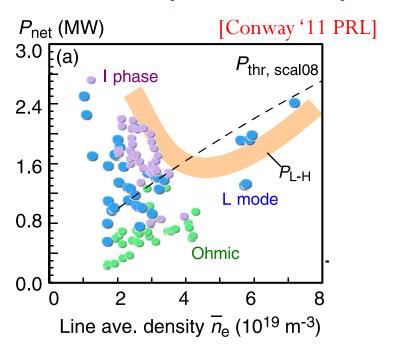
The 17th NEXT Workshop, March 15,16, Tokyo, Japan

Spatio-temporal evolution of Lightarrow I ightarrow H transition

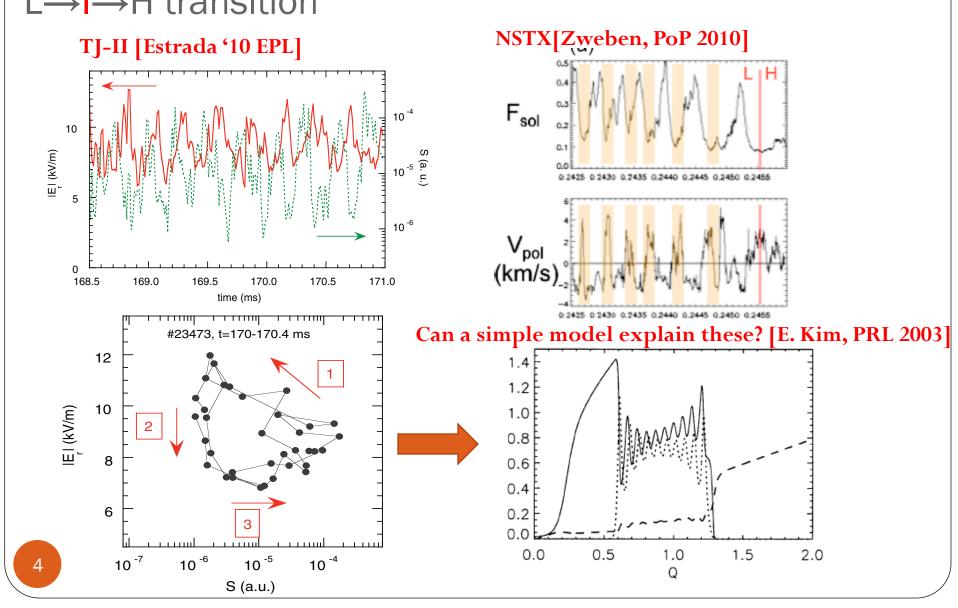
- ¹⁾K. Miki and ^{1,2)}P. H. Diamond
- 1) WCI Center for Fusion Theory, NFRI, Korea
- ²⁾ CMTFO and CASS, UCSD, USA

Acknowledgements:

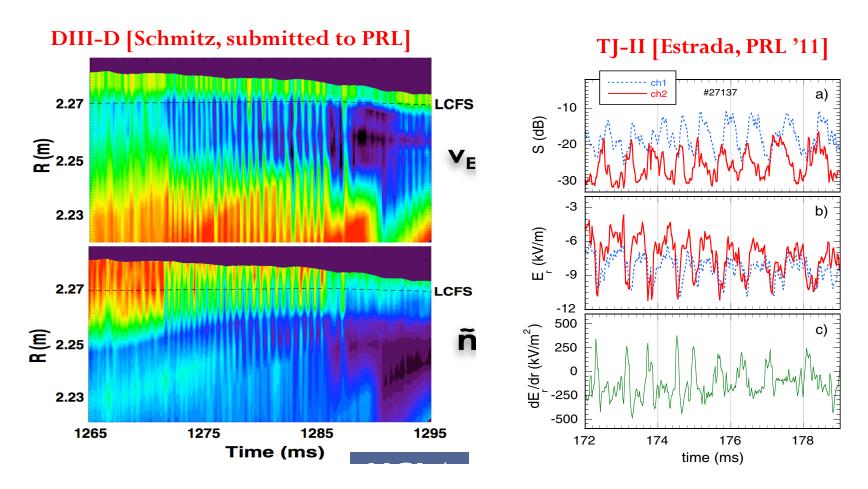
G.R. Tynan, L. Schmitz, P. Manz, G.S. Xu, T.S. Hahm



Contents:


- Motivating experimental observation
- Model description
- Simulation Results: L-I-H transition
- Analysis and Comparison to Experimental results
- Neutral CX scan
- Back Transition
- (Transport Noise effects)
- Summary

Motivating experimental observation:


- L-H power threshold scaling deviates in low density region
- -- New region related to I-mode, I-phase, and GAM
- -- No theoretical model to quantitatively predict the threshold and to show spatio-temporal evolution

1-phase as a transient phase with limit-cycle oscillation(LCO), i.e. L \rightarrow H transition can be replaced with L \rightarrow I \rightarrow H transition

Radial structure of I-phase is identified in DIII-D and TJ-II

→One-dimensional model to reproduce I-phase is necessary in that I-phase radial propagation and pedestal formation should be compared.

