平成21年3月17日

原子分子データ活動に関する研究会 原子力機構東京事務所(東京・千代田区)

# 原子・分子・イオンの衝突に関する調査 低電離Wイオンの電荷変化断面積

# 京都大学大学院工学研究科 伊藤秋男

委託研究 原子・分子・イオンの衝突に関する調査 低電離Wイオンの電荷変化断面積(V)

(文献調査・データシート作成)

(電荷変化断面積測定)

平成6年度まで

 $C^{+, 2+, 3+} + H_2, CO_2, CH_4, C_2H_6, C_3H_8$ 

平成7~9年度低電離金属イオンの電荷変化断面積(Ⅰ)(Ⅱ)(Ⅲ)

 $Cr^{+, 2+, 3+}$ , Be<sup>+, 2+</sup> + He, Ne, Ar, Kr, H<sub>2</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub> 平成 10~12 年度 低雷離 Ni イオンの電荷変化断面積(I)(II)(III)

Ni<sup>+, 2+</sup> + He, Ne, Ar, Kr, H<sub>2</sub>, CO, CO<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub> 平成 13~15 年度 低雷離 Fe イオンの電荷変化断面積(I)(II)(III)

 Fe<sup>+, 2+</sup>, Be<sup>+, 2+</sup>, B<sup>+, 2+</sup>
 + He, Ne, Ar, Kr, H<sub>2</sub>, CO, CO<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub>

 平成 16~20 年度
 低電離 W イオンの電荷変化断面積(I)(II)(III)(IV)(V)

W<sup>+</sup> + He, Ne, Ar, Kr, H<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub> (測定継続中)

W<sup>2+</sup> + He, Ar, Kr, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub> (測定継続中)

### 本委託調査からの発展と関連発表(平成 20 年度)

# 文献調査 → データサーバ構築 (2006 年 10 月プロトタイプ稼働), 断面積測定 → 国際会議・論文発表

- Makoto Imai, Recent charge transfer cross section measurements for fusion related materials, June 9 – 13, 2008, IAEA Headquarter, Vienna, Austria.
- <u>M. Imai</u>, M.V. Khoma, O.M. Karbovanets, Y. Kikuchi, M. Saito, Y. Haruyama, M.I. Karbovanets, A. Itoh, R.J. Buenker, Charge transfer processes in collisions of slow highly charged ions with polar molecules CO and C<sub>3</sub>H<sub>8</sub>, The14th International Conference on the Physics of Highly Charged Ions (HCI 2008), September 1 – 5, 2008, Chofu, Japan.
- <u>Makoto Imai</u>, Akio Itoh, and Hirotaka Kubo,

Production and compilation of charge changing cross sections of ion-atom and ion-molecule collisions, The 6th International Conference on Atomic and Molecular Data and Their Applications (ICAMDATA 2008), October 28 – 31, 2008, Beijing, China.

• Makoto IMAI,

Electron Capture Cross Section for W<sup>+</sup> and W<sup>2+</sup> Ions Colliding with Gaseous Targets & Compilation of Charge Changing Cross Section of Energetic Ion Collisions,

March 11, 2009, NFRI, Daejeon, Korea.

March 12, 2009, KAERI, Daejeon, Korea. (informal round-table) Electron Capture Cross Section for W<sup>+</sup> and W<sup>2+</sup> Ions Colliding with Gaseous Targets, March 12, 2009, 漢陽大學校, 安山, Korea. (informal round-table)

- M. V. Khoma, M. Imai, O. M. Karbovanets, Y. Kikuchi, M. Saito, Y. Haruyama, M. I. Karbovanets, I. Yu. Kretinin, A. Itoh, R. J. Buenker, A simple theoretical approach of electron capture processes in collisions of atomic ions with polar targets, Chemical Physics 352 (2008) pp. 142 – 146. Be<sup>2+</sup> + CO, B<sup>2+</sup> + CO, Be<sup>2+</sup> + C<sub>3</sub>H<sub>8</sub> single electron capture
- M. V. Khoma, M. Imai, O. M. Karbovanets, Y. Kikuchi, M. Saito, Y. Haruyama, M. I. Karbovanets, I. Yu. Kretinin, A. Itoh, R. J. Buenker, Charge transfer processes in collisions of slow highly charged ions with polar molecules CO and C<sub>3</sub>H<sub>8</sub>, Journal of Physics: Conf. Ser., to be published. Be<sup>2+</sup> + CO, B<sup>2+</sup> + CO, Be<sup>2+</sup> + C<sub>3</sub>H<sub>8</sub> double electron capture

