仕 様 書

1. 件名

電子ビーム位置モニタ信号処理回路の購入

2. 目的

本件は、国立研究開発法人量子科学技術研究開発機構(以下「QST」という。)が運用するNanoTerasuにおいて、高精度に蓄積電子ビーム位置をモニタするためのMTCA回路、バンチ電流モニタ用信号合成器、RFスイッチを購入するものである。

3. 購入品仕様

購入品仕様は以下の通りとする。相当品可とする。

- ・キャンドックスシステムズ社製 バンチ電流モニタ用信号合成器 85CSR5A01 1 台
- ・キャンドックスシステムズ社製 MTCA BPM 信号処理回路 72BPR508A01 5 台
- ・キャンドックスシステムズ社製 1入力1出力終端型 RF スイッチ 83SW04A01 1台

詳細仕様

- 3.1 バンチ電流モニタ用信号合成器
 - ① 入力の4信号を合成して出力する受動モジュールとする。
 - ② 周波数帯域: DC~4GHz またはそれ以上
 - ③ 挿入損失:14 dB以下
 - ④ VSWR: 1.5以下
 - ⑤ 外形:19インチラックマウント可能な高さ1Uであること。
 - ⑥ 入力: 4信号、SMA-F(前面)
 - ⑦ 出力:1出力、SMA-F(前面)
 - ⑧ 合成前に 100ps 程度の位相調整が可能な phase trimmer を 4 つ備えること。
 - ⑨ 前面入力、前面出力とすること。

3.2 MTCA BPM 信号処理回路

- ① BPM 用 RF フロントエンド RTM は、高速デジタイザ AMC と組み合わせて、ビーム 位置モニタからの高周波信号の振幅・位相を検波し、ビーム位置を算出するもの である。
- ② ビーム位置モニタの電極からの 508.76 MHz の加速高周波信号に同期した双極インパルス状の信号が入力される。

- ③ 本 RTM で入力信号の波形整形、レベル調整し、高速デジタイザに適した差動平衡 信号に変換して出力すること。
- ④ 外部から入力される基準高周波信号をもとに較正用信号を生成し、信号入力部から重畳できること。
- ⑤ 本 RTM は、MicroTCA. 4 規格の RTM (Rear Transition Module) に準拠したものとする。
- ⑥ MicroTCA. 4.1 規格の RF Backplane にも対応可能とする。

3.2.1 全体的な仕様

- ① 本RTMの参考ブロック図を図1に示す。
- ② ビーム位置モニタは1台あたり4 ch.の出力があるのに対し、高速デジタイザには10 ch.の入力があるので、本 RTM にて、2 台分8 ch.の信号を処理するものとする。
- ③ 入力段に SAW BPF (Surface Acoustic Wave Band-Pass Filter) を挿入して波形整形し、508.76 MHz の正弦波を取り出すこと。
- ④ 幅広いビーム電流範囲での測定やシングルバンチでの測定を行うため、入力信号電力は-53 dBm から+10 dBm の幅広いものとなる。
- ⑤ 0 63 dB の範囲でレベルを調整できる可変ステップ減衰器を設けること。
- ⑥ 高速デジタイザのフルスケール+7 dBm に適合するよう、利得 35 dB 程度の増幅 器を設けること。
- ⑦ 入力信号を BALUN にて差動平衡信号に変換して RTM 背面の Zone 3 コネクタから 高速デジタイザ AMC に信号を伝送すること。
- ⑧ 外部から入力される基準高周波信号をもとに較正用信号を生成し、入力段の方向性結合器から重畳できること。
 - ・較正用信号は加速高周波信号からわずかに周波数をずらしたものとし、BPM の4 ch. それぞれに異なる4種類の信号をそれぞれのチャンネルに入力できること。
 - ・較正用信号は、RF Backplane、または、外部から入力される基準高周波信号を もとに位相同期発振器にて生成し、可変減衰器でレベル調整したのち、入力段の 方向性結合器から信号入力に向かって重畳すること。
 - ・較正用信号、および、基準高周波信号は、高速デジタイザの空きチャンネルに て監視できること。
- ⑨ MicroTCA. 4.1 RF Backplane (RFB) にも対応し、RFBのクロックや高周波信号を 高速デジタイザ AMC に送り、RFBの高周波信号を較正用信号生成に使い、RFBの 電源を使用することができること。

