Analytical and Numerical Studies on Acceleration Phase of Collisionless Magnetic Reconnection

M. Hirota¹

in collaboration with P. J. Morrison², Y. Ishii¹, M. Yagi¹, N. Aiba¹

¹Japan Atomic Energy Agency ((IAEA)

²University of Texas at Austin

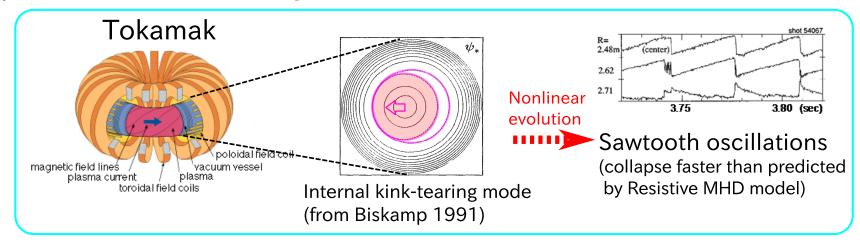
17th NEXT Workshop March 15-16, 2012 @ Univ. of Tokyo, Kashiwa Campus

Introduction

Magnetic reconnection is triggered by dissipation/microscopic effects.

(singular perturbations of ideal MHD)

• If plasma is either collisionless $(R_m \sim 10^{9-13})$ or close to the ideal MHD stability limit $(\Delta' \sim \infty)$, the resistive MHD theory cannot explain the observed reconnection speeds. \Rightarrow collisionless magnetic reconnection



- · Numerical simulations show acceleration of collisionless reconnection in nonliear phase [Ottaviani and Porceli, PRL (1993), Matsumoto et al., PoP (2005).]
- · However, conventional methods (such as asymptotic matching and perturbation expansion) have difficulty in analysing the nonlinear evolution.
- We take a new theoretical approach based on variational principle in order to clarify the acceleration mechanism. Our analytical prediction is also verified by using a direct numerical simulation.

Triggers of reconnection in two-fluid model

Faraday's law
$$\partial_t \boldsymbol{B} = -\nabla \times \boldsymbol{E}$$
 \Leftarrow Generalized Ohm's law $\boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B} + \frac{d_i}{n} (\boldsymbol{j} \times \boldsymbol{B} - \nabla p_e) + \frac{d_e^2}{n} \frac{d\boldsymbol{j}}{dt} + \eta \boldsymbol{j} - \eta_2 \nabla^2 \boldsymbol{j}$ (1) (2) (3) (4)

 $m{v}$: ion velocity, n: number density, $m{j}$: current, p_e : electron pressure

- (1). Hall effect: $d_i = (\text{ion skin depth})/L$ $\frac{\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{v}_e \times \boldsymbol{B}) \text{ where } \boldsymbol{v}_e = \boldsymbol{v} d_i \boldsymbol{j}/n \quad \cdots \text{ no reconnection, by itself}}{\partial_t \boldsymbol{B}}$
- (2). Electron inertia: $d_e = (\text{electron skin depth})/L \cdots \text{ collisionless reconnection}$
- (3). Resistivity: η · · · collisional reconnection

 Ref. Rutherford theory (linear phase $\propto e^{\gamma t} \Rightarrow$ nonlinear phase $\propto t$)
- (4). Electron viscosity: $\eta_2 \cdots$ collisional reconnection

In large tokamaks, $(1) \gg (2) \gtrsim (3) \gg (4)$

We will focus on electron inertia (2) and study nonlinear acceleration mechanism of collisionless reconnection.

Analytical model of this work

2D MHD model with electron inertia

For
$$\mathbf{v} = \nabla \phi(x, y, t) \times \mathbf{e}_z$$
 and $\mathbf{B} = \nabla \psi(x, y, t) \times \mathbf{e}_z$,

Vorticity equation:
$$\frac{\partial \nabla^2 \phi}{\partial t} - [\phi, \nabla^2 \phi] - [\nabla^2 \psi, \psi] = 0, \tag{1}$$

(Collisionless) Ohm's law:
$$\frac{\partial (\psi - d_e^2 \nabla^2 \psi)}{\partial t} - [\phi, \psi - d_e^2 \nabla^2 \psi] = 0, \qquad (2)$$

where $d_e(\ll L)$: electron skin depth, and $[f,g] = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial g}{\partial x} \frac{\partial f}{\partial y}$.

