1

炭素のケミカルスパッタリングIV(堆積炭素)

- 松波 紀明 名大、エコトピア科学研究所
- 仲野 友英、久保 博孝、左高 正雄 原子力研究開発機構
- 大野 哲靖 名大、工学研究科
- 山際 正人、寺岡 正広 名大、工学研究科

<u>Contents</u>

- 1. Introduction: Background, 2007-2009 Reports & Aim
- 2. 堆積炭素とは; Redeposit C, CFC (Carbon nanotube?), Aim & Literature survey
- 3. Temp., Energy & Fluence dependences, Dopant effect
- 4. Summary, Graphite vs W
- 5. Dynamic retention

Background : Graphite for fusion-plasma walls

H(D) on pure-graphite [2007 Report]

- <u>Chemical sputtering</u>: Reaction of H(D) with C, formation and escape of hydrocarbons.
- * For H energy > 0.3 keV, yield takes maximum at Ts~800K, CH₄ dominant, larger by an order of magnitude than physical sputtering
- e.g. ~0.01 /ion for 1 keV H ,Matsunami et al. ADNDT 31(1984)1., Yamamura et al. ADNDT62(1996)149.
 •For low energy, Ts~600K, contribution other than CH₄ becomes larger.

* c.f. Enhanced sublimation, >1200K, Philips et al. JNM 155-157(1988)319.
*NB. Reflection, ~0.1 at 1 keV H on C, Tabata et al. NIM B9(1985)113
*Related phenomena: Reemission, Retention

H(D) on doped-graphite [2008 Report]

Dopant (10 elements)

- B, Be, Si, Ti, W, V, Fe, Cr, Li, Zr
 - Suppression of chemical sputtering.
 - ~10 % doping is effective.

O & N impact on graphite [2009 Report]

- **Chemical sputtering**
- O impact, CO (main component), Yield ~1
- Energy Distribution of CO at RT, MB + Collision cascade
- N impact, Yield ~1
- (C impact, chemical sputtering was not observed.)

Graphite vs Diamond

DGM1997a 2k7.2.15

C.D.Donnelly, R.W.McCullough, J. Geddes, Diamond & Related Mat. 6(1997)787.

Y(diamond) << Y(graphite), > 3 order of magnitude

Desired are the data for energetic H impact.

<u>Thermal H on a:C(H)</u>, Horn et al. Chem. Phys. Lett. 231(1994)193. *CH₃ emission max. at 600 K Y ~ 0.01 <u>Inconsistent</u>

C. M. Donnelly, R.W. McCullough, J. Geddes, Diamond Rel. Mat. 6(1997)787.

<u>堆積炭素のケミカルスパッタリング</u> [2010 Report] ^{*}

*堆積炭素とは? Re-deposited C

Wide variation of SP2+SP3, Structure, Density, Impurities

*Lab. Exp. Carbon fiber-reinforced carbon composite (CFC)

*Similarity to Carbon nanotube?

Aim

* Data compilation & understanding of chemical sputtering of graphite: <u>CFC</u>

* CFC: ~14 papers [2010 Report]

Temperature Dependence(1)

0.6 keV H₂ on DC & Graphite

- *Chemical sputtering Yields DC < Graphite
- *DC, density~2.2 gcm⁻³ diamond 2.26 gcm⁻³
 - *SP3 is remained after ion impact (Raman spectroscopy)
 - **Ion Impact Graphitization ?**

SP2/SP3 before and after ion impact?

Phys. Sputtering ~0.01 (0.3 keV H)

YIELD

SPUTTERING

550

600

650

R. Yamada, J. Vac. Sci. Technol. A5(1987)2222.

700

Temperature Dependence(2)

TFTR-redeposit C

*Chem. Sp. Yield is larger by ~20 % than Graphite

* Impurity (O, Si, S, Cr, Fe, Ni) inclusion

Phys. Sp. Y. ~ 0.01

Normal incidence.

Y. Hirooka, A. Pospieszczyk, R. W. Conn, B. Mills, R. E. Nygren, Y. Ra, J. Vac. Sci. Technol. A7(1989)1070.

Temperature Dependence(3)

2008SHSTF2

2008SHSTF3

<u>Ar+ & H impact</u> <u>Synergistic effect</u> Y(phys. sp.) ~5 (0.8 keV Ar)

Energy Dependence(1a)

*Chem. Sp.

*CH Component

1. DC ~ Graphite

```
2. C_1(CH_4) > C_2(C_2H_2 \text{ etc})
```


R. Yamada, J. Vac. Sci. Technol. A5(1987)2222.

Energy Dependence(1b)

*Chem. Sp. \geq Phys. Sp.

*E < 1 keV

1. $C_2(C_2H_2 \text{ etc})$, DC & DF < Graphite 2. $C_1(CH_4)$, $C_3(C_3H_8)$, DC~DF~Graphite

R. Yamada, J. Vac. Sci. Technol. A5(1987)2222.

Fluence Dependence

*Fluence Dep. ~ Weak

***B-doping: Little effect**

*Data at higher temp. is desired.

K. Nakamura, M. Dairaku, M. Akiba, Y. Okumura, J. Nucl. Mater. 241-243(1997)1142.

Dopant Effect

B-doping Suppression of Chem. Sp.

T. Yamaki, Y. Suzuki, A. Chiba, M. Nakagawa, Y. Gotoh, R. Jimbou, M. Saidoh, J. Nucl. Mater. 241-243(1997)1132.

- •Survey of chemical sputtering data: CFC
- Appreciable chemical sputtering, Comparable with Graphite Ion induced graphitization?, Comparison with Diamond?

Future problems

- •Graphite vs W
- **Comparison; Mechanical, Thermal, etc. Properties**
- **Gr.; Suppression of Chemical sputtering**
- H Retention (static, dynamic)
- •A simple analytical formula?
- Data compilation, publication?

Model: pure graphite

S.K.Erents, C.M.Braganza, G.M.McCracken, J. Nucl. Mat.63(1976)399.

 $Y_{chem} = n_{H}^{*}cnst^{*}exp(-Q_{1}/RT),$

 n_{H} :H conc. at surfce, $dn_{H}/dt = J - Jo \sigma n_{H} - n_{H}/(\tau_{o}exp(Q_{2}/RT))$ ion-induced desorption thermal desorption Q_{1} : 159kJ/mol, activation energy (heat of CH₄ formation?) Q_{2} : 228kJ/mol R_{N} : Reflection coefficient

Deuterium Retention in WO₃ and W

When WO₃(D) & W(D) are kept in air at RT, <u>Deuterium Escape</u> was observed.

*Dynamic Retention

1.5 kV AC (60 Hz), Maximum D energy= 1.06 keV, Efficiency ~4%, Reflection ~50%(D on W), *Dynamic Retention

開発した小型高熱流プラズマ照射装置