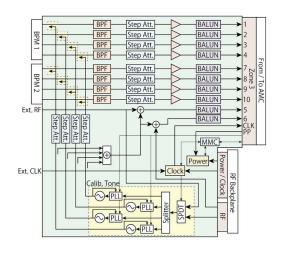


図1 BPM 用 RF フロントエンド RTM 参考ブロック図

3.2.2 主な仕様

主な仕様は以下のとおりである。それぞれの項目の詳細は後述する。

① 規格: MicroTCA. 4 RTM(RF Backplane 対応)

② BPM 信号入出力

信号形状: 双極インパルス状で、508.76 MHz の加速高周波信号に同期。 入出力チャンネル数: 4 ch. x 2 = 8 ch. 波形整形、レベル調整、シングルエンド・差動変換を行って Zone 3 コネクタに 出力。

③ 基準高周波信号入出力

前面パネル入力: 1 ch.

RF Backplane 入力: 2 ch.

周波数: 508.76 MHz (加速高周波信号と同一) シングルエンド・差動変換を行って Zone 3 コネクタに出力 較正用信号生成にも使用する。

④ クロック入出力

前面パネル入力: 2 ch.

RF backplane 入力: 2 ch.

Zone 3 出力: 2 ch.

2 ch. のうち、ひとつは ADC サンプリングクロック、もうひとつは、周回信号

⑤ 較正用信号

チャンネル数: 4

周波数: 基準高周波信号から数 100 kHz 分離、各チャンネル別々

重畳方法: 可変減衰器でレベル調整して BPM 信号入力部より方向性結合器にて

重畳

- ⑥ 電源入力: 以下の電源に対応し、必要に応じて切り替えられること。 Zone 3 コネクタ: Payload Power +12 V, Management Power +3.3 V RF backplane: Analog Power ±6 V
- で モジュールマネジメント: DESY Module Management Controller (MMC) v1.00
 進机

3.2.3 BPM 信号入出力

- ① チャンネル数: 4 ch. x 2 = 8 ch.
- ② 入力信号波形: 双極インパルス列 (508.76 MHz の加速高周波信号に同期)
- ③ 入力レベル: -53 dBm ~ +10 dBm、シングルエンド 50Ω、508.76 MHz にて
- ④ 入力コネクタ: 前面パネル集合同軸コネクタ
- ⑤ 入力 VSWR: 1.5以下 (508.76 MHz ± 1 MHz)
- ⑥ SAW バンドパスフィルタ

中心周波数: 508.76 MHz が通過域に十分含まれること。

带域幅:約10 MHz (3 dB)

挿入損失: 4 dB 以下

⑦ 可変減衰器: 各チャンネルにステップ可変減衰器を設けること。

減衰器調整範囲: 0 - 63 dB

減衰器調整ステップ: 0.5 dB、又は、1 dB

高速デジタイザ AMC から user I²C 通信にて減衰量を設定できること。

⑧ 増幅器

利得: 35 dB 程度

ノイズフィギュア: 6 dB以下

⑨ シングルエンド・差動変換

方式: 高周波トランスによる

挿入損失: 3 dB 以下

中点電圧: 高速デジタイザ AMC の AD 変換器の中点電圧に合わせること。

- ⑩ 信号出力: Zone 3 コネクタ、差動平衡 100 Ω
- ① アイソレーション: 50 dB 以上 (508.76 MHz ± 1 MHz)
- ⑫ 振幅安定度: 0.01 dB以下(24時間、温度変動 ±0.1℃以内にて)

