Multiscale modeling of radiation damage in materials
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The necessity of prediction of material behavior during irradiation

®The fist wall materials in a fusion reactor suffer from high
energy neutron bombardment.

®This causes microstructural changes of the materials,
resulting in degradation of the materials’ performance.
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For a reliable fusion reactor, material behavior during irradiation,
“radiation damage”, should be accurately predicted.

Multiscale modeling approach of irradiation processes
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®Temporally and spatially multiscale phenomena.
®Complementary use of those evaluation techniques is necessary.
®Microstructureal change is a key of the prediction of property
change.

How to predict radiation damage in fusion environment (1/3)

®|rradiation data has been obtained from alternative irradiation
facilities such as existing material testing reactors and
ion accelerators.

®Extrapolation of the irradiation data to those in fusion reactor
environment is required.

®Methodology to theoretically interpret the irradiation data
should be developed.
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How to predict radiation damage in fusion environment (2/3)

Remarkable difference between irradiation facilities (irradiation fields)
is defect production by atomic displacement. i

dpa: displacement per atom
EDamage rate P (dpals), helium gas production rate (appm He/s)
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fon ac
%o

S%PKA: Primary Knock-on Atom X

Fusion.®
|Neutron energy spectrum | | PKA energy spectrum | (14meY natton)

iron (Fe) "’ iron (Fe)

T

A HFIR
A

® JOYO
R Y
JMTR

sore,
h.KU R

.
107" 107" 10 107 10 107!
Damage rate P (dpals)

2
S
¥
HFIR JHFR
0
Ty 7
Notron enanpy(MeV} " ol averey (uev)

© By do(E.E,) Microstructural change (Rate theory model
dpa | s = _L L w(E)TV(E,,)dEI,dE dc
. = —Y¥=p,-D,V’C,-Y K.
= ¥ dat v~V by iLv
incident particle flux displacement functions 7
differential scattering cross-section

Helium gas production rate (appm Hels)

production diffusion defect cluster formation
(ps) (over sub-ps)

How to predict radiation damage in fusion environment (3/3)
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Microstructural change is a phenomenon in defect diffusion process, in
which temperature is very important parameter.

EDamage rate P(dpals), helium gas production rate (appm Hels)
mTemperature, sink strengths, ===

—l—

For estimation of microstructural change in fusion environment,
it is necessary to understand the relationship between irradiation field
and microstructural change, “Irradiation correlation”.

Objectives & procedures

Theoretical modeling of microstrucural change in material during
irradiation for a description of irradiation correlation.

®Materials
*Metals: Tungsten (W), iron(Fe)
*Ceramics: Silicon carbide(SiC)
®Target
Modeling of defect cluster nucleation taking into account of
multiscale feature of radiation damage
#*\oids, dislocation loops, helium bubbles
¥¢damage rate, temperature and composition dependences

®Main procedures
*Molecular dynamics (MD)
+Kinetic Monte-Carlo (KMC)
*Rate theory(RT)

Model of defect cluster formation
Growth or shrinkage are determined by the net flux of point defects.

Nucleation rate:
# of voids produced per second
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Mobility of Thermal stability
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Void nucleation has a peak temperature.

Damage rate dependence is i

Normalized nucleation rate:
ion rate divided by damage rate
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®All curvatures should be completely
matched without damage rate.
®With increasing damage rate, peaks
shift to high temperature side.

Normalized nucleation rate,

mportant for void formation.

Composition dependence of dislocation loop nucleation

in silicon carbide (SiC)during

irradiation
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Composition dependence is

also important for defect

cluster formation in a multi-component material.

Future research plan
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Input parameters:

®Defect energies — MD calculations
®Defect concentrations — RT analysis
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Statistical fluctuation is
needed for nucleation.
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Nucleation model based on Monte-Carlo technique is developed.

Material: W

Temperature:900(K)
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®Quantification of fusion irradiation field
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®Validation and upgrading of model

An irradiation correlation model
will be developed, which is requi
damage in fusion reactor.
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To contribute to the ITER project and to
promote an early realization of DEMO,
BA-IFERC implements the following
three sub-projects at Rokkasho.

Tanigewa, HAEA)
The DEMO R&D activities alm at
establishing a commen basis for a
DEMO design from the technology
point of view.
‘@RRD on Materials Engineering for DEMO Blarket
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Main task of R&D on Materials Engineering for DEMO Blanket, ~2017

Basic engineering for material p

Task1 | Optimization of fabrication technology
Task 2 | Irradiation effects on mechanical properties and microstruciure

roperty and structural design interface




