

Contact Information

National Institutes for **Quantum Science and Technology**

SIP research promotion center

Fukoku Seimei Building 22nd Floor, 2-chome-2-2 Uchisaiwaicho, Chiyoda-City, Tokyo, 100-0011, Japan https://www.qst.go.jp/site/sip3-en/

Promoting Application of Advanced Quantum Technologies to Social Challenges

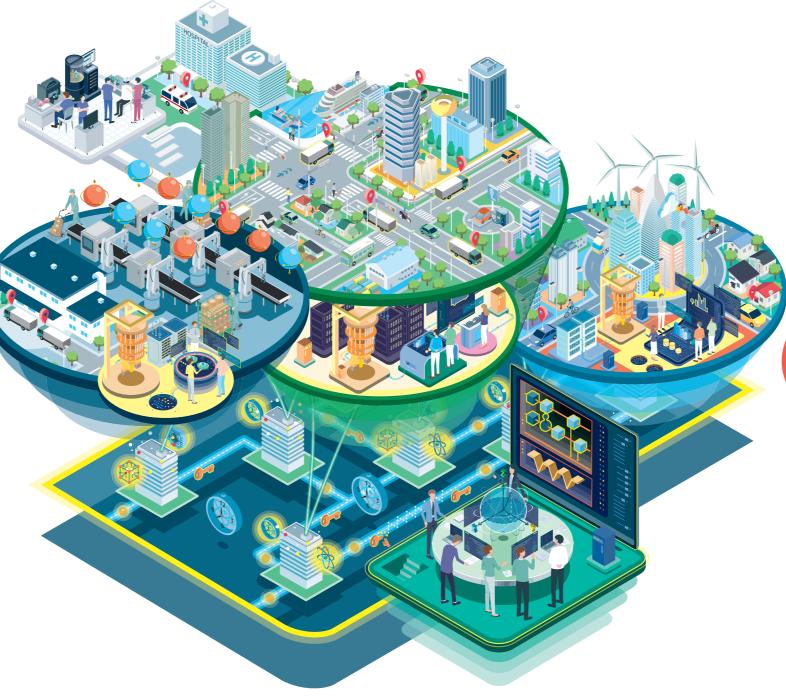
Cross-ministerial Strategic Innovation Promotion Program (SIP) is a national project in which the Council for Science, Technology and Innovation budgets beyond the boundaries of ministries and fields to promote initiatives from basic research to exit (practical application and commercialization).

The third term of the SIP, " Promoting Application of Advanced Quantum Technologies to Social Challenges " aims to accelerate the progress of Society 5.0 by extending the range of users of quantum technology as well as promoting the use of quantum technology through social challenges by cutting-edge engineers.

Quantum Computing

Research overview

The project will focus on the development of "concrete examples of solutions to real social and industrial issues (use cases) " putting emphasis on a testbed environment in which a wide range of users can use quantum computers and "quantum/classical hybrid systems" that combine quantum and classical computer systems. The project will also develop benchmarks that enable objective evaluation and comparison of performance including software, international standards based on these benchmarks, and roadmap for entire system as well as individual components: devices, materials, and so on. As a result of these efforts, we will work to attract a diverse range of companies and human resources, to secure funding, to create new business and startups on both hardware and software, and to build an ecosystem of companies that includes those for peripheral technologies.



Quantum Security and Network

Research overview

Emphasis will be placed on standardization and rule development, verification in collaboration with users, development of next-generation computing infrastructure, secure computation and next-generation cryptography infrastructure, and particulary advanced information processing infrastructure using the quantum secure cloud. In parallel, we will accelerate the process from development to implementation and encourage the expansion of use cases through standardization and testbed construction. The result of these efforts will be the creation of a large-scale network of quantum/classical hybrid solvers spanning multiple fields, including finance, medicine, manufacturing, and mobility.