3.2.4 基準高周波信号入出力

① 基準高周波入力

周波数: 508.76 MHz (加速高周波信号と同一) 入力レベル: 0-3 dBm、シングルエンド 50Ω

② 前面パネル入力

チャンネル数: 1

コネクタ: SMA ジャック

③ RF Backplane 入力

チャンネル数: 2 (REF および CAL)

コネクタ: Coaxipack 2

④ シングルエンド・差動変換

方式: 高周波トランスによる

挿入損失: 3 dB 以下

中点電圧: 高速デジタイザ AMC の AD 変換器の中点電圧に合わせること。

⑤ 基準高周波出力

チャンネル数: 2 (前面パネル、RF backplane、それぞれ 1 ch. ずつ)

コネクタ: Zone 3 コネクタ、差動平衡 100 Ω

- ⑥ アイソレーション: 50 dB以上 (508.76 MHz ± 1 MHz)
- ⑦ 振幅安定度: 0.01 dB以下(24 時間、温度変動 ±0.1 ℃ 以内にて)

3.2.5 クロック入出力

- ① 前面パネル入力、RF Backplane 入力から選択できること。
- ② チャンネル数: 2 (ADC サンプリングクロック、および、周回信号)
- ③ 周波数

ADC サンプリングクロック:約 360 MHz

周回信号: 0.1 - 2 MHz

④ 前面パネル入力

コネクタ: SMA ジャック x 2

入力レベル: 0 dBm Typical 正弦波、および、LVPECL single-ended の両方に対応

入力インピーダンス: 50Ω

⑤ RF Backplane 入力

コネクタ: Zone 2 コネクタ (2 ch.)

入力レベル: LVPECL、差動平衡 100 Ω

⑥ クロック出力

チャンネル数:2

コネクタ: Zone 3コネクタ

出力レベル: LVPECL、差動平衡 100 Ω

ジッタ増加: 100 fs rms 以下 (目標 50 fs rms 以下)

3.2.6 較正用信号

- ① チャンネル数: 4
- ② 周波数

基準高周波信号に同期し、その周波数から数 100 kHz 分離。 高速デジタイザ AMC から各チャンネル別々に周波数設定できること。

- ③ 信号レベル: +13 dBm 程度(可変減衰器入力にて)
- ④ 生成方法: VCO 発振器を PLL 制御して生成。
- ⑤ 出力制御: 高速デジタイザ AMC から出力の ON / OFF の制御ができること。
- ⑥ アイソレーション: 50 dB以上 (508.76 MHz ± 1 MHz)
- ⑦ 振幅安定度: 0.01 dB以下(24 時間、温度変動 ±0.1℃ 以内にて)
- ⑧ ジッタ増加: 200 fs rms以下
- ⑨ 基準高周波信号: 前面パネル入力と RF Backplane 入力から選択できること。
- ⑩ 可変減衰器: 各チャンネルにステップ可変減衰器を設けること。

減衰器調整範囲: 0 - 63 dB

減衰器調整ステップ: 0.5 dB、または、1 dB

高速デジタイザ AMC から減衰量を設定できること。

- ① 重畳方法: BPM 信号入力部の方向性結合器による。
- 迎 方向性結合器

結合度: 20 dB 程度

方向性: 20 dB以上

重畳方向は、上流向きとする。

③ 基準高周波信号出力チャンネルへの重畳

全4 チャンネルの較正用信号を合成して基準高周波出力に重畳すること。

信号レベル: -3 dBm 程度

各チャンネルの較正用信号は方向性結合器で取り出すこと。

重畳にはウィルキンソン型コンバイナを使用すること。

3.2.7 AMC との接続

- ① コネクタ: Zone 3 コネクタ
- ② ピン配置: MicroTCA. 4 Class A1.1 準拠
- ③ アナログチャンネル割り当て

BPM 1台目: ch. 1 - 4

BPM 2台目: ch. 7 - 10

前面パネル基準高周波信号: ch. 5

RF Backplane 基準高周波信号: ch. 6

すべて AC coupling 側に出力する。

3.2.8 状態監視 • 制御

- ① IPMI による状態監視・制御ができること。
- ② 温度・電源などが監視できること。
- ③ 入力信号、較正用信号の減衰器の制御ができること。
- ④ 較正用信号の周波数設定や出力 ON / OFF ができること。

