

Neoclassical Toroidal Viscosity Calculations in Tokamaks using a δf Monte Carlo Simulation

S. Satake, H. Sugama, R. Kanno

National Institute for Fusion Science, Japan

J.-K. Park

Princeton Plasma Physics Laboratory, U.S.A.

March 16, 2012@ NEXT workshop, Kashiwa, Tokyo Univ., Japan

This work was supported by JSPS Grant-in-Aid for Young Scientists (B), No. 23760810, and the NIFS collaborative Research Programs 11KNST014 and 10KNTT003.

E-mail: satake@nifs.ac.jp

Outlines (1)

- Neoclassical toroidal viscosity (NTV) arises from very small asymmetric magnetic perturbations of $10^{-2} \sim 10^{-4} \times B_0$ by the error field, MHD activities, or external perturbation coils applied to mitigate ELMs (RMPs).
- NTV is considered to damps plasma toroidal rotation, which may affect the stability of other MHD modes (RWM, locked modes).
- Observed toroidal rotation damping rates in NSTX, JET, etc., have been studied with analytic theories of NTV which are derived from bounceaverage drift-kinetic equation [ex. Shaing et al, Nucl. Fusion 2010].
- Analytic formulae are usually given in an asymptotic limit which is valid only in a certain range of collisionality and E × B rotation speed, or connection formula of such approximated solutions. They also rely on many approximations that are used in conventional neoclassical transport theories.
- It has not been well examined how quantitatively accurate those analytic formulae are.

Outlines (2)

- To develop a simulation scheme for precise and quantitative reliable evaluation of NTV, a drift-kinetic neoclassical transport code for helical plasmas, FORTEC-3D, is applied to direct simulation of NTV by the δf Monte Carlo method. (Satake et al., PPCF 2011, PRL 2011)
- Benchmark tests for $\mathbf{E} \times \mathbf{B} \to 0$ case has revealed that the asymptotic analytic formulae overestimates the NTV in low-collisionality regime, while the combined analytic formula by Park et al. [PRL 2009] agrees with FORTEC-3D direct simulation in wide range of collision frequency.
- We further benchmarked <u>the NTV calculations in the finite</u> E × B <u>rotation cases</u>, in low-collisionality tokamak with a single-helicity magnetic perturbation.
- It is found that the radial profile and the dependence of NTV on E_r show qualitative difference between the δf simulation and the analytic formula when $|E_r|$ becomes large.
- This difference is related to parallel flow shear which develops around the resonant surface in FORTEC-3D simulation.

Basic relations for NTV calculations

Evaluation of pressure tensor and NTV in the δf method

The guiding-center distribution function : $f = f_M(\psi, v) + \delta f(\psi, \theta, \zeta, v_{\parallel}, v_{\perp})$ $\Rightarrow \stackrel{\leftrightarrow}{\mathbf{P}} \simeq \stackrel{\leftrightarrow}{\mathbf{P}}_{CGL} = p_0(\psi) \stackrel{\leftrightarrow}{\mathbf{I}} + \delta P_{\parallel} \mathbf{b} \mathbf{b} + \delta P_{\perp}(\stackrel{\leftrightarrow}{\mathbf{I}} - \mathbf{b} \mathbf{b}).$ Taking an flux surface average $\Rightarrow \langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \stackrel{\leftrightarrow}{\mathbf{P}} \rangle = \frac{1}{2} \langle \frac{\partial}{\partial \zeta} \delta P \rangle$,

where
$$\delta P = \delta P_{\parallel} + \delta P_{\perp} = m \int d^3 v (v_{\parallel}^2/2 + v_{\perp}^2) \delta f$$
.

