Development of RWM analysis code for rotating plasmas (RWM = Resistive Wall Mode)

J. Shiraishi, N. Aiba, and M. Yagi (JAEA)

Acknowledgements : M.S. Chu and L.L. Lao (GA) T. Ozeki (JAEA)

Why RWM? What's RWM? How to stabilize RWM?

Stabilization of RWM is inevitable for advanced tokamaks aiming at steady state high- β operation such as JT-60SA.

- Originates from low-*n* external kink modes (timescale $\sim \tau_A$)
- Ideal wall → stabilization of ideal external kink
- Resistive wall → slow down kink instability to timescale of eddy current decay time in the resistive wall → RWM (timescale ~ τ_w)
- Many theoretical/experimental research on rotational stabilization of RWM

As a basis of quantitative RWM study, we need to develop a numerical code for RWM in realistic tokamak geometry including plasma rotational effects.

Introduction – RWM codes in tokamak geometry

- MARS-F (Chu PoP05), MARS-K (Liu NF09), CarMa (Liu PoP09)
 - Linearized resistive MHD, perturbative toroidal rotation, kinetic effects, 3D wall, feedback.
- NMA (Chu NF03)
 - Linearized ideal MHD, feedback.
- MISK (Berkery PRL11)
 - Linearized ideal MHD, without rotation, kinetic effects
- VALEN (Bialek PoP01)
 - Linearized ideal MHD, without rotation, 3D wall, and feedback
- RWMaC/MINERVA
 - We develop a new RWM code. It has some advantages : (1) perturbative poloidal rotation (Aiba PoP11) (2) equilibrium change by toroidal rotation (3) initial value approach

Energy balance in plasma – wall – vacuum system (Shiraishi PoP10)

RWMaC geometry

- We compute all metric quantities in IV in a new coordinate system (s, θ, ϕ) .
- We use a "thin-shell approximation," which indicates that normal magnetic field is continuous across the wall.

Governing equations in resistive wall

Governing equations are the pre-Maxwell equations and the Ohm's law.

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 $\partial_t \mathbf{B} = -\eta \nabla \times \mathbf{J}$ η :volume resistivity of wall

We introduce a "current potential" and magnetic "scalar" potentials in vacuum:

$$\mathbf{J}(s,\theta,\phi,t) = \nabla s \times \nabla \kappa(\theta,\phi,t) \delta(s-s_w)$$
$$\mathbf{B} = \nabla \chi^{(\pm)} \quad \text{in OV (IV)}$$

Integration of the Ampere's law on the wall yields a "jump" condition for magnetic field.

$$\chi^{(w+)}(\theta,\phi,t) - \chi^{(w-)}(\theta,\phi,t) = \mu_0 \kappa(\theta,\phi,t) \quad (1)$$

The superscript (*w*) indicates the limit to the resistive wall. Integration of the Faraday's law gives a "diffusion equation" for magnetic energy.

$$\frac{\Delta |\nabla s|}{\eta} \frac{\partial B^{(n)}}{\partial t} = L\kappa \qquad (2)$$

 $\Delta : \text{wall width measured by } s$ $B^{(n)} = \mathbf{B} \cdot \hat{n} : \text{normal } \mathbf{B} \text{ on wall}$ L : elliptic operator (shown in the next page)

Method of eigenfunction expansion

We invoke a property of operator L by considering following eigenvalue problem on wall:

$$L\kappa = \omega |\nabla s| \kappa \quad (3)$$

$$L \bullet = -\nabla s \times [\nabla \times (\nabla s \times \nabla \bullet)]$$

We can easily prove that

(a) *L* is positive, i.e., $\forall \omega > 0, \forall \omega \in \mathbb{R}$

(b) Eigenfunctions belonging to different eigenvalues are orthogonal

$$\int_{S_w} \kappa_j^* \kappa_k \, | \, \nabla s \, | \, \sqrt{g} \, d\theta \, d\phi = 0$$

By (2), we can expand $B^{(n)}$ and κ on wall as

$$B^{(n)}(\theta,\phi,t) = \sum_{j=1}^{N_p} a_j(t) \hat{\kappa}_j(\theta,\phi) \quad (4)$$
$$\kappa(\theta,\phi,t) = \frac{R_0^3 \Delta}{\eta} \sum_{j=1}^{N_p} \frac{1}{\omega_j} \frac{da_j}{dt} \hat{\kappa}_j(\theta,\phi) \quad (5)$$

 $\hat{\kappa}_{j}$:normalized eigenfunction N_{p} :poloidal mode number

Energy balance

To get energy balance of the system, we multiply (1) by $(1/2\mu_0)B^{(n)*}|\nabla s|\sqrt{g}d\theta d\phi$ and integrate them on wall.

$$\frac{1}{2\mu_0}\int_{S_w}\chi^{(w+)}B^{(n)*} |\nabla s| \sqrt{g}d\theta d\phi - \frac{1}{2\mu_0}\int_{S_w}\chi^{(w-)}B^{(n)*} |\nabla s| \sqrt{g}d\theta d\phi = \frac{1}{2}\int_{S_w}\kappa B^{(n)*} |\nabla s| \sqrt{g}d\theta d\phi$$