To address these issues, we have developed a 1D model.

- *Spatio-temporal* evolutions of 5-field (density, pressure, turbulence intensity, ZF, poloidal flow) equations
- Zonal flow / Mean flow competition , a' la 0D
 Kim-Diamond
 - ZF/MF as different players [E. Kim, PRL '03]
- NO MHD activities; NO ELMs
- No 'first principle' simulations have ever reproduced or elucidated the L-H transition!

Predator-prey model

Short time scale normalization
$$\omega_*(\sim c_s/a)t \to t$$

Long time scale τ_{ii} (=1/ ν_{ii})~ 600(a/c_s)

Small spatial scale $\rho_i \sim 0.01a$ Long spatial scale normalization $r/a \rightarrow r$

1D transport model

x: radial direction

Tokamak plasmas

pressure

$$\partial_t p(x) + \partial_x \Gamma_p = H$$

$$\partial_t n(x) + \partial_x \Gamma_n = S$$

$$\Gamma_p = -(\chi_{neo} + \chi_o)\partial_x p$$

$$\Gamma_n = -(D_{neo} + D_o)\partial_x n - V_n$$

Pinch term

Thermoelectric TEP pinch pinch

$$V = (v_{0,TEP} + v_{0,TE})_{\text{Inward pinch}}$$

$$\cong \left(\frac{D}{R} - \frac{D}{L_T}\right) \quad (\propto I, \ L_T < 0)$$

$$n \sim \exp(-\frac{V}{D}r)$$

→density peaking

Neoclassical transport term

Banana regime
$$\chi_{neo} \sim \chi_{Ti} \sim \varepsilon_T^{-3/2} q^2 \rho_i^2 v_{ii}$$

$$D_{neo} \sim (m_e / m_i)^{1/2} \chi_{Ti}$$

Turbulent transport term

$$D_0 \sim \chi_0 \sim \frac{\tau_c c_s^2 I}{(1 + \alpha_t V_E^{\prime 2})}$$

 \rightarrow *Predator-prey model*

a la' [Hinton '90 PFB], [Z.H. Wang, P.D, '11 NF]

Poloidal momentum spin-up

- Full-f gyrokinetic simulation predicts that poloidal flow driven by turbulence can be another mediator through L-H transition especially in low ρ_* plasmas.[Dif-Pradalier '08, PRL]
- Coupling radial and parallel momentum force balance equations, we obtain

Turbulence drive obtained from stress tensor [McDevitt, PoP '10]

Neoclassical effects

$$-\frac{\partial u_{\theta}}{\partial t} = \frac{1}{nm} \left\langle \nabla \cdot (\hat{e}_{y} \vec{\Pi}_{turb}) \right\rangle + \mu_{ii}^{(neo)} (u_{\theta} - u_{\theta}^{(neo)})$$

$$\sim \alpha_{5} \frac{\gamma_{L}}{\omega_{*}} c_{s}^{2} \partial_{x} \vec{I} + (v_{ii} + v_{CX}) q^{2} R^{2} \mu_{00} (u_{\theta} + 1.17 c_{s} \frac{\rho_{i}}{L_{T}})$$

Radial force balance equation:

$$V'_{E\times B} = \frac{1}{eB} \begin{bmatrix} -\frac{1}{n^2} n'p' + \frac{1}{n}p'' \\ Density & Pressure \\ gradient & curvature \\ Diamagnetic drift term & (not considered here) \\ & = \rho_i c_s L_p^{-1} (-L_n^{-1} + L_{\frac{dp}{dx}}^{-1}) - u'_{\theta} \end{bmatrix}$$
Poloidal flow driven by neoclassical and turbulent drives

- Pressure curvature (ignored by Hinton *et. al.*, noted by Helander *et al.*, Malkov, P.D.) produces fine scale $\langle V_F \rangle$ ' structure
- Poloidal rotation from neoclassical, Reynolds drive
- Totally, time-evolving 5-fields $(n, p, I, E_0, \text{ and } u_\theta)$ are solved numerically.

Numerical simulation results:

Slow Power Ramp Indicates L→I→H Evolution.

1D Model

c.f. DIII-D, [Schmitz et al.],

turbulence

ZF

MF

r/a

Cycle is propagating nonlinear wave in edge layer

ZF

Period of cycle increases approaching transition.

Turbulence intensity

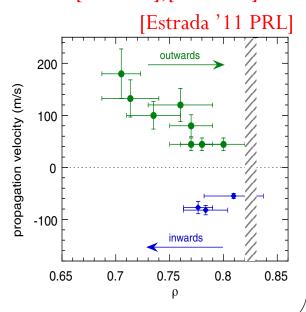
Mean flow shear

- Turbulence intensity peaks just prior to transition.
- Mean shear (i.e. profiles) also oscillates in I-phase.