DKE for δf is solved in FORTEC-3D

Т

Making use of the magnetic field expression in Fourier series in Boozer coordinates, NTV is calculated as follows:

$$B(\psi,\theta,\zeta) = B_0 \left[1 - \sum_{m \ge 1} \epsilon_m(\psi) \cos(m\theta) + \sum_{m \ge 0, n \ne 0} \delta_{m,n}(\psi) \cos(m\theta - n\zeta) \right],$$

$$\frac{1}{2}\left\langle\frac{\partial}{\partial\zeta}\delta P\right\rangle = \frac{G+\iota I}{2V'}\oint d\theta d\zeta \frac{1}{B^2}\frac{\partial\delta P}{\partial\zeta} = \frac{G+\iota I}{V'}B_0\oint d\theta d\zeta \frac{\delta P}{B^3}\sum_{m,n}n\delta_{m,n}\sin(m\theta-n\zeta).$$

Then, the toroidal viscosity is evaluated by decomposing into the following form:

$$\left\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \overset{\leftrightarrow}{\mathbf{P}} \right\rangle = \sum_{m,n} \left\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \overset{\leftrightarrow}{\mathbf{P}} \right\rangle_{m,n} = B_0 \sum_{m,n} n \delta_{m,n} Q_{m,n} .$$
$$Q_{m,n} \equiv \left\langle \frac{\delta P}{B} \sin(m\theta - n\zeta) \right\rangle.$$

In this expression, one needs to evaluate only the $Q_{m,n}$ components which has corresponding non-zero $\delta_{m,n}$ ($n \neq 0$) perturbations applied.

Basic properties of neoclassical toroidal viscosity Definition of asymptotic collisionality regimes

