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Backgraund and motivations

Background and motivation

Core Plasma

1D transport
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2D transport

Core and Peripheral Plasma

2D transport
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Q(2D)

conventional core-peripheral
integrated simulation model

our core-peripheral integrated 
simulation  model

 Interface region

Conventional transport simulation of tokamak plasmas

In the core of a tokamak plasma transport phenomena have

been usually described as one-dimensional problems.

In the peripheral SOL-divertor plasma, transport phenomena are

described as two-dimensional problems

Recent remarkable progress in computational technology has made
more consistent two-dimensional transport simulation of tokamak
plasmas feasible.
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Backgraund and motivations

To carry out two-dimensional transport analysis

Transport model including poloidal-angle dependence is required.

By employing 2D transport model over the entire plasma

Analysis of the poloidal angle dependence of the heating
efficiency will become available.

Analysis of the poloidal-angle-dependent transient phenomena
will become available.

We formulate an axisymmetric two-dimensional transport modeling
which analyzes time evolution of plasmas over the entire tokamak.
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Coordinates

Magnetic Flux Coordinates
System (MFCS):
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Local Orthogonal Coordinate
System (LOCS):
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Simpler description on the
behavior of magnetized plasmas

Neoclassical Transport
Coordinate System (NTCS):
(ξ N
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Good compatibility with
neoclassical theory
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Assumptions

Toroidally axisymmetric plasmas

Quantities are independent of the toroidal angle variable

Quantities related to MHD equilibrium depend only on the flux
label

Relaxation processes much slower than Alfvén time scale

Weak time dependence of basis vectors

Time derivatives of basis vectors are small enough to be ignored

Force balance in MHD time scale

Force balance in the radial direction is attained in the MHD

time scale
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Equations to be derived

Transport equations

Equation for particle density: ne(ρ, χ), ni(ρ, χ)

Equation for momentum: neue(ρ, χ), niui(ρ, χ)

Equation for energy transport: pe(ρ, χ), pi(ρ, χ)

Electromagnetic equations

Poisson equation for electrostatic potential: φ(ρ)

Magnetic diffusion equation:  ι(ρ)

Grad-Shafranov equation: ψ(R,Z)

H. Seto and A. Fukuyama (Kyoto U.) Simulation of 2D transport in tokamaks March 15th -16th 2012 6 / 18



Preliminalies 17thNumerical Experiment Tokamak Workshop

Braginskii’s equations

Two-fluid transport equation for cold plasma.

Equation of continuity

∂na

∂t
+ ∇ · (naua) = Sa

Equation of motion

∂

∂t
(manaua) = −∇ · (manauaua) −∇pa −∇ · ↔πa

+ eana (E + ua × B) + Ra +maSua
ua

Equation for energy

3
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2
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)

= −↔
πa : ∇ua + ua · ∇pa +Qa + Spa
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Formulation of transport equations

Policy for the derivation of transport equations
For compatibility with the neoclassical transport theory, three

components of vector quantities are represented by NTCS.

Spatial independent variables are expressed in MFCS

Neoclassical viscosity tensor in LOCS

↔
πa ≡ 3

ua · ∇χ
B · ∇χ∇‖B
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The equation for particle density
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where T MN
ij is the transformation matrix from MFCS to NTCS.
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Equation for momentum

∂

∂t
(manaua) = −

3
∑

i=1

F kin ,i
a eξM

i
−∇pa

− 1

3
∇N neo

a + ∇‖N
neo
a −N neo

a ∇‖ lnB +N neo
a κ

+ eana (E + ua × B) + Ra +maSua
ua

where, F kin,i
a is the contravariant component of kinetic force in

MFCS and N neo
a the parallel coefficient of neoclassical viscosity.

The equation for momentum in each direction of NTCS is derived by

taking the scalar product with eξN
i .

eξN
1 ≡ ∇ρ, eξN

2 ≡ e‖, eξN
3 ≡ ∇ζ
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Equation for momentum in radial direction
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where C Lor,i
a and Rρ

a are the coefficient of the Lorentz force term
and the contravariant radial friction force
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Equation for momentum in parallel direction
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Equation for momentum in toroidal direction
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Equation for internal energy is obtained by transforming equation for
energy transport of Braginskii’s equation into the advection-diffusion
form

Equation for internal energy

∂

∂t

(

3

2
pa

)

+ ∇ ·
(

paupa
− na

↔
χa · ∇Ta

)

=Qpa

where upa
≡ (5/2)ua + p−1

a qua
, Qpa

and
↔
χa are the the energy

flow velocity, the energy source term and the diffusion coefficient
tensor and respectively.
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Current program design

Variables for TASK/T2:

na, pa, nau
ρ
a, naua‖, nau

ζ
s

φ(ρ),  ι(ρ), ψ(R,Z)

Metrics

gij, g
ij,

√
g

Mesh info.

Boundary Condition,
Element-Node Relation,
Node-Node Connectivity, etc...

TASK/T2: START

    Transport eqs.

 + Magnetic diffusion eq.

Mesh generation by 

Delaunay Triangulation

Calc next

time step?

TASK/T2: END

GS Eq. with FCT scheme

mesh info.

YES

NO

metrics, mesh info.

    Poisson eq.

Iteration 

converged?

YES

YES

NO

NO
Iteration 

converged?
, metrics

metrics, mesh info.

, metrics

Time 

Evolution

Phase

Equilibrium 
Construction 
Phase

Brief flowchart of TASK/T2
(under development)
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Current status and issues of TASK/T2: TE-phase

Employed algorithms

Discretization:

SUPG-FEM: Transport eqs.

BG-FEM: Magnetic diffusion eq. and Poisson eq.

Element: Multi-scale rectangular element

Matrix Solver: Krylov subspace iterative method (PETSc library)

Nonlinear Solver: Picard iteration

We have derived transport eqs. and been coding TE-Phase; however,
there are still remains some issues in transport modeling.

Appropriate modeling of gyro-viscous force in core region

Appropriate energy cancellation between diamagnetic terms
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Current status and issues of TASK/T2: EC-phase

Grad-Shafranov Eq. with FCT scheme

TASK/EQU

Free boundary 2D MHD equilibrium solver with FCT scheme

included in integrated toroidal plasma modeling code TASK.

Mesh generation

Multi-scale structural rectangular mesh generation algorithm

Basic concept of multi-scale structual rectangular mesh
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Summary and Future works

Summary

A set of equations required for two-dimensional transport
modeling for tokamak plasmas has been derived for integrated
analysis of core and peripheral plasmas

Transport equations are derived from Braginskii’s equations

with the neoclassical viscosity in MFCS and reduced to

two-dimensional with toroidal axisymmetry.

By combining these transport equations with the

electromagnetic equations, a more self-consistent

two-dimensional transport analysis including the field evolution

will be available.
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Future works

Developing the two-dimensional transport code using the FEM
to simulate time evolution of tokamak plasmas.

Analysis of the asymmetric effect in limiter configuration

Full 2D transport analysis in entire tokamak plasma
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