生命科学分野)

筋萎縮のメカニズム解明

(筋肉の分解に関連する タンパク質を分析)

- ■生物の進化における重力の役割
- ■生物の宇宙環境適応能力の理解
- ■月惑星探査で人類が安全に活動 するための知見獲得と対策


(医学的対処法、生命維持技術へ活用等)

将来展望(2013~)

人間の環境適応能力を理解

カイコを利用した長期 宇宙放射線影響評価

植物の抗重力反応の解明

- ■植物栽培の基礎的研究
- ■骨量減少・筋萎縮メカニズム
- ■血圧や心拍など循環動態の変化
- ■長期宇宙放射線影響の評価
- ■微生物の生態把握と汚染解析

第2期(~2013):計画中

■動物・植物細胞の重力

感受機構(伝達シグナル、受容因子)

- ■細胞の分化と組織化の過程
- ■宇宙放射線影響の解析
- ■筋萎縮メカニズム

第1期(~2010):90の実験を準備中

細胞レベルで環境適応能力を探求

(進化の過程で生物が得た重力利用の術を知る)

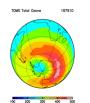
生物(固体)の環境適応能力を探求

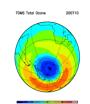
(世代を超えて適応する術を確認する)

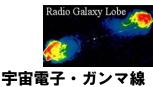
モデル生物を使って 様々な視点で実験

骨形成遺伝子の発現を可視化させたメダカ (東エ大・工藤教授提供)

※メダカの特徴

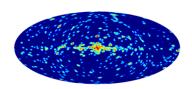

- ・全ゲノムが解明済み
- ・ヒトの疾患モデルとして利用
- ・45日で世代交代


(放射線影響、生殖、血液循環、 骨量変化・筋萎縮のメカニズム等)



「きぼう」利用課題例 (2/2)

■船外実験プラットフォームの利用 _{■月惑星有人探査への技術開発}


超高エネルギー宇宙線

大気光

- ■宇宙科学の未知なる領域へ
- ■地上生活への貢献(地球環境変動 宇宙天気、太陽エネルギー利用等)

将来展望(2013~)

オゾンホールの変化(デーダはNASA提供) (左:1979年 右:2007年)

全天X線天体マップ(予想図)

■大型構造物技術の実証

(船外活動支援ロボット、インフレータブル(膨張式)

■地球環境変動の観測

(超高エネルギー宇宙線・ガンマ線、大気発光)

- ■宇宙星間物質の探索
- ■先端技術の実証(長期連続運用の極低温機器)

第2期(~2013):計画中

- ■1000超のX線天体を監視・速報
- ■苛酷な宇宙環境の長期観測
- ■成層圏オゾンの回復状況の監視
- ■先端技術の実証

(世界初の機械式宇宙用4K冷凍機や 世界最大・最高感度の広視野X線カメラの搭載)

第1期(~2010):11実験を準備中

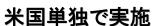
日本が誇る科学研究、 チャレンジングな技術

ISS計画参加を通じて獲得した/獲得する成果

- (1) 国際社会への能力顕示、良好な国際関係の構築
 - ■約束履行

■ 実施能力(国家・組織、産業、科学・技術、人材)

- ■信頼関係
- (2) 国際レベルの有人宇宙技術の獲得
- (3) 日本の有人宇宙活動の手段・権利の確保
 - ■有人施設「きぼう」の獲得、日本の利用権
 - ■有人施設に飛行・結合できる無人輸送機「HTV*」の獲得
 - ■日本人宇宙飛行士の搭乗権


* H-2 Transfer Vehicle

- (4)世界で活躍できる人材の育成
- (5) 国民の自信と希望

宇宙先進国としての地位獲得

1960~1970年代 アポロ計画

1970~1980年代 スペースシャトル 宇宙実験室

欧州・カナダは参加 (日本は不参加)

1980~2000年代 ISS計画

日本は対等なパートナとして参加

2000年代 世界13ヶ国が有人 宇宙探査の国際協 力の検討に着手

日本も主要国として検討をリード

宇宙機関トップ同士の交流の拡大

例:ISS宇宙機関長 会議(年1回)、宇宙 国際会議(毎年) 宇宙先進国として の信頼と期待の増大

- ・技術能力への期待
- · 米国政府要人から の期待(例: NASA長官 等の訪問)
- ·世界の主要な宇宙 機関との協力関係 構築(20ヶ国以上)

国際社会での 役割の増大

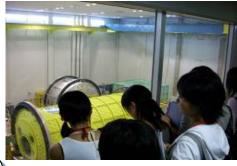
- <u>宇宙国際会議での</u>主要メンバー
- ・<u>アジアにおける中心</u> <u>的役割</u>:アジアで唯一 のISS参加国、アジア・ 太平洋地域宇宙機関 会議(APRSAF)議長国
- ・<u>国際探査ワークショッ</u> プ開催

宇宙先進国 としての 地位と信頼 関係維持

ソフトパワーとなる

次代を担う子供達の育成

ISS計画での活動


宇宙先進国のメンバーシップ

日本の科学・技術力

国際舞台での日本の役割

日本人宇宙飛行士の活躍

宇宙からの教育イベント (交信、おもしろ実験、etc.)

宇宙ステーション施設見学(筑波宇宙センター)

子供たちの希望・自信、教育

技術立国としての自信

夢と知的好奇心の喚起

人生の目標設定

宇宙飛行士との交信

ISSとの宇宙授業

JAKA TURINA

世界最先端の有人活動参加の意義

❷ 技術立国としての持続的発展

- 最先端の宇宙技術の獲得
- 産業基盤の確保、競争力の向上
- 人材の育成

● <u>外交力</u>の確保

- 世界先進国との信頼関係
- 🌉 先進国としての地位
- 人類のフロンティア活動の国際枠組み構築への貢献
- **国民**の自信と希望、次世代の教育