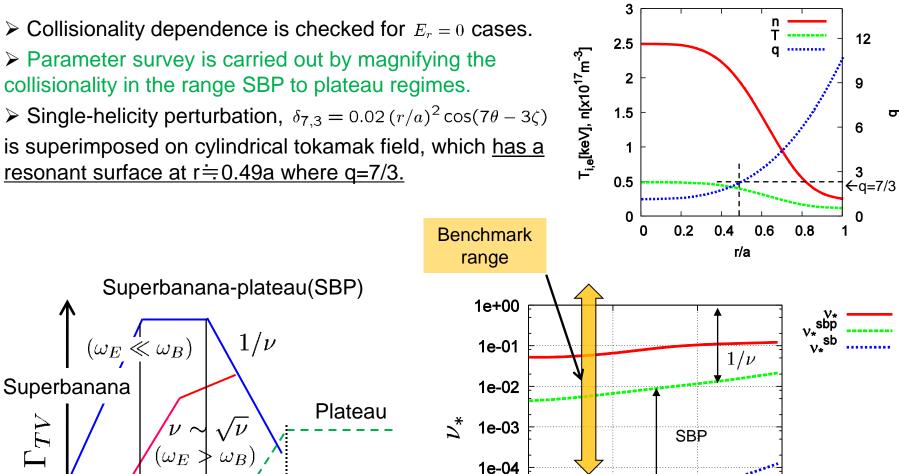
Banana

 $\nu_{*} = 1$

 $\nu_* =$

 ν_*^{SBP}

 ν_*^{SB}



1e-05

1e-06

0.4

0.6

r/a

SB

0.8

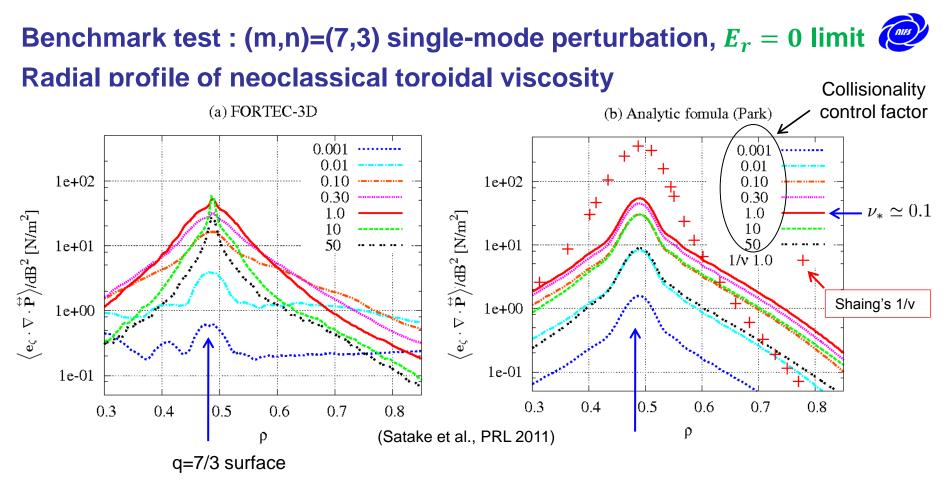
7

Combined NTV theory (J. K. Park)

- Including the missing components in conventional bounce-average theories:
 - Resonance between bounce motions and electric precession
 - Resonance between magnetic and electric precession (SBP and SB)
- Do not use assumptions that limits the range of collisionality (such as $1/\nu$, superbanana, etc.)
- Combined formula for NTV torque has been derived with effective Krook collision operator

$$\langle \hat{\phi} \cdot \vec{\nabla} \cdot \vec{\Pi}_{a} \rangle_{\ell} = \frac{\epsilon^{-1/2} p_{a}}{\sqrt{2}\pi^{3/2} R_{0}} \int_{0}^{1} d\kappa^{2} \delta_{w,\ell}^{2} \int_{0}^{\infty} dx \mathcal{R}_{a1\ell} \left[u^{\varphi} + 2.0\sigma \left| \frac{1}{e} \frac{dT_{a}}{d\chi} \right| \right]$$
(11)
Torque (Transport) $\propto \sum_{m,m'} \delta_{m,n} \delta_{m',r'}$ Resonance Rotation with offset

$$\mathcal{R}_{ay\ell} = \frac{1}{2} \frac{n^{2} (1 + (\frac{\ell}{2})^{2}) \frac{\nu_{a}}{2\epsilon} x (x - \frac{5}{2})^{y} e^{-x}}{\left[\ell \frac{\pi \sqrt{\epsilon}}{4\sqrt{2}} \omega_{ta} \sqrt{x} - n\omega_{E} - n\sigma \frac{q^{3}}{4\epsilon} (\omega_{ta}^{2} / \omega_{ga}) x \right]^{2} + \left[(1 + (\frac{\ell}{2})^{2}) \frac{\nu_{a}}{2\epsilon} \right]^{2} x^{-3}}.$$
(12)
Bounce Electric Magnetic Collisionality
Frequency Precession Precession
[Park et al, PRL102, 065002 (2009)]



> The overall tendency of radial profile is similar. Both results have a strong peak of NTV at the resonant flux surface (q=7/3).

➤The peak values are close (within factor 2~3) between FORTEC-3D and the combined formula, but FORTEC-3D has larger NTV tail values at the off-resonant tails.

Shaing's $1/\nu$ formula for $\nu_* \simeq 0.1$ is also compared here. The peak value is much larger, while it drops rapidly towards the off-resonant surfaces.

Benchmark test : (m,n)=(7,3) single-mode perturbation, $E_r = 0$ limit **NTV Dependence on collision frequency** Flux surface position (r/a) Collisionality dependence: (a) Single mode F3D(0.38) 1e-02 FORTEC-3D F3D(0.49) F3D(0.66) (Plateau regime) (SBP regime) F3D(0.81) Combined PK(0.38) 1e-03 analytic PK(0.49) \odot $\mathbf{e}_{\zeta}\cdot \nabla\cdot \stackrel{\leftrightarrow}{\mathbf{P}}\left(\mathbb{N}/\mathbf{m}^{2} ight)$ Θ PK(0.66) formula Θ PK(0.81) 1e-04 1/nu SB-P O

 \Box No clear $1/\nu$, or Superbanana-plateau type dependence are found in the FORTEC-3D simulation.

 $1e+00 \quad 1e+01$

 \square Asymptotic limit formula is valid only in a narrow range $\nu_* \simeq 1$.

