# VisualStart: GUI-Aided Unified Initialization Tool for Hybrid (MHD + Particle) Simulations

ANDREAS BIERWAGE Japan Atomic Energy Agency, Aomori, Japan

17th NEXT Meeting, Kashiwa, Japan, Mar 15 - 16, 2012

This work is partially supported by Grants from Japan Society for Promotion of Science.

NEXT 2012/03 - 1/11

#### Introduction

- Motivation: Predictive simulations ...
  - ► Require complex models for the <u>initial state</u> and dynamic evolution.
  - Amount of input data can be large and often requires preprocessing
  - Preprocessing such as data conditioning and matching of parameters require interaction with the user.
- Approach and Scope:
  - ► A GUI-aided software tool is developed that assists the user with the task of designing a simulation scenario.
  - Focus on global nonlinear hybrid codes used to study Alfvén mode and energetic particle (E.P.) dynamics in tokamaks.



## Code framework

#### • Modular simulation toolbox





 The tool is capable of initializing different codes with the same initial state. This simplifies and improves benchmarking activities. NEXT 2012/03 - 3/11

## Main panel, Step 1: Grid setup

| Draiget fold | /home/andy/Rese        | /home/andy/ResearchHMCC/VisualStart/vstart/_/data_mega/ |                                                                  |                                      |                             |                    |                  |      |  |
|--------------|------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|-----------------------------|--------------------|------------------|------|--|
| Case fold    | er: parm-circle_jt60.b | parm-circle_jt60.before_ale/                            |                                                                  |                                      |                             |                    | load values only |      |  |
| Case lab     | el: jt60.before_ale    |                                                         | Job ID: 000<br>Fetch<br>50U shot E039672, shifted-circle equilit |                                      | etch label Reload list Read |                    |                  | 1. ( |  |
| Descriptio   | n: from M. Ishikawa, J | T–60U shot E039672, sh                                  |                                                                  |                                      |                             |                    | Save new         |      |  |
| Steps (stati | s: complete)           |                                                         |                                                                  |                                      |                             |                    |                  |      |  |
| Code:        | MEGA                   | 1. MHD                                                  |                                                                  | 4. Hot Ion Distribution and Profiles |                             |                    |                  |      |  |
| Model:       | circle                 | 2. MHD Equi                                             |                                                                  | 5. Hot Ion Orbits                    |                             |                    |                  |      |  |
|              |                        | 3. MHD Field                                            | 3. MHD Fields and Diagnostics                                    |                                      |                             | 6. Hot Ion Markers |                  |      |  |

- Project file management
- Navigation



• Computational grid setup

# Step 2: MHD equilibrium [Type 1: MEUDAS]



- Import equilibrium files
- Set computational domain

# Step 2: MHD equilibrium [Type 2: CIRCULAR]



- Match reference profiles
- Set model parameters

## Step 3: MHD field analysis and solver parameters



- Match reference profile for bulk density
- Compute continuous shear Alfvén spectrum

## Step 4: Energetic ion distribution function



• Set up phase space mesh and model distribution function

NEXT 2012/03 - 8/11

## Step 5: Orbit analysis and database



• Sample constant-of-motion space and create orbit database

NEXT 2012/03 - 9/11

## Step 5: Marker loading and weighting



- Load phase space markers along orbits
- Adjust weights to match reference profiles

## Summary

Developed :

- Versatile tool to set up initial state hybrid simulation codes
- Design process supported by interactive GUI
  ⇒ provides convenient control, detailed information and feedback
- Steps 4+5+6: Implementation of new marker loading scheme: Bierwage et al., Comp. Phys. Comm. 183 (2012) 1107–1123 "Orbit-based representation of equilibrium distribution functions for low-noise initialization of kinetic simulations of toroidal plasmas"
  - Low noise initialization (time-independent marker distribution)
  - Exact equilibrium distribution function (fct. of constants of motion only)
  - Moments match given reference profiles (interactive iterative matching)
- Output files in portable and self-explanatory NetCDF format Extensions underway:
- Step 4: Interface with OFMC solver to import and pre-process numerical distribution function
- Planned extensions:
- Step 2:Interfaces with other MHD equilibrium solvers (e.g., for DIII-D tokamak)