Industrial Application of Accelerator-Driven Neutron Sources

Tokushi Shibata Chiyoda Technol Corporation, Oarai Laboratory

 A New Radioisotope Production Method for Radiopharmaceutical (QST, Nagai Group)

 A new SPECT for γ-ray Imaging (Kyoto University, Tanimori Group)

Future Plan

A New Radioisotope Production Method for Radiopharmaceutical

Issue

Diagnosis :

- 99m Tc(T_{1/2}=6.0h)is produced by β -decay of 99 Mo(T_{1/2}=66h).
- Since ⁹⁹Mo is imported 100% in Japan, troubles of research reactors or airport shut down result in a severe shortage of ⁹⁹Mo.
- Most of ⁹⁹Mo is presently produced by neutron induced fission of highly enriched Uranium. Use of low enriched Uranium in future will raise the cost of ⁹⁹Mo due to increasing of waste and due to required modification of reactors.
- In Japan, the development of domestic production of ⁹⁹Mo by using the ⁹⁸Mo(n,γ)⁹⁹Mo reaction with the JMTR reactor had started. This project had to be stopped due to the governmental decision of the JMTR reactor shut-down.

Therapy :

- The available therapies using radioactive nuclides in japan are limited such as treatments of thyroid cancer (¹³¹I), Basedow's disease(¹³¹I), lymphatic malignancy(⁹⁰Y), relief of pain resulted from bone metastasis(⁸⁹Sr).
- In Japan, since many types of accelerators are in operation, the variety of radionuclides can be produced. But the development of radiopharmaceutical is very slow.

Proposals for issues

Proposal(1) for the Mo-99 issue by Nagai group.

Production of ⁹⁹Mo using the ¹⁰⁰Mo(n,2n)⁹⁹Mo reaction given by the accelerator neutron.

Points

- Small production of unwanted nuclides.
- More than one target can be used at a time.
- Cooling of targets is unnecessary.
- Sublimation technique is applied to chemical separation.

Proposal(2) for New RI production by Nagai group

 Development of new radionuclides for radiopharmaceuticals: ⁶⁴Cu and ⁶⁷Cu

Points

- PET diagnosis by ⁶⁴Cu and treatment by ⁶⁷Cu.
- Useful chemical chelates are available.
- Due to small Q_{β} , mass administration can be used.
- Cu-ATSM concentrate in a low oxygen area of cancer.

(飯田先生(鈴鹿医療大学)より) 6

⁶⁷Cu production

	⁶⁴ Cu	⁶⁷ Ga	⁶⁵ Zn	製造量	Small unwanted radionuclides
Conventionally ⁶⁸ Zn(p,2p) ⁶⁷ Cu	10	2.5	0.1	1	production ⁶⁴ Cu can be produced by the ⁶⁴ Zn(n,p) ⁶⁴ Cu reaction.
New Method ⁶⁸ Zn(n,x) ⁶⁷ Cu	< 0.016	~0	0.0007	>30	⁶⁴ Zn (49%)

Summary

Production

Radio nuclides produced by reactors and accelerators can be produced by accelerator neutrons only.

Diagnosis

- For the ⁹⁹Mo-^{99m}Tc issue can be solved by the ⁹⁹Mo production with the ¹⁰⁰Mo(n,2n)⁹⁹Mo reaction using accelerator neutron and a sublimation technique.
 - A dedicated accelerator and a handling facility may contribute largely to this issue.
 - A 40 MeV 2 mA d-beam can supply about 50 % of the domestic demand.

Treatment

- Fast neutron can produce new radionuclide ⁶⁴Cu for diagnostic pharmaceutical and ⁶⁷Cu for therapeutic medicine.
- Diagnostic by PET and treatment by SPECT gives good medical care.

New SPECT (Tanimori group, Kyoto University)

Tanimori group developed a γ -ray detection system. The system aimed at to survey stars which emits MeV order γ -rays. The system can measure the direction of the incident γ -ray by observing scattered γ -ray and recoiled electron after Compton scattering.

This method enable to get image of the γ -ray source as the normal camera giving image of material.

They proposed to apply this method to image analysis used in the diagnostic approach: 'New SPECT'

Now, 1496 SPECT systems and 551 PET systems are used in Japan (January 2018). Since the New SPECT superb functionality compared with present SPECT and PET, thus all theses systems may be replaced by the New SPECT

Imaging Method

Issues of SPECT and PET

SPECT

- Spatial resolution of SPECT(8~12 mm) is inferior to PET(2~5mm).
- Since SPECT use collimators, efficiency(0.0001~0.02%) of SPECT is worse than PET(0.1~1%).
- Since SPECT gets an image by analyzing images obtained by rotating 180 or 360 deg, it is impossible to get moving image.