 $(1/\nu \text{ regime})$

1e-01

1e-02

٧*

1e-03

1e-05

1e-06

1e-04

Good agreement with Park's combined formula is found over the wide range of v_* , in the $E_r = 0$ limit.

Asymptotic formulae

(@r=0.49a)

(Satake et al., PRL 2011)

Benchmark of NTV in perturbed tokamaks : Finite- E_r case How is the force balance relation used in NC transport theory?

Example: in Park's formula ($\chi = \text{poloidal flux}$) $\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \mathbf{\Pi} \rangle \simeq -\frac{\sqrt{\epsilon}pT}{\sqrt{2}e\pi^{3/2}R_0} \sum_{nmm'} \int_0^1 d\kappa^2 \delta_{l;mm'n}^2(\kappa) \int_0^\infty dx \left[A_1 + (x - 5/2)A_2\right] \mathcal{R}_{1l}(x),$ $A_1 = \frac{d\ln p}{d\chi} + \frac{e}{T} \frac{d\Phi}{d\chi}, \quad A_2 = \frac{d\ln T}{d\chi} \quad \leftarrow \text{``Driving forces'' of NTV}$

Radial Force balance relation in torus plasmas : $A_1 = \frac{e}{T}(qu^{\theta} - u^{\zeta}).$

Impose incompressibility on the flow tangent to a flux surface: $\nabla \cdot (n\mathbf{u}_{\parallel} + n\mathbf{u}_{\perp}) = 0$

 $\Rightarrow nu_{\parallel} = -\frac{I}{eB} \left(\frac{dp}{d\chi} + en \frac{d\Phi}{d\chi} \right) + K(\chi)B$ From neoclassical theory: $K(\chi) = k \frac{Ip}{e \langle B^2 \rangle} A_2, \ nu^{\theta} = K\mathbf{B} \cdot \nabla\theta$ Note: $\partial/\partial \zeta = 0$ is used here!

 $\Rightarrow u^{\zeta} = -T(A_1 - kA_2)/e$: Neoclassical offset rotation

а

NTV can finally be rewritten in terms of u_I^{ζ} :

$$\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \mathbf{\Pi} \rangle \simeq -\frac{\sqrt{\epsilon} p u_l^{\zeta}}{\sqrt{2} e \pi^{3/2} R_0} \sum_{nmm'} \int_0^1 d\kappa^2 \delta_{l;mm'n}^2(\kappa) \int_0^\infty dx \mathcal{R}_{1l}(x),$$

where $u_l^{\zeta} \equiv u^{\zeta} - \frac{T}{e} \left[k + \frac{\int dx \mathcal{R}_{2l}(x)}{\int dx \mathcal{R}_{1l}(x)} \right] A_2, \quad R_{2l}(x) \equiv (x - 5/2) R_{1l}(x).$ $(x - 5/2) R_{1l}(x).$ 10

Benchmark of NTV in perturbed tokamaks : Finite- E_r case How are simulations with $E \times B$ rotation compared with theory?

$$u_l^{\zeta} \equiv u^{\zeta} - \frac{T}{e} \left[k + \frac{\int dx \mathcal{R}_{2l}(x)}{\int dx \mathcal{R}_{1l}(x)} \right] A_2.$$

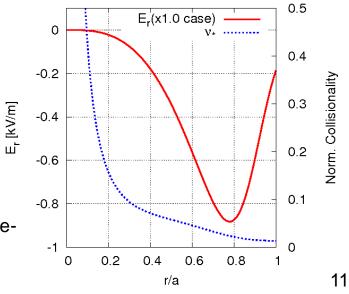
▷ In order to avoid ambiguity coming from approximating $k(\epsilon_t, \nu_*) \approx 1$ used in the most analytic formulae ($k \simeq 1.17$ in the $\epsilon_t, \nu_* \rightarrow 0$ limit), benchmarks are carried out by setting $A_2 \propto dT/dr = 0$.

