# プラズマ研究における原子・分子過程

京都大学 藤本 孝





 $ns^{1}S np^{1}P nd^{1}D nt^{1}F ng^{1}G nh^{1}H np^{1}Snl^{1}P^{o} np^{1}P nd^{1}D^{o} np^{1}Dnd^{1}F^{o} ns^{3}Snp^{3}P^{o}nd^{3}Dnt^{3}F^{o}ng^{3}Gnh^{3}h^{o}np^{3}Snl^{3}P^{o} np^{3}Pnd^{3}D^{o}nl^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{$ 



CIV (C<sup>3+</sup>)の解析結果





 $ns^{1}S np^{1}P nd^{1}D nt^{1}F ng^{1}G nh^{1}H np^{1}Snl^{1}P^{o} np^{1}P nd^{1}D^{o} np^{1}Dnd^{1}F^{o} ns^{3}Snp^{3}P^{o}nd^{3}Dnt^{3}F^{o}ng^{3}Gnh^{3}h^{o}np^{3}Snl^{3}P^{o} np^{3}Pnd^{3}D^{o}nl^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Dnt^{3}F^{o}np^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{3}Pnd^{$ 



CIV (C<sup>3+</sup>)の解析結果



C IV (C<sup>3+</sup>)の解析結果



n ≤ 4 電離プラズマ成分 n ≥ 5 再結合プラズマ成分



CIV (C<sup>3+</sup>)の解析結果





C IV (C<sup>3+</sup>)の解析結果



再結合プラズマ成分の $n \ge 5$ 準位は局所熱平衡にあり、それらのポピュレー ションはボルツマン分布している  $\longrightarrow T_e$ 



LTS スペクトル (0.065 eV ~ 低温の世界記録)



CIV (C<sup>3+</sup>)の解析結果





・周辺(数eV-keV)のプラズマのただ中で2.5eVというような低温
 がどうして実現しているのか?



- ・周辺(数eV-keV)のプラズマのただ中で2.5eVというような低温 がどうして実現しているのか?
- ・C<sup>3+</sup>イオンはC<sup>2+</sup>→ C<sup>3+</sup>の電離の流れとC<sup>4+</sup>→ C<sup>3+</sup>の再結合の流れによって生成している。C<sup>3+</sup>はこの領域から流れ出している。



- ・周辺(数eV-keV)のプラズマのただ中で2.5eVというような低温
   がどうして実現しているのか?
- ・C<sup>3+</sup>イオンはC<sup>2+</sup>→ C<sup>3+</sup>の電離の流れとC<sup>4+</sup>→ C<sup>3+</sup>の再結合の流れによって生成している。C<sup>3+</sup>はこの領域から流れ出している。
   C<sup>2+</sup>はこの領域内でC<sup>+</sup>→ C<sup>2+</sup>により、C<sup>4+</sup>はC<sup>5+</sup>→ C<sup>4+</sup>により生成、
   ないしそとの領域から流れ込んでいる。
- ・電離・再結合、熱(エネルギー)と粒子(イオン)の空間的輸送の
   全体的描像を描く必要がある。
- この現象はダイヴァータプラズマについての新発見である。
   ダイヴァータプラズマ制御に向かっての新たな可能性を示す。
- ・この発見をもたらした実験・解析は徹頭徹尾原子・分子過程に かんする信頼できる知識に基づいている。この現象を発展さ せるためにも信頼性の高い原子・分子データが存在しなくては ならない。

CIV (C<sup>3+</sup>)の解析結果



## LHDプラズマ中のイオン閉じ込め









### 周辺プラズマ中水素・炭化水素分子

#### CH, CDスペクトルの分離

高分解能分光を用 いることで分離でき ることを計算で確認 した

しかし, 現時点では CD (A<sup>2</sup>Δ), CT (X<sup>2</sup>Π, A<sup>2</sup>Δ) の高精度な分子デー タが無く, データ整備 が必要



#### 周辺領域の水素分子・原子・イオン



H<sub>2</sub><sup>+</sup>+e<sup>-</sup> → H + H\* 水素原子の発光に,

水素分子イオンからの解離性再結合 が大きく影響している.

Iwamae A, et. al., Plasma and Fusion Research, 4, 01 (2009).



信州大澤田グループのシミュレーション

現在も断面積の計算が精力的に行われているが、今後もその進展が必要. Takagi H, Physica Scripta. T 96, 52 (2002).

Keisuke FUJII (Kyoto Univ.)