PET

- Number of accidental coincidences is large.
- Except FDG, radionuclides have to be produced by a cyclotron in the hospital.
- The spatial resolution of New SPECT is similar to PET
- The New SPECT can give moving image.

Due to these advantages, all PET and SPECT can be replaced by the New SPECTs.

Experiment to improve the spatial resolution of SPECT

(頭部SPECT用フルデジタル高解像度検出器における画像処理ソフトウェアの開発と生の比較 賀久和弥(奈良先端科学技術大学院大学情報科学研究科修士論文)

Collimator for high spatial resolution SPECT

		東芝製SPECT GCA-7200A		
Collimator	Normal	High res.	Hyper res.	LEHR
Hole size(mm)	1.22	0.8	0.8	1.11
Thickness (mm)	30	30	50	24
Wall(mm)	0.18	0.18	0.18	0.16
Efficiency(%)	0.00906	0.00342	0.00121	0.0119

Energies of the scattered γ -ray and recoiled electron determine θ

Once the direction of γ -ray is given at each point on the detection plain, the image of the γ -ray source can be obtained.

Image obtained by γ-ray

Ordinary Compton camera shows that the direction of incident γ -ray is somewhere on the cone shape.

ETCC:Electron-Tracking Compton Camera(New SPECT)

- Technic developed by Tanimori group.
- ETCC can determine the point of incident γ-ray in the diagram and not like circles given by ordinary CC.
- ETCC is developed for astronomy, then they started medical application.

Points of the new SPECT

- Scattering γ -ray from collimator does not show up.
- Since the direction of γ-ray can be determined, scattered γ-rays are easily rejected.
- Detection efficiency is ten times of ordinary SPECTs.
- Total administrated dose of RI is less than 50MBq about 1/5 of amount for present diagnostic.
- Moving image can be obtained.
- Wide energy range of γ -ray can be used as 130keV \sim 1300keV
- Cost of new SPECT will be 1/2 of ordinary SPECT.
- Spatial resolution

```
SPECT: ~10 mm at 140 keV
New SPECT: ~10 mm at 140 keV
~6 mm at 300 keV
> 5 mm at 500 keV
```

Future Plan

Dignosis

- New SPECT gives better spatial resolution for higher energy γ-rays.
- Since ^{99m}Tc is used for variety of diagnosis, Tc is good candidate.
- Following radioactive Tc are available.
 ⁹²Tc(4.4m)、⁹³Tc(2.7h)、^{93m}Tc(43m)、⁹⁴Tc(4.9h)、^{94m}Tc(52m)、
 ⁹⁵Tc(20h)、^{95m}Tc(61d)、⁹⁶Tc(4.3d)、^{96m}Tc(52m)

⁹³Nb (abundance 100%) is target nucleus for (α, xn) reaction for production of radioactive Tc.
 ⁹³Nb(α,n)^{96m}Tc、⁹³Nb(α,2n)⁹⁵Tc、⁹³Nb(α,3n)^{94,94m}Tc

⁹⁵Tc Production

- α particle beam of 30 MeV, 30 μ A is available by a cyclotron at RIKEN.
- The amount of 4.25 GBq of ⁹⁵Tc can be obtained under the following assumptions, 24 hours irradiation, 24 hours for chemical separation and delivery, and 50% for chemical handling efficiency.
- The production amount of ⁹⁵Tc during 1 week is 25.5 GBq assuming 6 days irradiation and 24 hours irradiation/day. The annual number of diagnosis is 2550, assuming 50 MBq for each diagnosis.
- Now 900,000 diagnosis are carried out each year in Japan. To cover this number, a particle beam of 10 mA is needed.

Cost of 95Tc for diagnosis

 Since the operating cost of the AVF cyclotron in RIKEN is 640,000 yen for 24 hours. The cost of 50 MBq of ⁹⁵Tc for one diagnosis is 7,500 yen.

Future plan

Diagnosis

```
1<sup>st</sup> phase
```

Construction of the New SPECT by optimization of ETCC for medical diagnosis.

2nd phase

The requirement of ^{99m}Tc in Japan can be produced by one cyclotron using high efficiency of New SPECT. The construction of the cyclotron facility is important and necessary.

3rd phase Development of ⁹⁵Tc

4th phase

Development of cyclotron for high intensity α beam.

Medical treatment

Development of radiopharmaceutical using ⁶⁴Cu and ⁶⁷Cu

END