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Motivation Finite orbit width effect Numerical analyses

CERC plasma in LHD FOW effect is important for high 7. plasmas in LHD as CERC; Thermal diffusivity
High electron temperature plasmas with elTB are experimentally finite orbit width (FOW) effect for electrons becomes large. ] £ h g he el
observed in LHD. arge E: at the core reduces the electron transport.
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— GK simulations for ETG turbulence are required.
Local flattening
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The elTB foot point of inside/outside approaches each other during the | x % | NC thermal diffusivity is still slightly large in the flattening region due to
formation of CERC elTB (see figure above). s L 5 the absence of the large e-root E..
T at the core increases as the width of the flattening becomes narrower. : or
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Foot point of elTB ends up at approx. 1/2z = 0.5%~. o] 5 | — D2 Electron parallel flow (tentative results)
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. . In general, the elTB formation in LHD tends to take place for a

Motivation The ambipaor E; is compared to both DGN/LHD and the experiment. 5 P

plasma with counter NBI injection (w/ plasma current in the ctr-

Results of FORTEC-3D agrees well with £; evaluated by the potential direction) than that with co-injection!2.

How are the E:and its shear formed in CERC plasmas?

The E; reduces the NC and/or turbulent transport?? profile observed by HIBP. On the other hand, all the CERC plasmas calculated by FORTEC-3D
What determines the elTB foot point? Quite similar values are obtained b/w FORTEC-3D and DGN/LHD. in this work are made by ECH only.
It has been suggested that the close relationship b/w the foot point and Is there any relation b/w the parallel flow in ECH plasmas and the
the magnetic island or a low order rational?. However, it remains unclear. FOW effect does not influence so much on the steady-state momentum input in NBI plasmas??
In addition, the flow along the surface has a close relationship to island ambipolar £.
healing, which occurs the low collisional plasmas. Electron parallel flow is obtained by FORTEC-3D for #103619.
NC energy flux w/ and w/o FOW effect is compared to each other.
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FORTEC-3DB! code, which includes the electron FOW effect is appropriate for 2 % ik _
such NC transport simulations in high 7. plasmas as CERC. g FOW effect rather important for 20 oy %8s ey This correfsplonds to Fhe:OOtSt;?p .
To clarify the elTB formation in CERC plasmas, NC simulations have been & of the NC thermal transport. e L current of electrons in the ctr-direction.
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Current in the ctr-direction in the CERC formation qualitatively
reproduces the tendency of the elTB formation in past LHD

FO RTEC_3 D The E; formation and the thermal transport experiment!?,

The ambipolar E; and the NC energy fluxes are also investigated for #103619.

FORTEC-3D solves the DK eq. with of Monte-Carlo method.
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M Along with the elTB formation, the ambipolar E; gradually grows to the CERC plasma.
N K ay electron root with steep shear. » The NC thermal diffusivity remains low level during the elTB
b= M 5 ( I3 ) _ formation, and no 1/v dependence appears. Formation of the e-root
O : The region of the sheared e-root £ moves outward. E: compensates the increase in the NC thermal transport.
€0€ L (%r =—e(li—Te) =0 ambipolar condition - qualitatively agrees to the movement of the elTB footpoint. » The direction of the electron parallel flow is qualitatively the same as
\_ Y. that of the previous experimental study.
I;is referred to DGN/LHD
E: goes to zero locally.
— corresponds to the position where the local flattening of 7. gradient Discussions
The orbit and weights of each marker particle are (elTB footpoint). To elucidate the mechanism of elTB formation;
followed with including collision in longer time step. TR » The turbulent transport level will be evaluated by GKV-XPI,
— Of at the steady state determined. 12 , ' "i-gas = I Tux " » Effect of the island, or perturbation field will be included.
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' t=1.15 (elTB) ~ temperature increases.

DGN/LHD

collision operator b/w electrons and ions.
» Effect of the ECH heating on the NC transport and the E; formation
should be investigated.

lon particle flux 75 of DGN/LHD!*! are determined by locally and mono-

energetically since 7; of CERC plasma is usually low. NC thermal transport increases due

to the formation of the steep 7.
gradient in CERC plasmas.
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FORTEC-3D includes;
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