➤ In FORTEC-3D, an E_r profile is given from the force balance relation with assuming $u_{\parallel} \simeq 0$, e.g., $E_r = \frac{T_i}{e} \frac{d}{d\chi} \ln n_i$. This E_r profile is called "the E_{r0} case".

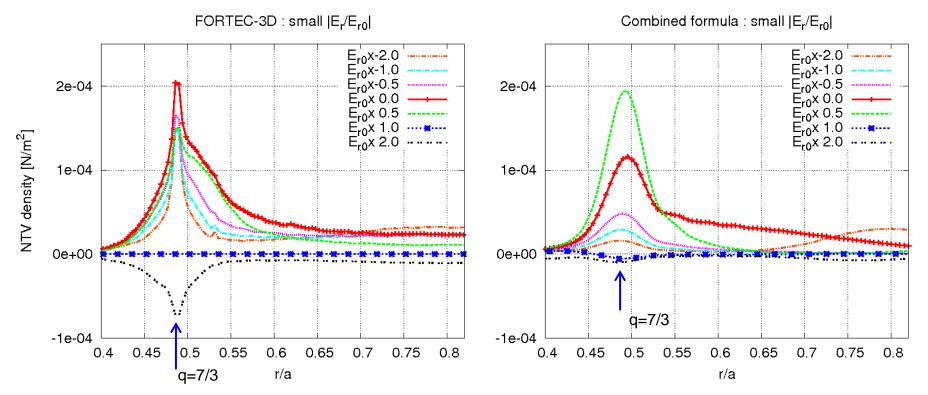
> To see the NTV dependence on E_r , the E_{r0} case profile is multiplied by ±0.5, 1.0, etc.

> The collisionality is $\nu_* \sim 0.06 (@r/a = 0.49)$, around which the NTV becomes maximum in the $E_r \rightarrow 0$ limit.

Figure: The radial profiles of ν_* and E_{r0} (the forcebalance profile of E_r).



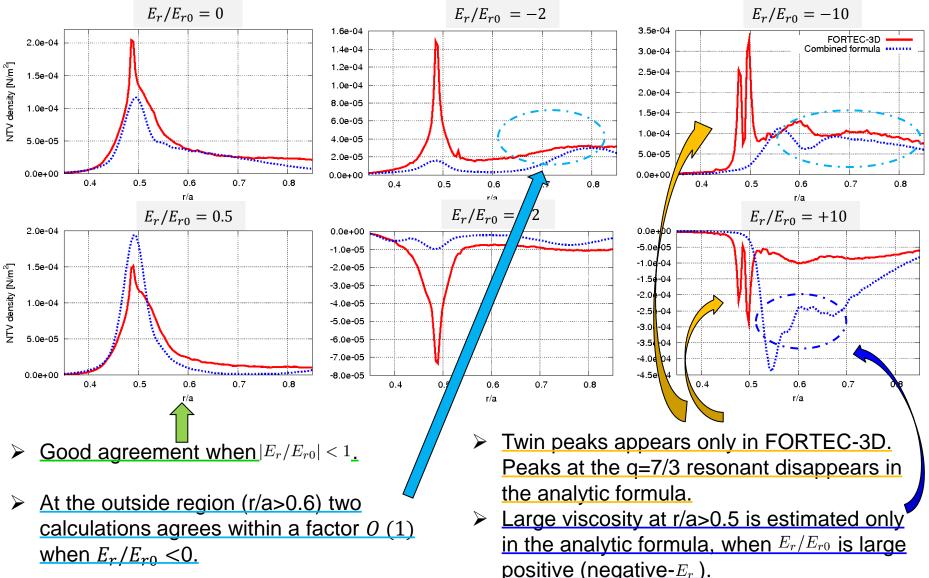
Benchmark test : (m,n)=(7,3) single-mode perturbation, Finite- E_r Comparison of the NTV radial profile (1) Small- $|E_r/E_{r0}|$