This is known as a Hamiltonian system. (no dissipation)

► Hamiltonian:
$$H = \frac{1}{2} \int d^2x \left[|\nabla \phi|^2 + |\nabla \psi|^2 + \frac{d_e^2}{(\nabla^2 \psi)^2} \right]$$

► Ohm's law $(2) \Leftrightarrow \partial_t \psi_e + \boldsymbol{v} \cdot \nabla \psi_e = 0$

Instead of magnetic flux ψ , electron's canonical momentum $\psi_e = \psi - d_e^2 \nabla^2 \psi$ is the frozen-in flux.

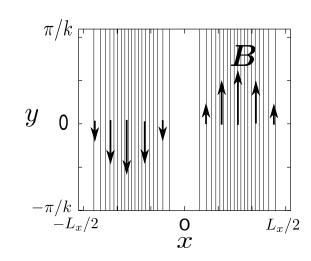
⇒ Reconnection is possible without any dissipation mechanism.

We consider

1D equilibrium (periodic in both x and y directions)

$$\phi\equiv 0$$
 (no flow), $\psi(x)=\cosrac{2\pi x}{L_x}$ on $\left[-rac{L_x}{2},rac{L_x}{2}
ight]$

- Collisionless magnetic reconnection spontaneously occurs at resonant surfaces $x=0,\pm L_x/2$.
- For sufficiently small wavenumber k in the y direction, this instability ($\Delta' \sim \infty$) is similar to the m=1 kink-tearing mode in tokamaks.



► The reconnection process mainly leads to the following energy conversion;

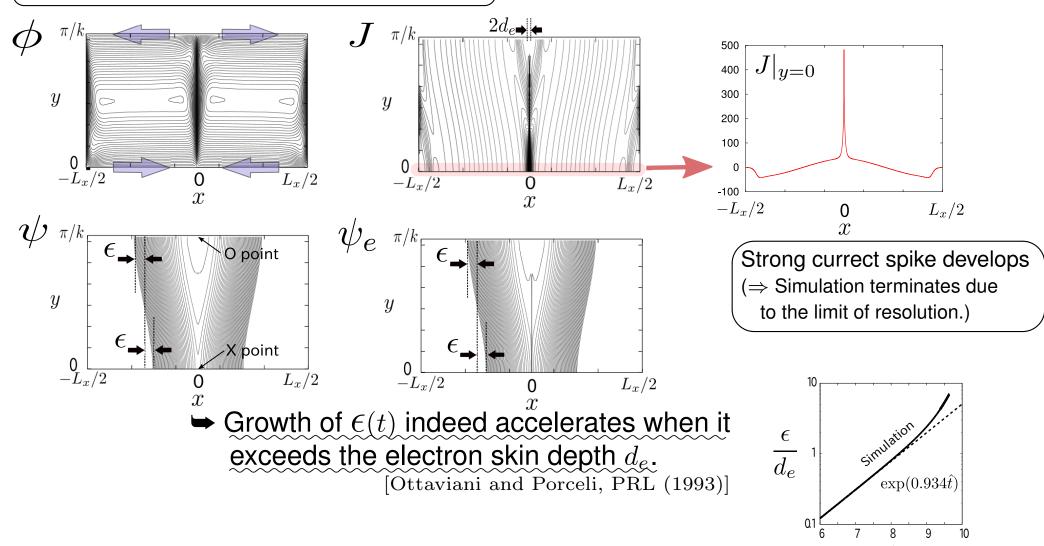
$$\overbrace{\left(\frac{1}{2}\int |\nabla\psi|^2 d^2x\right)}^{\text{Relaxation}} \overbrace{\left(\frac{1}{2}\int |\nabla\phi|^2 d^2x \text{ and } \frac{1}{2}\int d_e^2 J^2 d^2x\right)} \quad (J = -\nabla^2\psi)$$

Direct numerical simulation

[Finite difference method in x direction (\sim 10,000 grids), Spectral method in y direction (\sim 100 modes)]

Define ϵ as maximum displacement in x direction (\approx half widht of magnetic island).