3.2.9 電源

AMC からの入力

コネクタ: Zone 3 ZD コネクタ

Payload Power: +12 V

Management Power: +3.3 V

② RF Backplane 入力

コネクタ: Zone 2 コネクタ

Analog Power: ±6 V

- ③ アナログ回路においては、AMC からの電源と RF Backplane からの電源が選択できること。
- ④ 消費電力: 30 W 以下

3.2.10 構造

- ① 寸法: MicroTCA.4 RTM Double-width Mid-size
- ② ケース: アイソレーションが十分とれるよう、RTM を金属ケースで覆うととも に、各チャンネルを仕切ること。
- ③ 重量: 3 kg 以下

3.2.11 試験

- ① 外観、寸法、重量:仕様値を満足していることを確認すること。
- ② 以下の電気的性能を満たしていることを確認すること。 ステップ減衰器が設定した減衰量を有することを 508.76 MHz の信号を用いて確認すること。

VSWR、ノイズフィギュア、利得、アイソレーションが仕様値を満たすことを確認 すること。

3.3 1入力1出力終端型RFスイッチ

- ① DC~4GHz 帯域の1系統のRF 信号切換器を備え、スルー・終端を切換えられること。
- ② 信号切換は最大入力レベル+30dBm、挿入損失-0.9dB @1GHz の半導体 SPDT スイッチを使用し、長寿命で高い再現性を有すること。

- ③ RF 信号のスルー、終端切換は入力 TTL トリガ信号または手動のロータリスイッチで選択できること。
 - ④ 入力 TTL トリガ信号のロジックは OV・スルー、+5V・終端とすること。
- ⑤ RF 信号の入出力コネクタは SMA (F)、トリガ信号の入力コネクタは BNC (F) とすること。
 - ⑥ 19インチラック 1Uサイズに収納し、電源はAC100Vとすること。

4. 納期

令和8年3月24日

5. 納入場所

宮城県仙台市青葉区荒巻字青葉 468-1 NanoTerasu ユーザーズオフィス 持ち込み渡し

6. 提出書類

書類名	提出時期	部数
試験検査成績書	納入時	1部

(提出場所)

NanoTerasuセンター

高輝度放射光研究開発部 加速器グループ

7. 検査条件

第5項に示す納入場所に納入後、以下の試験検査をもって検査合格とする。

項目	内容	
員数検査	・員数が揃っていることを、目視により確認する。	
外観試験	・目視にて機器の外表面、及び内表面に機能上有害	
	となる傷や歪みのないことを確認する。	
性能試験	・各機器の試験検査成績書の電子データ、紙媒体1	
	部を提出し、仕様を満たすことを確認する。	

8. 契約不適合責任

契約不適合責任については、契約条項のとおりとする。

9. グリーン購入法の推進

- (1) 本契約において、グリーン購入法(国等による環境物品等の調達の推進等に関する法律)に適合する環境物品(事務用品、OA機器等)が発生する場合は、これを採用するものとする。
- (2) 本仕様に定める提出図書(納入印刷物)については、グリーン購入法の基本方針に定める「紙類」の基準を満たしたものであること。

10. 協議

本仕様書に記載されている事項及び本仕様書に記載のない事項について疑義が生じた場合は、QSTと協議のうえ、その決定に従うものとする。

(要求者)

部課室名: NanoTerasu センター

高輝度放射光研究開発部 加速器グループ

氏 名:上島 考太