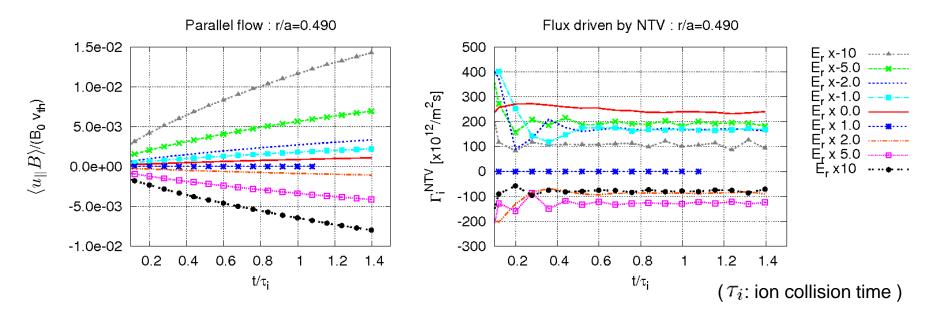
- When E_r/E_{r0} is small, single peak appears at the q=7/3 surface as in $E_r = 0$ case. In the force-balance case ($E_r = E_{r0}$), NTV vanishes everywhere.
- The discrepancy b/w FORTEC-3D and the analytic formula at the resonant flux surface becomes larger as $|E_r/E_{r0}|$ increases.

Benchmark test : (m,n)=(7,3) single-mode perturbation, Finite- E_r

Comparison of the NTV radial profile (2) Large- $|E_r/E_{r0}|$

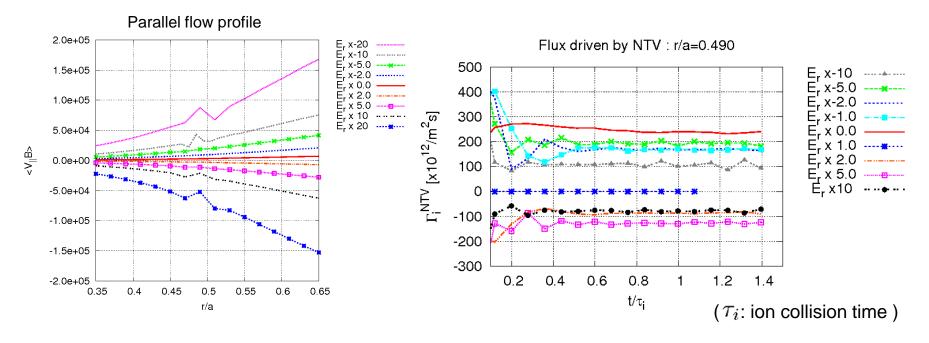


Benchmark of NTV in perturbed tokamaks : Finite- E_r case Effect of parallel flow in the Monte Carlo simulation



- > Though u_{\parallel} evolves slowly in simulation, it remains small, $u_{\parallel}/v_{th} \ll 0.1$, in the present benchmark cases.
- > The evolution of u_{\parallel} did not seem to affect the evaluation of NTV in the simulations even for large E_r cases, however ...

Benchmark of NTV in perturbed tokamaks : Finite- E_r case Effect of parallel flow in the Monte Carlo simulation



- > Though u_{\parallel} evolves slowly in simulation, it remains small, $u_{\parallel}/v_{th} \ll 0.1$, in the present benchmark cases.
- > The evolution of u_{\parallel} did not seem to affect the evaluation of NTV in the simulations even for large E_r cases, however ...
- > We found that the u_{\parallel} profiles tend to have shear around the resonant rational flux surface when $E \times B$ rotation is large.
- > Parallel flow shear viscosity, $\nabla \cdot (mn \mathbf{u}_{||} \mathbf{u}_{||})$ is a candidate to explain the twin-peak profile of NTV.