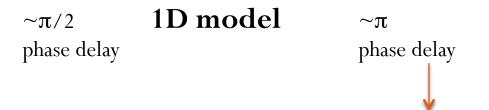
Mean shear location comparisons indicate inward propagation, and observed in experiments.

r/a=0.975

r/a=0.950


r/a=0.925

Turbulence ZF shearing


MF shearing

- Inward propagation ~80 [m/s]
 - Similar to exp.

[Estrada],[Schmitz]

Phase delay between turbulence and zonal flow increases from $\pi/2$ to π during I-phase

DIII-D [Schmitz, '11 APS]

The phase lag relation is shown in DIII-D experiments!

Time evolution of diamagnetic shearing.

→Diamagnetic shear oscillates with growing amplitude in I-phase, then increases abruptly at L-H transition.

c.f. DIII-D [Schmitz]

Diamagnetic shearing
$$\omega_{E \times B, dia} = \frac{\partial}{\partial r} \left(\frac{1}{eBn} \right) \frac{\partial p}{\partial r}$$

1D model:

Energy channel → Rate of coupling to ZF comparable to drive at the transition threshold. 1D Model:

- Peak of ZF shearing contribution increasing
 - Consistent with EAST results[Manz, Xu et al., submitted]
- ZF triggers MF; ZF can be a heat 'reservoir' w/o increasing turbulence.
- Thus, ZF shearing dominant in prior to $L\rightarrow H$ transition.

Profile comparison in L, I, H

• Pressure and temperature profile

pressure Density T(r) temperature

Pedestal formation clearly recovered.

Fast ramp up indicates no LCO, but L→H transition occurs.

a) turbulence

b) ZF

c) log(MF)

Implications for Steady State Experiments (KSTAR, EAST, JT-60 SA, ITER) $\gamma_{ZF} \sim \nu_{ii} + \nu_{CX}$

- neutral CX can damp zonal flows (c.f.Y. Xu, et al., in preparation)
 - high edge n_{neutral} unfavorable to transition
 - \rightarrow long established experimental lore concerning $Q_{\rm thresh}$, 'dirty machines,' re-cycling,...
- But:
 - in SST, with long pulse H-mode,
 - can expect: \rightarrow eventual wall saturation
 - → subsequent increase in re-cycling
 - → increase in CX damping of ZF

If/When discharge drops out of H-mode, will recovery be possible???

Increase γ_{ZF} and μ_{neo} increases L—H power threshold.

→ neutral CX increases power threshold!

Back transitions --- More than hysteresis!

- Back transitions now both an interesting and a pragmatically critical topic for ITER
- Back transition issues: → hysteresis
 - \rightarrow rate of β_p decay (D. McDonald, '12)
 - → observation of so-called 'small, Type III ELMs'

during $oldsymbol{eta}_{ ext{p}}$ decay at back transition

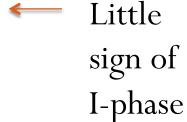
→ beneficial, as allows 'soft landing'

i.e.

- → hypothesize that 'small Type III ELMs' are really L.C.O. in back transition
- \rightarrow Key Question: Does back-transition occur via $H\rightarrow I\rightarrow L$?

Case with slow power ramp up and down

Slow power ramp up


Slow power ramp down

L.C.O. nucleates at pedestal shoulder.

Case with slow ramp up and fast ramp down

Slow power ramp up

Fast power ramp down

Hysteresis is here! Scan of χ_{neo} indicate relation to 'strength of the hysteresis'

Area of hysteresis loop

Core pressure ~ <grad p>

$$A_{hyst} \sim Nu^{\alpha}$$

Heat power ramp

$$Nu \sim \frac{\chi_{turb,L \to H}}{\chi_{neo}}$$

[S.S. Kim and H. Jhang]

Summary of this study

- One dimensional extension of the Kim-Diamond model is introduced, including Pressure/Density profile, 0D K-D model components (turbulence, ZF, MF), Radial force balance, i.e. mean flow equilibrium. Poloidal rotation spin-up
- L-I-H-transitions with power ramp up are shown. Observed properties are consistent with those observed in DIII-D, TJ-II, and EAST.
- \bullet Damping of ZF increases the L \rightarrow H power threshold
 - ZF shearing contribution decreases the $L\rightarrow H$ power threshold.
 - Neutral CX hinders plasmas from H-mode transition, by shrinking ZF shearing contribution and increasing power threshold.
- I-phase on back transition possible but not certain.
 - Hysteresis: $A_{\text{hyst}} \sim \text{Nu}^{\alpha}$

To-go message:

There are REAL clues, both from experiments and

the model study, to indicate the connection between $L \rightarrow H$ transition and ZF.