Snapshots of contours when $\epsilon = 4.2 d_e \, ig) (d_e/L_x = 0.01, \, k = 0.5/L_x)$



Construction of variational principle

igoplus Perturbations, $(0,\psi_e) \to (\tilde{\phi},\tilde{\psi}_e)$, that preserve the flux ψ_e can be generated by a function G(x,y,t) such that

$$\tilde{\phi}(x + \partial_y G(x, y, t), y, t) = \partial_t G(x, y, t),
\tilde{\psi}_e(x + \partial_y G(x, y, t), y, t) = \psi_e(x)$$

 \Rightarrow Ohm's law (2) is solved! (which is built-in as a constraint on $\tilde{\phi}$ and $\tilde{\psi}_e$)

Variational principle: $\delta \int L[G]dt = 0$ w.r.t. $\forall \delta G \Rightarrow \underbrace{\text{Vorticity eq. (1)}}$

If the potential energy decreases ($\delta W < 0$) for some function G, then such a perturbation will grow with the release of free energy.

(The MHD energy principle is extended to two-fluid model.)

Linear stability analysis ($\epsilon \ll d_e$)

Small-amplitude expansion ($|G|\sim\epsilon\ll d_e$) around equilibrium state

$$L(\tilde{\phi}, \tilde{\psi}_e) = L(\psi_e) + L^{(1)}(\psi_e; G) + \frac{1}{2}L^{(2)}(\psi_e; G, G) + \frac{1}{6}L^{(3)}(\psi_e; G, G, G) + \dots$$
0 at equilibrium

• The 2nd-order Lagrangian $L^{(2)}$ governs the linearized dynamics.

$$\Rightarrow$$
 By putting $G(x,y,t)=\epsilon(t)\hat{\xi}(x)rac{\sin ky}{k}$ with $\epsilon(t)\propto e^{\gamma t}$, we obtain

Eigenvalue problem (4th order ODE)

$$-\left\{ \left[(\gamma/k)^2 + (\psi'_e)^2 \right] \hat{\xi}' \right\}' + k^2 \left[(\gamma/k)^2 + (\psi'_e)^2 \right] \hat{\xi} = \frac{d_e^2}{d_e^2} \psi'_e J''' \hat{\xi} + \psi'_e \frac{d_e^2}{d_e^2} \nabla^2 (1 - \frac{d_e^2}{d_e^2} \nabla^2)^{-1} \nabla^2 (\psi'_e \hat{\xi})$$

(the prime ' denotes x derivative.)

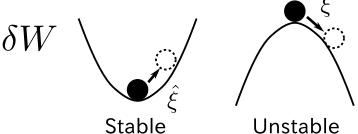
• Around marginal stability $\gamma \sim 0$, the boundary layers exist at positions where $\psi'_e = 0$.

For $\gamma \neq 0$ and $d_e \neq 0$, the eigenfunctions $\hat{\xi}$ must be regular.

(The MHD singularity is removed by the electron inertia.)

Energy principle for linear stability

$$(-\gamma^2\delta I=\delta W)$$
 (\Leftarrow Eigenvalue problem)



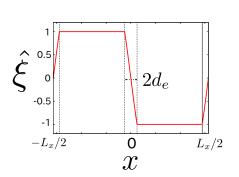
$$\delta I = \int dx \frac{1}{k^2} \left(|\hat{\xi}'|^2 + k^2 |\hat{\xi}|^2 \right) > 0$$
 Stable
$$\delta W = \int dx \left[|\nabla (\psi_e' \hat{\xi})|^2 + \psi_e' \psi''' |\hat{\xi}|^2 - \nabla^2 (\psi_e' \hat{\xi}^*) d_e^2 (1 - d_e^2 \nabla^2)^{-1} \nabla^2 (\psi_e' \hat{\xi}) \right]$$

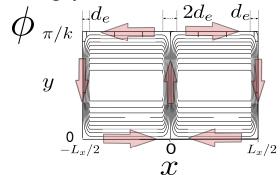
$$> 0 < 0$$

- (i) magnetic field tension (ii) magnetic shear (iii) electron inertia
- (i)+(ii) > 0 \Rightarrow Stable $\delta W > 0$ in the MHD limit $d_e = 0$
- (i)+(iii) > 0 \Rightarrow Stable $\delta W > 0$ without the magnetic shear (or current) (The effect of electron inertia weakens the magnetic field tension only in the small scale $\sim d_e$)

Test function that makes δW negative

• Let us choose the following piecewise-linear function.





$$\begin{pmatrix} G(x, y, t) = \epsilon(t)\hat{\xi}(x) \frac{\sin ky}{k} \\ \phi(x, y, t) = \partial_t G \end{pmatrix}$$