In addition, by combining with technologies related to quantum network construction, which are being researched and developed outside of the SIP, such as quantum repeater technology, We will connect various quantum devices /systems for quantum computing and quantum sensing, thereby building secure and advanced communication network in the future toward the realization of our

PD, PM

Program director **SOGAWA** Tetsuomi

Senior Vice President, Basic and Advanced Research Principal, NTT Science and Core Technology Laboratory

Project manager, Sub Program director (General management)

Director, SIP research promotion center, National Institutes for Quantum Science and Technology

Mission

In the field of quantum technology, the following goals have already been set as targets for 2030 in the "Vision of Quantum Future Society" and we aim to achieve them as our mission in this project.

- •10 million quantum technology users in Japan
- •Through quantum technology, production to 50 trillion JPY
- •Fostering quantum unicorn companies to create future markets

Quantum Sensing

Research overview

In order to understand and utilize quantum measurement and sensing technologies, for a wide range of users from academia to industry we will construct environments for the use, test, and evaluation of quantum sensors. We also aim to develop use cases in various fields where ultra-sensitive quantum sensing and the quantum materials that forming the basis of quantum sensing are expected to be utilized, We also develop and commercialize ultra-high precision time-frequency delivery devices toward optical lattice clock networks, which are expected to contribute to the construction of a safe, secure, and reliable infrastructure for the next generation.

As a result of these efforts, we will demonstrate the real use of quantum measurement and sensing technologies in a wide range of fields such as health and medicine, energy, automated driving, communications, disaster prevention, and resource exploration, as well

> as the development of technologies combined with AI, big data, and IoT, while encouraging the entry of a diverse range of companies and human resources.

Innovation Creation Platform

Research overview

The "Innovation Creation Platform" will focus on creating and supporting new businesses and start-ups, fostering human resources, idea cultivation, and ecosystem building will serve as a foundation for innovation creation based on the results of the other three

The project will also actively disseminate information on research results, practical applications, and commercialization of quantum technology in collaboration with other sub-programs, and build an ecosystem mechanism and structure to match seeds companies (R&D results) with companies in need, thereby arousing the interest of user companies and investors, and attracting investment and human

At the same time, we will find business ideas and human resources through business contests, promote human resource development through the development and implementation of educational programs, and promote the inflow of funds and human resources into quantum technology.

Sub-Program / R&D Subject

Sub-Program Quantum Computing

Sub-Program director HORIBE Masahiro Deputy Director, Global Research and Development Center for Business by Quantum-Al technology(G-QuAT), National Institute of Advanced Industrial Science and Technology

R&D Subject A-1 Development of the user environment for the quantum/classical hybrid testbed

Research Theme A-1a Research and development of quantum/classical hybrid basic algorithm construction and testbed utilization environment

Head of R&D: TANAKA Shu

X Keio University

Collaborative Research Institutes:

Research Theme A-1b Building and operation of a domestically developed quantum computer testbed environment

Head of R&D: YOROZU Shinichi RIKEN

Collaborative Research Institutes: THE UNIVERSITY OF OSAKA QUNASYS

R&D Subject A-2 Development and demonstration of use cases contributing to the creation of new industries, productivity improvement, and others

Research Theme A-2a Development of quantum computer calculation system for high-precision material R&D

Head of R&D: MATSUOKA Tomoyo QUNASYS

Research Theme A-2b Strategic initiatives to build a business ecosystem with quantum computing solutions

Head of R&D: HORIBE Masahiro AIST

R&D Subject A-3 Benchmark and international standards developments for quantum computer software

Research Theme A-3 Development of quantum algorithm platform through establishment of standard benchmarks and global challenges

Head of R&D: YAN Tennin QUNASYS

Collaborative Research Institutes :

R&D Subject A-4 Roadmap and technological review for large-scale quantum computer systems

Research Theme A-4 A technology overview and roadmap for large-scale quantum computer systems and their supply chain resilience

Head of R&D : KON Seitaro AIST

Collaborative Research Institutes : RIKEN \Orchestrating a brighter world \NEC FUITSU

Sub-Program Quantum Security and Network

Sub-Program director HANAOKA Goichiro Principal Researcher, Cyber Physical Security Research Institute, National Institute of Advanced Industrial Science and Technology

R&D Subject B-1 Construction of advanced information processing infrastructure using quantum secure cloud

Research Theme B-1 Construction of advanced information processing infrastructure using quantum secure cloud

