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Orbit Optimization Leading to  
Turbulent Transport Reduction

!  The enhanced ZFs in the inward-shifted LHD plasma 
regulate the ITG turbulence and transport.!

!  Gyrokientic simulations with real geometries of LHD 
experimental equilibrium condition are demanded !!
!   GKV-X simulations (M. Nunami, this conference)
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[Watanabe, Sugama, Ferrando-Margalet, PRL 2008]



Entropy Balance and Transfer
!  A quadratic functional of !f, 

that is, !S, is a measure of 
fluctuation, “entropy variable”!

!  Production rate of !S balances 
with transport and dissipation!

!  In kinetic plasma turbulence, !S 
is transferred in the phase space!
!  Generation of fine velocity-

space structures!
!  Zonal flow and turbulence 

interactions!
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Entropy Transfer Function Tk
!  Entropy transfer function describes nonlinear ExB 

interactions among turbulence fluctuations and zonal 
flows. (Sugama et al. PoP 2009; Nakata et al. PoP 2012)!

!  Detailed balance relation holds for the triad interaction

2012/3/15-2012/3/16NEXT2012 @ UTokyo, Kashiwa 4

hk: non-adiabatic part of !f(g)

[Nakata, Watanabe, and Sugama PoP (2012)]
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Entropy Transfer Analysis Applied 
to Helical Configurations

!  ITG turbulent transport 
simulations with the 
entropy transfer analysis 
for model LHD 
configurations.!

!  Inward-shifted case!
!  Stronger ZFs and lower "i!

!  Standard case!
!  Weaker ZFs and higher "i
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Entropy Transfer Function for 
Inward-Shifted Case

!  Strong ZF-turbulence interactions in the inward-shifted 
case drives the successive entropy transfer.
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Entropy Transfer Function for 
Standard Case

!  ZF-turbulence interaction is weaker in the standard 
case. Successive entropy transfer is not clearly found.
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Spectrum Broadening Through 
Successive Entropy Transfer

!  In the inward-shifted 
case, the fluctuation 
spectrum expands into 
higher-kr space due to 
the successive entropy 
transfer by zonal flows.!

!  Standard case: !
!!2 = <kr

2> = 0.917!

!  Inward-shifted case:
!!2 = <kr

2> = 0.991!
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Enhancement of Zonal Flow 
Response by Er

!  The equilibrium-scale radial electric field Er generated 
by the neoclassical transport !
!  improves collisionless particle orbits, and!
!  simultaneously enhances the ZF response
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How to couple ZF computation 
with turbulence simulation?

!  In the ZF response calculation with Er, #-dependence of the 
confinement field strength B should be introduced, i.e.,!

!  A non-local treatment in the toroidal direction, because of the # 
dependence of operators, such as vd(#) etc.!

!  Mixture of the typical scale-lengths of turbulence ~$i and non-
axisymmetric geometry ~r0/Mq   (M : toroidal period of |B|)!

!  An alternative idea:!
!  Scale separation between ZF and turbulence for the field-line 

label coordinate #     (while the same scale in the radial direction)!
!  Analogy to the “radial scale-separation” that is applied in !f -GK!
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Scale Separation of Zonal Flows 
and Turbulence

!  The gyrokinetic equation for the perturbed ion gyrocenter 
distribution function, !f !(h: non-adiabatic part)!

!  Postulate the spatial dependence on slow (#’=-#) and fast (y) 
coordinates!

!  Flux tube coordinates!
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Flux-Tube Bundle Model for Multi-Scale 
Interactions of Er, ZFs, and Turbulence 

!  Zonal flow components with # dependence (non-axisymmetry)!

!  Turbulence components in the ith flux tube at #’=#i!

where!
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Flux tube at #’=#i 
(i=0, 1, 2, …)



Relationship with Conventional 
Models 

!  Linear dispersion of drift waves remains the same as that in 
the flux tube model, except for the Doppler shift with %&'

!  Zonal flow response enhancement by Er can also be 
reproduced'

!  Entropy balance relation!
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