### 文献調査・データシート作成

抽出文献数

| 対象年                                   | 全断面積 | 部分断面積 | その他 | 計   |
|---------------------------------------|------|-------|-----|-----|
| 1983~1990                             | 73   |       |     | 73  |
| 1991                                  | 20   |       |     | 20  |
| 1992                                  | 12   | 12    |     | 24  |
| 1993                                  | 7    | 4     |     | 11  |
| 1994                                  | 10   | 8     |     | 18  |
| 1995                                  | 10   | 6     | 4   | 20  |
| 1996                                  | 7    | 2     | 2   | 11  |
| 1997                                  | 12   | 1     | 2   | 15  |
| 1998                                  | 5    | 6     | 1   | 12  |
| 1999                                  | 6    | 4     | 5   | 15  |
| 2000                                  | 6    | 1     | 3   | 10  |
| 2001                                  | 18   | 2     | 5   | 25  |
| 2002                                  | 2    | 2     | 7   | 11  |
| 2003                                  | 12   | 1     | 12  | 25  |
| 2004                                  | 12   | 1     | 8   | 21  |
| 2005                                  | 16   | 4     | 19  | 39  |
| 2006                                  | 5    | 2     | 11  | 18  |
| 2007                                  | 13   | 2     | 4   | 19  |
| 2008                                  | 6    | 0     | 11  | 17  |
| 計                                     | 252  | 58    | 94  | 404 |
| • Atomic Data and Nuclear Data Tables |      |       |     |     |

#### <u>調査対象学術雑誌</u>

• Atomic Data and Nuclear Data Tables

- The European Physical Journal D
- Europhysics Letters
- JETP
- JETP Letters
- Journal of Physical and Chemical Reference Data
- Journal of the Physical Society of Japan
- Journal of Physics B: Atomic, Molecular and Optical Physics
- Nuclear Instruments and Methods in Physics Research sect. A
- Nuclear Instruments and Methods in Physics Research sect. B
- Physica Scripta
- Physical Review A
- Physics Letters A





-4-





#### 断面積測定-実験装置



### 断面積測定-実験装置



#### 断面積測定

# How to Derive Cross Sections

Rate equation for W<sup>i+</sup> intensity 
$$\frac{dF_i(\pi)}{d\pi} = \sum_{j \neq i} \left[ F_j(\pi) \sigma_{ji} - F_i(\pi) \sigma_{ij} \right],$$
  
 $\sum_i F_i(\pi) = 1,$ 

## where

- $F_i(\pi)$ : Relative Intensity of W<sup>i+</sup> ion
- $\pi$ : Target Thickness (= Density × Length in /cm<sup>2</sup>)
- $\sigma_{ji}$ : Charge Transfer Cross Section (cm<sup>2</sup>) W<sup>j+</sup>  $\rightarrow$  W<sup>i+</sup>

Under the Single Collision Condition, this simultaneous equation reduces to  $\frac{I_0}{I_2 + I_1 + I_0} = \sigma_{10}\pi$ ,  $\frac{I_2}{I_2 + I_1 + I_0} = \sigma_{12}\pi$ , where

 $I_2, I_1, I_0$ : Intensity of W<sup>2+</sup>, W<sup>+</sup> and W<sup>0</sup>, respectively.

#### 断面積測定









Single and double electron capture cross sections  $\sigma_{10},\,\sigma_{21}$  and  $\sigma_{20}$  for Be and B ions.

J. Plasma Fusion Res. SERIES Vol.7, pp.323-326.



Single and double electron capture cross sections  $\sigma_{10}$ ,  $\sigma_{21}$  and  $\sigma_{20}$  for Fe and Ni ions.

J. Plasma Fusion Res. SERIES Vol.7, pp. 323-326.