15

Benchmark test : (m,n)=(7,3) single-mode perturbation, Finite- E_r NTV Dependence on the E_r amplitude (2) Total toroidal torque

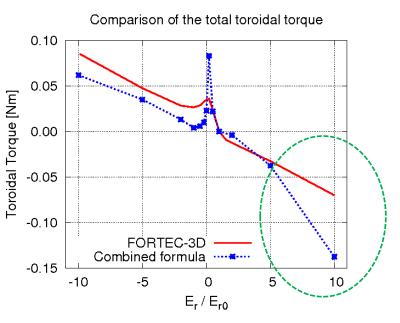
The total toroidal torque (NTV integrated on the whole volume) is also compared.

- Since the analytic formula predicts larger NTV on the outer region of plasma when $E_r/E_{r0} \gg 1$, large discrepancy appears when integrated in the plasma volume.
- > Why combined analytic formula result is asymmetric in E_r ?

Too much approximation for precession drift (frequency and the direction) ?

$$\begin{split} \langle \hat{\phi} \cdot \vec{\nabla} \cdot \vec{\Pi}_a \rangle_\ell &= \frac{\epsilon^{-1/2} p_a}{\sqrt{2} \pi^{3/2} R_0} \int_0^1 d\kappa^2 \delta_{w,\ell}^2 \int_0^\infty dx \mathcal{R}_{a1\ell} \left[u^\varphi + 2.0\sigma \left| \frac{1}{e} \frac{dT_a}{d\chi} \right| \right] \\ \mathcal{R}_{ay\ell} &= \frac{1}{2} \frac{n^2 (1 + (\frac{\ell}{2})^2) \frac{\nu_a}{2\epsilon} x (x - \frac{5}{2})^y e^{-x}}{\left[\ell \frac{\pi \sqrt{\epsilon}}{4\sqrt{2}} \omega_{ta} \sqrt{x} - n\omega_E - n\sigma \frac{q^3}{4\epsilon} (\omega_{ta}^2 / \omega_{ga}) x \right]^2 + \left[(1 + (\frac{\ell}{2})^2) \frac{\nu_a}{2\epsilon} \right]^2 x^{-3}} \end{split}$$

In calculation, a rough approx. for ω_t is adopted. Direction of the precession is prescribed by σ , but it may be wrong when $E \times B$ rotation is very fast.



Consideration of viscosity from flow shear (1)

Definition of viscosity

Momentum balance equation : $\frac{\partial}{\partial t}(mn\mathbf{u}) = -\nabla \cdot \mathbf{\dot{P}} + en\mathbf{u} \times \mathbf{B} + en\mathbf{E} + \mathbf{F} + \mathbf{S}_m$

FORTEC-3D: Evaluate the covariant product of it ($e_{\zeta} = \partial x / \partial \zeta$) in **Boozer coordinates**

$$\left\langle \frac{\partial}{\partial t} (mn\mathbf{e}_{\zeta} \cdot \mathbf{u}) \right\rangle = - \left\langle \mathbf{e}_{\zeta} \cdot \nabla \cdot \overrightarrow{\mathbf{P}} \right\rangle + \left\langle \mathbf{J} \times \mathbf{B} \cdot \mathbf{e}_{\zeta} \right\rangle + T_{\zeta}$$
$$\overset{\leftrightarrow}{\mathbf{P}} \simeq \overset{\leftrightarrow}{\mathbf{P}}_{CGL} = p_{0}(\psi) \overset{\leftrightarrow}{\mathbf{I}} + \delta P_{\parallel} \mathbf{b} \mathbf{b} + \delta P_{\perp} (\overset{\leftrightarrow}{\mathbf{I}} - \mathbf{b} \mathbf{b})$$

In Analytic formula : Evaluate B_t · product of it in Hamada coordinates; use viscous tensor instead of pressure tensor

p and Π are defined on the frame moving with the mean flow u.