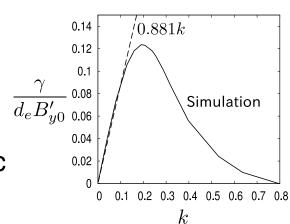
• Then, the 2nd-order Lagrangian is reduced to

$$L^{(2)}(\hat{\epsilon}) \simeq \frac{2\pi}{k} B_{y0}^{\prime 2} d_e^3 \left[\left(\frac{d\hat{\epsilon}}{d\hat{t}} \right)^2 - U(\hat{\epsilon}) \right] \quad \text{where} \quad \begin{cases} \hat{\epsilon} = \epsilon/d_e, & \hat{t} = t/\tau_e, \\ \tau_e^{-1} = d_e k B_{y0}^{\prime} \end{cases}$$

Potential energy: $U(\hat{\epsilon}) = -\frac{1+27e^{-2}}{6}\hat{\epsilon}^2 = -0.776\hat{\epsilon}^2$

 \Rightarrow Linear growth rate: $\gamma = \sqrt{0.776}/\tau_e = 0.881/\tau_e$

This agrees with the results of conventinal asymptotic matching method as well as our numerical simulation.



Nonlinear stability analysis ($\epsilon > d_e$)

Remark: Failure of perturbation analysis

Let us try to continue the perturbation expansion of Lagrangian.

Nonlinear perturbations
$$\begin{vmatrix} \tilde{\phi}(x+\partial_y G(x,y,t),y,t) = \partial_t G(x,y,t), \\ \tilde{\psi}_e(x+\partial_y G(x,y,t),y,t) = \psi_e(x) \end{vmatrix}$$

$$\Rightarrow \begin{bmatrix} \tilde{\phi} = G_t - G_y G_t' + \frac{1}{2} (G_y^2 G_t')' - \frac{1}{6} (G_y^3 G_t')'' + \frac{1}{24} (G_y^4 G_t')''' + O(\epsilon^6), \\ \tilde{\psi}_e = \psi_e - G_y \psi_e' + \frac{1}{2} (G_y^2 \psi_e')' - \frac{1}{6} (G_y^3 \psi_e')'' + \frac{1}{24} (G_y^4 \psi_e')''' + O(\epsilon^5), \\ \text{where } G_t = \partial_t G, G_y = \partial_y G. \end{bmatrix}$$

However, the linearly unstable mode has a steep gradient, $G' \sim G/d_e$.

 \Rightarrow The above expansion fails to converge when $\epsilon = \max |G_y| \to d_e$. (In fact, we will find that ϵ easily exceeds d_e .)

For $\epsilon > d_e$, full-nonlinear analysis is required around the inner layers.

Potential energy change "around the X-point"

We have directly imposed a nonlinear displacement $\epsilon > d_e$ and investigated subsequent potential energy change.

Around the X point, decrease of potential energy is found to be steeper than that in the linear regime

- Around the X point, ψ_e is compressed by the inflow.
- By this convection, outer region loses magnetic energy of $O(\epsilon^3)$, but inner layer gains magnetic and current energy, at most, of $O(\epsilon^2)$. \Rightarrow Potential decreases in ϵ^3