The RHS gives energy dissipation in the resistive wall, which by (4) and (5) can be written as

$$\frac{1}{2} \int_{S_w} \kappa B^{(n)*} |\nabla s| \sqrt{g} d\theta d\phi = \frac{R_0^5 \Delta}{\eta} \sum_{j=1}^{N_p} \frac{1}{\omega_j} a_j^* \frac{da_j}{dt} = D_W \qquad (6)$$

After some manipulation, we get energy balance:

Plasma response

$$W_{RWM} = W_{OV} + W_{IV} + D_W + \frac{1}{2\mu_0} \int_{S_p} \chi^{(p+)} \mathbf{Q}_e^* \cdot \hat{n} dS = 0$$
(7)

 $W_{IV(OV)} = \frac{1}{2\mu_0} \int_{IV(OV)} |\nabla \chi|^2 \, dV \text{ :vacuum magnetic energy}$

Plasma response

We employ Frieman-Rotenberg equation (Frieman, RMP 60) as a plasma model, linearized ideal MHD equation including equilibrium rotation.

$$\rho_0 \frac{\partial^2 \xi}{\partial t^2} + 2\rho_0 (\mathbf{V}_0 \cdot \nabla) \frac{\partial \xi}{\partial t} = F \xi \qquad F \text{ :generalized force operator}$$

Energy balance in plasma leads to

$$\frac{1}{2\mu_0} \int_{S_p} \chi^{(p+)} \mathbf{Q}_e^* \cdot \hat{n} dS = K + U + W_p - W_d + \frac{1}{2} \int_{S_p} \left[\left(\frac{\mathbf{Q} \cdot \mathbf{B}}{\mu_0} + p \right) \boldsymbol{\xi}^* - \left(\frac{\mathbf{Q}_e \cdot \mathbf{B}_e}{\mu_0} \right) \boldsymbol{\xi}^* \right] \cdot \hat{n} dS$$

$$K = \frac{1}{2} \int \boldsymbol{\xi}^* \cdot \rho_0 \frac{\partial^2 \boldsymbol{\xi}}{\partial t^2} dV \quad : \text{ kinetic energy} \qquad \text{ natural BC}$$

$$U = \frac{1}{2} \int \boldsymbol{\xi}^* \cdot 2\rho_0 (\mathbf{V}_0 \cdot \nabla) \frac{\partial \boldsymbol{\xi}}{\partial t} dV \quad : \text{ energy associated with} \qquad W_p, W_d : \text{ potential energy}$$

Thus (7) yields energy balance for the resistive wall-plasma system:

$$W_{RWM} = \frac{K + U + W_p - W_d}{W_p - W_d} + W_{OV} + W_{IV} + D_W = 0$$
(8)

MINERVA (Aiba, CPC09) calculates these terms by FEM and Fourier decomposition.

"RWMaC" modules compute $W_{IV(OV)}$ and D_W

Inner vacuum and outer vacuum : $W_{IV(OV)}$ Governing equation : Laplace equation for χ (magnetic scalar potential $B = \nabla \chi$) Numerical scheme : FEM for IV FEM or Green's function method for OV

Resistive wall : D_W Governing equation : diffusion equation for κ current potential $J = (\nabla s \times \nabla \kappa)\delta(s - s_{wall})$ Numerical scheme : FEM

Boundary conditions on resistive wall and plasma surface : Continuity of normal magnetic field + natural boundary condition

Implementation of RWMaC in MINERVA

The RWMaC module solves electromagnetic problems in the vacuum and wall. The MINERVA [Aiba CPC (2009)] solves linear plasma dynamics with equilibrium toroidal rotation.

MINERVA/RWMaC has been benchmarked with NMA (Chu NF03) using Solov'ev equilibrium.

MINERVA/RWMaC has some advantages (1) include poloidal rotation effect perturbatively (Aiba PoP11) (2) include MHD equilibrium change induced by toroidal rotation. (3) can solve initial value problem. 11

Benchmark between MINERVA/RWMaC and MARS-F using Solov'ev circle without rotation

We start benchmarking from Solov'ev circle without rotation to remove numerical errors in numerical computation of the Grad-Shafranov equation.

Benchmark succeeded for the marginal wall position of external kink, and the RWM growth rates even for large wall decay time. 12

Benchmark of MINERVA/RWMaC with MARS-F using up-down asymmetric MHD equilibrium with toroidal rotation

MINERVA/RWMaC has been benchmarked with MARS-F (Chu PoP95) with rigid toroidal rotation under assumption that toroidal rotation does not affect MHD equilibrium.

Benchmark succeeded for frequency of *O*(1%) **of Alfven frequency in RWM growth rate, critical rotation, location of stable window.** (Many thanks to L.L. Lao and M.S. Chu)¹³

Application to RWM analysis in JT-60SA

By modeling the wall shape, we start RWM study in JT-60SA configuration.

Summary

- We have
 - developed RWMaC modules that solve electromagnetic problems in the vacuum and resistive wall.
 - implemented RWMaC modules in linear MHD code, MINERVA (with rotation) and MARG2D (w/o rot, inertia).
 - benchmarked MINERVA/RWMaC against NMA (w/o rotation) and MARS-F (with rotation).
 - used MINERVA/RWMaC to study RWMs in JT-60SA high β_N equilibrium.
- Based on MINERVA/RWMaC, we will
 - study how the equilibrium change induced by toroidal rotation affects RWMs.
 - implement kinetic effects.
 - implement the 3D wall structure.