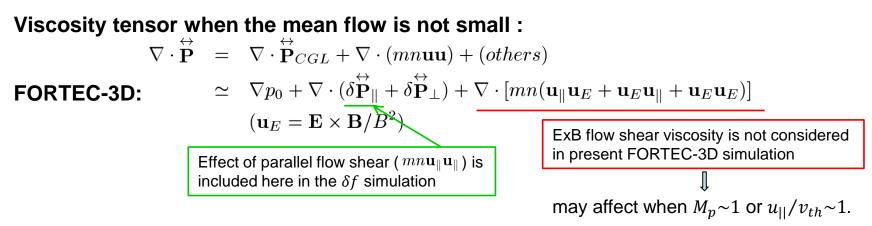
$$\longrightarrow \stackrel{\leftrightarrow}{\Pi} = \stackrel{\leftrightarrow}{\mathbf{P}} - p\stackrel{\leftrightarrow}{\mathbf{I}} - mn\mathbf{u}\mathbf{u}$$

Momentum balance equation expressed in somewhat different way $(B_t = \psi' \nabla V \times \nabla \theta)$

$$\left\langle mn\frac{\partial}{\partial t}(\mathbf{B}_t \cdot \mathbf{u}) + mn\mathbf{B}_t \cdot \mathbf{u} \cdot \nabla \mathbf{u} \right\rangle = -\left\langle \mathbf{B}_t \cdot \nabla \cdot \stackrel{\leftrightarrow}{\mathbf{\Pi}} \right\rangle + \langle \mathbf{J} \times \mathbf{B} \cdot \mathbf{B}_t \rangle + T_{\zeta}$$

Be careful about the position
of the partial derivative
term is usually neglected.

Consideration of viscosity from flow shear (2)



Analytic formula:

$$\nabla \cdot \stackrel{\leftrightarrow}{\mathbf{\Pi}} = \nabla \cdot (\stackrel{\leftrightarrow}{\mathbf{P}} - p\stackrel{\leftrightarrow}{\mathbf{I}} - mn\mathbf{u}\mathbf{u}) \quad \text{where } \mathbf{u} = \mathbf{u}_{\parallel} + \mathbf{u}_{E}$$

Since the viscosity tensor is defined on the moving frame, large flow effect is excluded from Π . However, the effect of convective derivative term $mn\mathbf{u} \cdot \nabla \mathbf{u}$ is omitted from the momentum balance equation!

In both models, flow shear viscosity should be taken into account when $u/v_{th} \ll 1$, $M_p \ll 1$ approximations are not valid.

Summary

FORTEC-3D code was applied to calculate neoclassical toroidal viscosity in tokamak plasmas with asymmetric magnetic field.

> Benchmark tests were carried out with the combined analytic formula.

\succ In $E_r = 0$ limit :

✓ Strong peak profile of NTV at the resonant flux surface.

✓ Smaller NTV compared with asymptotic analytic theories.

✓ Good agreement with Park's combined analytic formula.

 \succ In finite- E_r cases :

- ✓ As $|E_r/E_{r0}|$ (E_{r0} : force-balance value) increases, absolute value of NTV increases in both calculations both in FORTEC-3D and the combined formula.
- ✓ Radial profile of NTV shows significant difference b/w two calculations when $E_r/E_{r0} \gg 1$. In FORTEC-3D simulations, a twin-peak profile of NTV appears around the resonant rational flux surface as $|E_r/E_{r0}|$ increases.

✓ Parallel flow shear in FORTEC-3D seems to affect the NTV when $|E_r|$ is large.

Future Tasks

- > Find the physical reason for the formation of the twin-peak NTV profile when $|E_r|$ is large.
 - What is missing in the combined analytic formula?
 - Why sheared parallel flow develops in FORTEC-3D simulation?
 - What happens if multi-helicity perturbations are applied?
- > Investigate the collisionality dependence of NTV when $E_r \neq 0$.
 - Is NTV really scales as $\nu \sim \sqrt{\nu}$ as analytic theory predicts?
- > Is finite-orbit-width effects (included only in the δf simulation) on NTV important?