Head of R&D: MURAI Shinya TOSHIBA

SAKURA internet TOSHIBA

R&D Subject B-2 Development and demonstration of use cases utilizing advanced information processing infrastructure

Research Theme B-2 Development and demonstration of use cases utilizing advanced information processing infrastructure

Head of R&D: MURAI Shinya TOSHIBA

R&D Subject B-3 Use of secure computation and related technologies that enable data analysis while protecting privacy and other rights

Research Theme B-3a Enhancement of secure computation technology

Research Theme B-3b Research and development of resource-saving and practical secure multiparty computation systems

Head of R&D: MATSUMOTO Tsutomu AIST

Collaborative Research Institute : NRI SECURE/

Research Theme B-3C Building social implementation examples of secure computation technology

Head of R&D : SAKURAI Yoichi Odocomo Business

AS of September 2025

Sub-Program / R&D Subject

Sub-Program Quantum Sensing

Sub-Program director OHSHIMA Takeshi

Director, Quantum Materials and Applications Research Center, National Institute of Advanced Industrial Science and Technology

R&D Subject C-1 Environment development for application, test, and evaluation of quantum sensing and related technologies

Research Theme C-1a Environment development for practical use of solid-state quantum sensors: towards social implementation

Research Theme C-1b Development of testbed for quantum computers and sensor hardware components

Head of R&D: KANEKO Nobu-Hisa AIST

Collaborative Research Institutes: 東京大学

R&D Subject C-2 Development and demonstration of use cases based on quantum sensing and related technologies

Research Theme C-2a Development of hyperpolarization platform and technology for cancer treatment evaluation using triplet dynamic nuclear polarization (DNP)

Head of R&D: NEGORO Makoto SQST National Institutes for Quantum and Radiological Science and Technology

Research Theme C-2b Quantum electrical power sensing with Nitrogen-Vacancy (NV) centers in a diamond

Head of R&D: AMAGAI Yasutaka AIST

Research Theme C-2c Development of quantum spintronic sensor and its applications

Head of R&D: OOGANE Mikihiko 東北大学

Research Theme C-2d Quantum sensing technology-based diagnostic platform for ultra-early in vitro detection – developing quantum liquid biopsy for early, efficient, and affordable diagnosis of various diseases

Head of R&D: OKADA Yasushi RIKEN

R&D Subject C-3 Building a spatio-temporal business infrastructure to support ultrafast communications, mobility, and others

Research Theme C-3 Frequency signal distribution infrastructure referenced to optical lattice clocks via optical fiber network

Head of R&D: OHMAE Noriaki

Sub-Program Innovation Creation Platform

Sub-Program director OKADA Shunsuke

Chair, Executive Committee, Quantum STrategic industry Alliance for Revolution(Q-STAR)

AS of September 2025

R&D Subject D-1 New business/startup creation and support

Research Theme D-1 Creative unit for new business using quantum computers

Head of R&D: OHZEKI Masayuki 東北大学

R&D Subject D-2 Development and implementation of educational programs

Research Theme D-2 Industry-academia collaborative development educational programs

Head of R&D : NEMOTO Kae OSS OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY

スキルアップ NeXt

R&D Subject D-3 Idea cultivation

Research Theme D-3a Creative unit for new business using quantum computers

Head of R&D: OHZEKI Masayuki 🦪 東北大学

Research Theme D-3b Development of trial content presenting the results of Q-LEAP and other programs

Head of R&D: OHSHIMA Takeshi SQST National Institutes for Quantum and Radiological Science and Technology

As part of human resource development under R&D theme D-2 "Industry-Academia Collaborative Development Educational programs " this project will be conducted in collaboration with Research Theme C-1a "Environment development for practical use of solid-state quantum sensors: towards social implementation"

R&D Subject D-4 **Ecosystem building**

Research Theme D-4 Support for market participation of start-up companies, both vendors and users, related to quantum technology

Head of R&D: Shimada Hiroshi TOPPAN

Collaborative Research Institutes : Q-STAR

Sub-Program /R&D Subject Sub-Program /R&D Subject | 7