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An essential difference of the plasma theory from the neutral fluid mechanics is in that plasma models may include a varity of "singular
perturbations"” determining scale hierarchies. Our aim is to explore how a singular perturbation (electron inertia) determines an intrinsic
(small) scale that is absent in the scale-invariant MHD system. Here we study the role of Casimir invariants that characterize the “Non-
canonical” property of the determing symplectic geometry; we define some different “sub-classes” of canonicalized self-contained
mechanics of the reduced MHD. We focus on a scenario of singularity formation[1] where the magnetic stream function contains a

hyperbolic saddle.

1. Introduction
A. Reduced magnetohydrodynamics

The reduced MHD equations are known as the slab models of ideal MHD.
Here we have introduced the stream function ¢ the vorticity U =V?¢ ,
and the toroidal current J=V3¢ . ¢ is poroidal flux. Then the two
dimensional reduced MHD are given by

U =[¢.J]+[U.¢],
Y= [, 9]
where dot denotes time derivative and brackets are
A, B| =0,A0,B — 0,A0,B

B. Non-canonical hamiltonian structure

The plasma fluid models have some conservation laws arising from either
symmetries in the Hamiltonian or a "topological defect" (kernel) of the
Poisson bracket. The latter constants of motion is called Casimir
invariants. A Hamiltonian system that has Casimir invariants is said "non-
canonical." P.J. Morrison and R.D. Hazeltine constructed a Poisson
bracket for the two-dimensional reduced MHD[2](See Table 1).

TABLE 1. Non-canonical hamiltonian structure of the reduced MHD

Non-Canonical Form

Poisson bracket {F,G} = [ d?2W,; {gg, gg] where W, =

—
U_

0
Y

Equations of motion v={yp,HY , U={UH}, i=1,2

2. Canonical hamiltonian structure

Morrison has introduced the following new variables.

%b: :QlaQZ],
U = :Q17P1]+[Q27P2]

Then the equations can be cast into the canonical form. However such
canonical formulation involves four fields rather than the initial two. We
found several different kinds of transformation. The following
transformation maintains two fields,

Y =Q,
U=1Q,P] where Va€eZ (a#0)

Which allows us writing down the canonical hamiltonian form(See Table
2). The equations of motion are as follows;

— Non-Canonical Form‘ — Canonical Form‘_

U = [, J]+ (U, ¢ :> D@ =0,
b= [, 9] DiP = aJQ*™

Where D; is the convective derivative, D; = 0; + |¢, | . According to the
non-canonical hamiltonian formulation there exists conserved Casimir
invariants. Our formulation fixes one of these conserved quantities,

C:/¢Ud2x:/Qa[Q,P]d2x:O.

In this sense, our formulation is to constitute a subclass of the reduced
MHD.

TABLE 2. Canonical hamiltonian structure of the reduced MHD

Canonical Form

Poisson bracket 1F,G} = Z/dQI (gg 555 555 §g>

i
Equations of motion Qi = gﬁ , P, = —gg, 1 =1,2

3. Numerical experiments

For the special case of a=2, we solved canonical(or non-canonical) form of

equations of motion

numerically on a periodic box with a 2/3-dealiased

standard pseudo-spectral method. As time advancing routine, we used a

fourth-order Adams-

with

Bashforth method. We considered the initial data

Q = +/2cos(z) — cos(2y) + 4 |
P=0.

In Figure 1, we present the numerical solution at times t=0, 0.6 with a
resolution of 5122 Fourier modes. In Figure 2, we present log plots of max
toroidal current versus time. We also present log plots of max P field

versus time.
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1. Contours of the magnetic flux function,
current density and P field
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4. Numerical Results

The toroidal current
closer to each other

opecomes extremely large where magnetic field lines

3]. The graph turns out to be a clear straight line

beyond t~0.3. It predicts the toroidal current grows like a exponential
function of time. On the other hand, the change of P field is quite
different from the change of toroidal current. P field is rapidly growing
until t~0.15. Furthermore, it seems to grow faster than the exponential
function at later times. As a result, we can predict the growth of P field is
faster than the growth of the toroidal current.
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