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Background

(below the marginal stability limit)

Standard (i.e. "conforming") finite element method (FEM) does not satisfy 

those divergence-free constraints, and therefore it often generates 

unphysical spurious modes which interact with physical modes.

MHD simulation for fusion plasmas requires the algorithm to ensure that 

it satisfies the divergence constraint on the vector (magnetic and velocity) 

fields,  

We developed a novel FEM algorithm to ensure that vector variables in 

the MHD equations satisfy the divergence-free and curl-free constraints 

exactly in general coordinate systems. 

The formulation was implemented in a single-fluid resistive MHD code. 
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Conforming finite elements

Standard (i.e. "Conforming") Finite Elements

Periodic cylinder model : 

Contravariant vector : 

Finite element

A single basis function

Standard finite element solution does not satisfy the divergence-free 

condition.

Mixture of basis functions 

Fourier expanded :  
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Nonconforming Vector Finite Element Formulation

We introduce an idea like 'Nonconforming' that different types of 

basis functions are used for a contravariant and a covariant vector.

The divergence and curl of a vector field

A single basis function
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Significant Feature of Nonconforming Vector FEM 

if the scalar function 

Inside each element, 

Nonconforming finite element solution guarantees a divergence-free 

field has no divergence error and a curl-free field has no curl error.

The covariant/contravariant metric transformation is NOT given in 

the discrete sense by the local metric tensor, as defined 

Here, we introduce one more idea that the equation of the covariant/

contravariant metric transformation is substituted into the weak form.

is defined as
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Weak Formulation of the Metric Transformation

Covariant vector : 

'Norm conserving condition' is imposed

or

/   Contravariant vector : 

e.g. : 
,  Cylinder modelCondition : 

We denote the covariant vector with a bar and the contravariant vector without a bar
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Application to an Eigenvalue Problem

Magnetic diffusion equation ( An eigenvalue problem )

Boundary condition (s=1) : 

Simulation parameters : 

Simulation
   (N=200)

Analysis

-3.63400

-14.9322

-28.6759

-49.4719

-73.1290

-103.766

1st zero-bϕ

1st non-zero-bϕ

2nd zero-bϕ

2nd non-zero-bϕ

3rd zero-bϕ

3rd non-zero-bϕ

-3.63994

-14.9320

-28.6743

-49.4685

-73.1188

-103.750

Eigenmode

No spurious eigenmode

Guarantee negative real eigenvalues

Excellent agreement with the analytic solution

Eigenmodes Eigenvalues
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Application to MHD initial value problem

Weak formulation of 

the fully implicit (Backward differentiation (BDF) algorithm) 

linear resistive MHD equations
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Verification and Validation of MHD Initial Value Code (1)

m/n=2/1 Suydam mode

Resonant surface (q=2) position  :   smn= 0.5

Suydam index  :   D = 0.588 

Cylindrical tokamak  :   R0/a = 5

1/N2 convergence 

Growth rate

Nonconforming VFEM initial-value code 

                         Ideal MHD case :  -5.632×10-3  

             Resistive (η=10-6) case :  -5.777×10-3

Ideal MHD eigenvalue code[1] :  -5.858×10-3 

Radial grid points  :   N = 500

Time step  :   Δt/τA= 1

Ideal and Resistive :   η = 0, 10-6

[1] R. Gruber and J. Rappaz: Finite Element Methods in Linear 

Ideal Magnetohydrodynamics (Springer-Verlag, Berlin, 1985).

:   The best resolution expected

Eigenmode

Grid convergence
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, Radial profile and temporal variation

Magnetic field and velocity field divergence

Radial mesh number :  N = 200, 500

Verification of the Divergence Constraint

Suydam index :  

D = 0.343, 0.464, 0.588

:  Error of only about 10-12 due to the discretization of the spatial derivatives.  

:  The divergence violation around the resonant surface tends toward zero 

   as Suydam index parameter (D) is varied toward 1/4, i.e., Suydam criterion. 

m/n=2/1 Suydam mode

, Radial profile
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Verification and Validation of MHD Initial Value Code (2)

m/n=2/1 Resistive internal kink mode

Resonant surface (q=2) position  :   smn= 0.5

Cylindrical tokamak  :   R0/a = 5

Radial grid points  :   N = 500

Time step  :   Δt/τA= 1

η = 10-6

Suydam index  :   D = 0.221 Stable against Suydam mode

η1/3 scaling line

The growth rate scales as η1/3, 

that assures the code works as expected.

Eigenmode Resistivity convergence
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ρ0=1

η0=10-6

ρv=10-2

ηv=1

core-
plasma

pseudo-
vacuum

1+δ < s < b      :  Pseudo-vacuum
                        (Highly resistive, low density plasma)

     0 < s < 1      :  Core-plasma

     1 < s < 1+δ  :  Transition interlayer

Verification and Validation of MHD Initial Value Code (3)

Free boundary simulation by using 
a pseudo-vacuum model

m/n=2/1 external kink mode

Cylindrical tokamak  :   R0/a = 5

Radial grid points  :   Na = 1000 ,  Nv = 250

Safety factor  :   q0 = 1.37 ,  qa = 1.65

Time step  :   Δt/τA= 0.1

Boundary wall  :   b/a = 1.25

Mass density  :   ρ0 = 1 ,  ρv = 10-2

Resistivity  :   η0 = 10-6 ,  ηv = 1

Resistivity and mass density profile

Eigenmode
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Verification and Validation of MHD Initial Value Code (4)

η 3/5 scaling line  

(tearing)

External 

kink

ρv=10-2 ηv=1

ηv/η0 > 10-1/10-6 and ρv/ρ0 < 10-2

are required.   

Vacuum resistivity (ηv) and vacuum mass density (ρv) dependences 

of the growth rate

Fully implicit method allows time steps of 0.1τA  (τA : poloidal Alfven time).

Time steps dependence 

of the growth rate

100 times larger order of the spatial grid size, 

A severe restriction is imposed on the time 

step size if an explict approach is used.

1000 times larger order of 

ηv=1, ρv=10-2
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Summary

A novel vector finite element method is proposed.

Basis functions of covariant and contravaiant vectors are determined 

individually according to the applicability of them to the discrete 'curl' 

operator and the discrete 'divergence' operator.

Covariant-contravariant metric transformation is given by the weak form 

in which the norm conserving condition is imposed.

This kind of method, called 'Nonconforming vector finite element 

method', is implemented in a single-fluid resistive MHD code.

Numerical experiments demonstrate excellent performances, 

in particular, the divergence-free condition is confirmed to be satisfied.

The method consists of two factors ; 

1.

2.


