Entropy balance In electromagnetic gyrokinetic simulations

BRIy AMOEF R IAL—avIzBTHAT o ME—/INT X

==) =4 =%£/) ot

Shinya Maeyama?l), Akihiro Ishizawa?), Tomohiko Watanabe?, Noriyoshi Nakajima?, Shunji Tsuji-lioD, Hiroaki Tsutsuil

L, 2), 2), 2), L, D 17th Next Meeting
roKyn TECH 1 Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku 152-8550, Japan March 15, 2012
S 2) National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan Kashiwa, Japan
= : )
Motivation Summary
Electromagnetic effects on turbulent transport play important roles in We presented two methods for electromagnetic gyrokinetic simulations.
high beta plasmas. Rapid parallel motions of kinetic electrons bring » An electromagnetic gyrokinetic code is successfully developed.
some numerical difficulties to electromagnetic gyrokinetic simulation. > The outflow boundary condition reduces numerical oscillations in the
Recently, we extended the GKV code for electromagnetic gyrokinetic field-aligned coordinate.
simulations. Here, we develop numerical methods to treat kinetic > The entropy conservative difference substantially reduces numerical
electrons and discuss benefits of the methods. errors in entropy balance.
. J
of gyrokinetic equations Availability of the schemes for electromagnetic simulations

Charged-particle gyromotion

In a gyrokinetic framework, rapid gyrations
are asymptotically decoupled from slow
transport phenomena, and then reduced

4 Plasma parameters: L./L=3.1, L, /L++=0, R/L,=2.22, r/R=0.18, g=1.4, s=0.786,
mM./m;=5.669x104, T.=T,, B;=1%, v;=2x103v./L,,, ve=vim,/m,.
Numerical settings for linear runs: -11.9<Kk;p;<11.9, k,p;=0.2, -n<z<m, -4V(<V,,<4V,;, O0<uB/T,<8,
Nix=25, Nyy=1, N,=32, N,=64, N,=16, At=0.002L,/vy;

Magnetic field B

equations are, for nonlinear runs: -50.9p<X<50.9p;;, -62.8p<Y<62.8py;, -T<z<m, -4V <V,,<4V,;, O<uB/T,<8,
_ _ \ N,=288, N,=72, N,=32, N,=64, N,=16, adaptive time steps. .
Vlasov Eq. %wﬁv,, +iog — “Z”B ai } fu+ Ny =8, +Cy
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< Poisson Eq. :ki+ize§n3 (1_F08k)}¢§k :izesﬁSk A Linear simulations genchmark test with the GENE code:
= £, S L, “~———___ N v First of all, the developed electro- eta dependence of linear instabilities
_Ampere EQ. k24, =u,> e magnetic GKV code is compared with 0.6

rp the GENE code3.
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The electromagnetic GKV code shows
good agreements with the GENE code.

The GKV code?, originally developed for
electrostatic turbulent simulations, solves time
evolution of perturbations in a flux-tube
simulation domain.

We extend the GKV code for electromagnetic
gyrokinetic simulations with kinetic ions and

electrons.
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Following two tests are carried out to
check the usefulness of the outflow
boundary condition.
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We note that the gyrokinetic Egs. satisfy the entropy balance relation, Profile of the eigenfunction of electrostatic potential along the field file
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We employs the numerical methods same with the original GKV code,

Discretization ?n X and y: FOUFi_er_ eXp_anSion Convergence of the growthrate and frequency with the length along the field line
- Discretization in z, v,, and u: Finite difference

where {f.g},=V,/,¢-0, /V,2. Application of Morinishi’s scheme? guarantees the
entropy conservative property,
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and develops special methods to treat kinetic electrons. "? g3 Outflow & g oG
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electron perturbation is rapidly advected along the field-aligned coordinate z. 2 ] S . og the field line.
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Outflow boundary condition is employed to reduce numerical S5 4 N S 015 | o Outflow &
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Trajectories of particle parallel motions Schematic picture of N
- the outflow boundary condition
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SN — 2 Nonlinear simulations
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s 1 : : Jo. Using the outflow boundary condition, two nonlinear turbulent simulations
% 0 ‘ ‘ \J; Joa=10, are carried out: the one employs the 4th-order central finite difference, and
> -1 \/ Inflow | . T, foa=2f" = fi 4 the other employs the 4th-order entropy conservative difference.
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Time evolution of entropy variables by using
The outflow boundary introduces artificial sinks in the entropy balance, (Left) central finite and (Right) entropy conservative differences
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where < > denotes the flux-surface average. Es Is non-zero when the outflow Numerical errors from the parallel dynamics act like an artificial source term,
boundary condition is employed. and enhance the collisional dissipation.
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