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Why RWM? What’s RWM? 

How to stabilize RWM?
Stabilization of RWM is inevitable for advanced tokamaks aiming at 

steady state high-� operation such as JT-60SA.

As a basis of quantitative RWM study, we need to develop a 

numerical code for RWM in realistic tokamak geometry 

including plasma rotational effects.

• Originates from low-� external kink 

modes (timescale ~ ��)

• Ideal wall � stabilization of ideal 

external kink

• Resistive wall � slow down kink 

instability to timescale of eddy current 

decay time in the resistive wall �

RWM (timescale ~ ��)

• Many theoretical/experimental 

research on rotational stabilization of 

RWM
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Introduction – RWM codes in 

tokamak geometry

• MARS-F (Chu PoP05), MARS-K (Liu NF09), CarMa (Liu PoP09)
– Linearized resistive MHD, perturbative toroidal rotation, kinetic effects, 

3D wall, feedback. 

• NMA (Chu NF03)
– Linearized ideal MHD, feedback.

• MISK (Berkery PRL11)
– Linearized ideal MHD, without rotation, kinetic effects

• VALEN (Bialek PoP01)
– Linearized ideal MHD, without rotation, 3D wall, and feedback

• RWMaC/MINERVA

– We develop a new RWM code. It has some advantages : (1) 
perturbative poloidal rotation (Aiba PoP11) (2) equilibrium change 
by toroidal rotation (3) initial value approach
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Energy balance in plasma – wall –

vacuum system (Shiraishi PoP10)
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RWMaC geometry
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θ • We compute all metric 

quantities in IV in a new 

coordinate system (�, 	, 
).

• We use a “thin-shell 

approximation,” which 

indicates that normal 

magnetic field is continuous 

across the wall.
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Governing equations in resistive wall

Governing equations are the pre-Maxwell equations and the Ohm’s law.

We introduce a “current potential” and magnetic “scalar” potentials in vacuum:

in OV (IV)

Integration of the Ampere’s law on the wall yields a “jump” condition for magnetic field.

Integration of the Faraday’s law gives a “diffusion equation” for magnetic energy.

JB 0µ=×∇ JB ×∇−=∂ ηt

)(),,(),,,( wsststs −∇×∇= δφθκφθJ
( )±∇= χB

η :volume resistivity of wall

( )( ) ( )( ) ( )ttt ww ,,,,,, 0 φθκµφθχφθχ =− −+

The superscript (�) indicates the limit to the resistive wall.
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(2) nB n ˆ)( ⋅= B :normal 
 on wall 

L :elliptic operator (shown in the next page)
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Method of eigenfunction expansion

We invoke a property of operator � by considering following eigenvalue problem on wall:

κωκ || sL ∇= (3) )]([ ∇•×∇×∇×−∇=• ssL

We can easily prove that 

(a) � is positive, i.e., �∀ > 0, �∀ ∈ ℝ�

(b) Eigenfunctions belonging to different eigenvalues are orthogonal 

∫ =∇
wS

kj ddgs 0||* φθκκ

By (2), we can expand �(�) and � on wall as 
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jκ̂ :normalized eigenfunction

p� :poloidal mode number
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Energy balance 
To get energy balance of the system, we multiply (1) by 1/2�� � � ∗ ��  !	!
 and 

integrate them on wall.
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The RHS gives energy dissipation in the resistive wall, which by (4) and (5) can be written as
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After some manipulation, we get energy balance:
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Plasma response
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Plasma response
We employ Frieman-Rotenberg equation (Frieman, RMP 60) as a plasma model,  linearized 

ideal MHD equation including equilibrium rotation.
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* ρ : energy associated with 

convective term dp WW , : potential energy

Thus (7) yields energy balance for the resistive wall-plasma system:

natural BC

0=+++−++= WIVOVdpRWM DWWWWUKW

F :generalized force operator

(8)

MINERVA (Aiba, CPC09) calculates these terms by FEM and Fourier decomposition.
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“RWMaC” modules compute "#$(%$) and &"

Inner vacuum and outer vacuum : '()(*))

Governing equation : Laplace equation for  +

(magnetic scalar potential � = �+)

Numerical scheme    : FEM for IV 

FEM or Green’s function method for OV

Resistive wall : -.
Governing equation : diffusion equation for  �

current potential  / = (�� × ��)1(� − ��344)

Numerical scheme   : FEM

Boundary conditions on resistive wall and plasma surface : 

Continuity of normal magnetic field + natural boundary condition
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Implementation of RWMaC in 

MINERVA
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The RWMaC module solves electromagnetic problems in the vacuum and wall. 

The MINERVA [Aiba CPC (2009)] solves linear plasma dynamics with 

equilibrium toroidal rotation.

MINERVA/RWMaC has been benchmarked with NMA (Chu NF03) using Solov’ev 

equilibrium.

MINERVA/RWMaC has some advantages (1) include poloidal rotation effect 

perturbatively (Aiba PoP11) (2) include MHD equilibrium change induced by 

toroidal rotation. (3) can solve initial value problem.
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wall

axis of

symmetry



Benchmark between MINERVA/RWMaC

and MARS-F using Solov’ev circle 

without rotation
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We start benchmarking from Solov’ev circle without  rotation to remove numerical errors 

in numerical computation of the Grad-Shafranov equation.

Benchmark succeeded for the marginal wall position of external kink, and the RWM 

growth rates even for large wall decay time.
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Benchmark of MINERVA/RWMaC with MARS-F

using up-down asymmetric MHD equilibrium with 

toroidal rotation
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MINERVA/RWMaC has been benchmarked with MARS-F (Chu PoP95) with 

rigid toroidal rotation under assumption that toroidal rotation does not affect 

MHD equilibrium.
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Benchmark succeeded for  frequency of % 56 �of Alfven frequency in RWM 

growth rate, critical rotation, location of stable window.

(Many thanks to  L.L. Lao and M.S. Chu)

n=1 RWM
MINERVA/RWMaC



Application to RWM analysis 

in JT-60SA
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By modeling the wall shape, we start RWM study in JT-60SA 

configuration.
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stabilizing plate 

Pressure and 

q profile

current

n=1 RWM growth rate

vs. wall time

Rigid rotation 

requires 

>8?9 ?@ABC to fully 

stabilize RWM.

RWM growth rates vs. 

rigid rotation frequency 



Summary 

• We have
• developed RWMaC modules that solve electromagnetic problems 

in the vacuum and resistive wall.

• implemented RWMaC modules in linear MHD code, MINERVA
(with rotation) and MARG2D (w/o rot, inertia).

• benchmarked MINERVA/RWMaC against NMA (w/o rotation) and 
MARS-F (with rotation).

• used MINERVA/RWMaC to study RWMs in JT-60SA high 
�D�equilibrium.

• Based on MINERVA/RWMaC, we will
• study how the equilibrium change induced by toroidal rotation 

affects RWMs.

• implement kinetic effects.

• implement the 3D wall structure.
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