Mar. 16th, 2012 17th NEXT Meeting @ Univ. Tokyo

Ballistic Propagation of Turbulence Front in Tokamak Edge Plasmas

Satoru SUGITA¹, Kimitaka ITOH^{2,3}, Sanae-I. ITOH^{1,3}, Masatoshi YAGI^{3,4}, Guillaume FUHR⁵, Peter BEYER⁵, and Sadruddin BENKADDA⁵

¹RIAM, Kyushu Univ., ²NIFS, ³Itoh Res. Cent. Plasma Turb., Kyushu Univ., ⁴JAEA ⁵IIFS, Aix-Marseille Univ.-CNRS

Introduction

Ballistic propagation is considered to play an important role in the turbulent transport. Statistical characteristics \rightarrow not yet enough

S. Inagaki *et al.*, PRL **107** 115001 (2011)

S. Sugita et al., JPSJ 81 044501 (2012)

In this presentation...

- Dynamics in resistive ballooning mode (RBM) turbulence is studied.
- Turbulence front propagation is emphasized.
- Statistical properties of propagation front are analyzed.

Equation and Configuration

Electrostatic RBM model

$$\frac{\mathrm{d}}{\mathrm{d}t}\nabla_{\perp}^{2}\phi = -\nabla_{\parallel}^{2}\phi - \mathbf{G}p + \mu\nabla_{\perp}^{4}\phi - \nabla_{\perp}^{2}\phi_{0,0}$$
$$\frac{\mathrm{d}p}{\mathrm{d}t} = \epsilon_{\mathrm{c}}\mathbf{G}\phi + \chi_{\parallel}\nabla_{\parallel}^{2}p + \chi_{\perp}\nabla_{\perp}^{2}p + S(r)$$

Normalization

$$\tau_{\text{int}} = \sqrt{\frac{RL_p}{2}} \frac{1}{c_s}$$

~ few micro-sec.
$$\xi_{\text{bal}} = \sqrt{\frac{m_i n \eta_{\parallel}}{\tau_{\text{int}}}} \frac{L_s}{B}$$

~ $\rho_i \sim 1 \text{mm}$

Target of this work is "rotation suppressed" case. Two players: gradient & transport

Local Gradient-flux Relation

Dynamics of local (radial center) quantities. Response of gradient formation and flux.

Dynamic Behaviors in RBM Turbulence

Spatio-temporal Correlations

Gradient pulse and turbulent flux front propagate radially outward/inward simultaneously.

Rear of the propagation front: strong fluctuation. Front of the propagation front: weak fluctuation.

 \rightarrow Analogy with "turbulence spreading" theory

Property of Front Propagation

Unstable mode changes in front and rear of the propagation front (not only the intensity).

Input power dependence

Input Power dependence of Correlation Length

Input Power dependence of Correlation Time

Statistical properties of propagation front and

Comparisons with scaling laws

Statistical Characteristics of Gradient Pulse

Pulses outward/inward are quasi-symmetric. Pulses velocity and correlation length depend on input power.

- Statistical properties of propagating pulses (number, intensity) are positively depend on the intensity of input power.
- Effective transport coefficient is also positively depend on the intensity of input power.

Comparisons with Scaling Law

- Order of spatial scale length agrees with scaling law of turbulence spreading theory.
- Order and tendency of velocity agree.

Ö.D. Gürcan *et al.*, PoP **12** 032303 (2005)

Summary

- Nonlinear simulations of resistive ballooning mode with tokamak edge geometry are performed.
- •Two types of dynamics are observed.
 - -Radial propagating pulse of pressure gradient.
 - -Appearance/disappearance of global mode of flux.
- Properties of turbulence front propagation are analyzed.
- Statistical values of ballistic propagation are analyzed and compared with scaling law that is given by turbulence spreading theory.