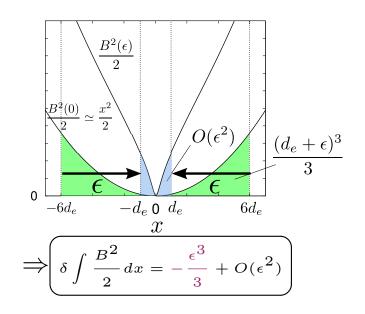
 $6d_e$

$$(\mathsf{When}\; \epsilon = 5d_e)$$

$$1 - \frac{(d_e + \epsilon)^2}{2}$$

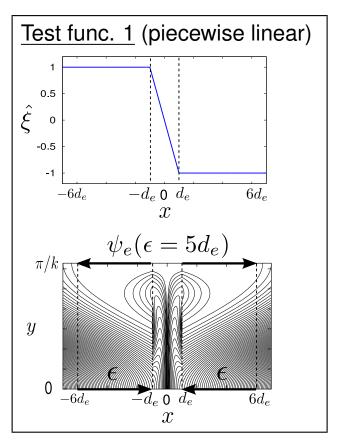
$$-6d_e - d_e \; 0 \; d_e \qquad 6d_e$$

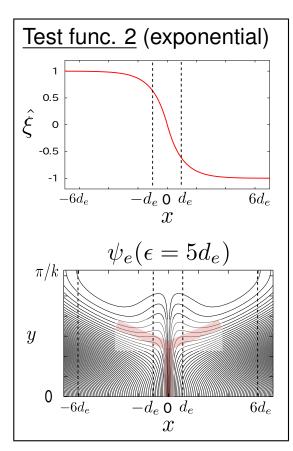
$$T$$

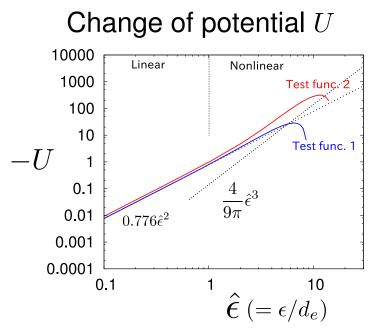


Potential energy change in entire domain

As a whole, "smoothness" of the test function is found to be essential for steep decrease of potential energy.



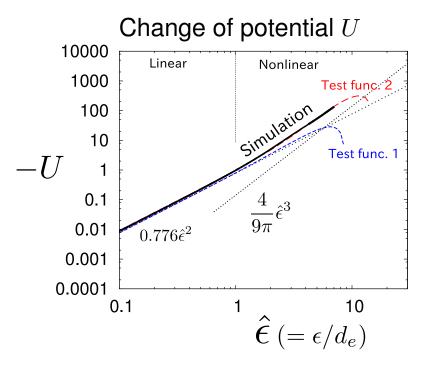


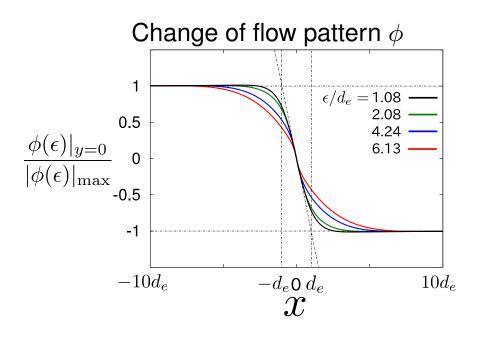


- When the flux ψ_e turns back from the O point side by convection, the potential does not further decrease.
- When the X point elongates and approaches to the "Y-shape", the potential decreases in cubic power of $\hat{\epsilon}$.

Verification using direct numerical simulation

We calculate the potential energy $U(\hat{\epsilon})$ in the direct numerical simulation.





- Simulation almost agrees with the test function 2 up to $\epsilon < 7d_e$.
- In simulation, flow pattern ϕ tends to smooth gradually in time.
 - \Rightarrow The Y-shape seems to be self-organized, searching for the lowest U state.
- The nonlinear acceleration force $F(\hat{\epsilon}) = -U'(\hat{\epsilon}) \sim \hat{\epsilon}^2$ is different from $F(\hat{\epsilon}) \sim \hat{\epsilon}^4$ in Ottaviani & Porceli (1993), but simulation agrees with our scaling.

Summary

- We have performed nonlinear analysis and simulation of magnetic reconnection driven by electron inertia, to clarify its acceleration mechanism.
- By formulating variational principle (Lagrangian) of a two-fluid model, growth of magnetic island can be predicted by finding a test function that minimizes potential energy of the system.
 - In linear phase ($\epsilon \ll d_e$), the exponential growth rate $\epsilon(t) \propto e^{\gamma t}$ is estimated by using a piecewise-linear function that is similar to the eigenfunction. Potential $U(\hat{\epsilon}^2) = -0.776\hat{\epsilon}^2 + O(\hat{\epsilon}^3)$
 - In nonlinear phase $(d_e < \epsilon \ll L_x)$, a smooth test function predicts decrease of potential energy $U \sim -\hat{\epsilon}^3$ which is steeper than the lienar phase.
 - \Rightarrow Explosive growth of island (ϵ) during a finite time $\sim \tau_e = (d_e q' \omega_{A0})^{-1}$ Although the model is too simple at present, this time scale (for large tokamaks, $\tau_e \sim 100 \mu s$) does not contradict the experimental collapse times.
- By taking a form of Y-shape, most part of magnetic energy flowing into the inner layer is converted into kinetic energy.