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 - In burning plasma experiments, such as ITER, multi-species effects on 
turbulent transport are crucial not only for confinement performance but also 
for burning efficiency. 

Introductions 

 - A minimal turbulence system for the burning plasma is ITG-TEM driven 
turbulence which is composed of Deuterium, Tritium, electrons, and Helium-
ash (or impurity ions).     

 - Some earlier studies work on quasilinear calculations and nonlinear 
simulations for limited cases, e.g.,  
Estrada-Mila ( quasilinear particle flux of He-ash/alpha particles: PoP2006 ), 
Camenen ( profile-shear effects on ITG-TEM: NF2011 ), 
Casson( rotation effects on quasilinear flux in ITG-TEM: PoP2010 ), 
Dannert( nonlinear GK-simulations for pure-TEM: PoP2005 ).       

 → In addition to heat transport, the kinetic (non-adiabatic) response of 
electrons leads to the particle transport.        
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 - Original version (Watanabe NF2006):

Extension to GKV code for multi-species  

   -- local fluxtube model with tokamak (s-alpha) and helical geometries  
   -- single ion/electron species with adiabatic electrons/ions: ITG-ae, ETG-ai  

   -- electrostatic GK model with the quasi-neutrality condition

   -- entropy balance and transfer diagnostics  
 - Extended version:

   -- enable to switch kinetic electron responses and the hybrid model 
(adiabatic responses are assumed except for trapped particles)   

   -- enable to treat any number of particle species: MPI-parallelization   

   -- enable to switch self-consistent interactions and the passive limit (test-
particle model) for impurity ions      

 - Another extensions: 
   -- Realistic helical equilibrium with VMEC (Nunami: PFR2010)  
   -- Semi-Lagrangian ASIRK time integrator (Maeyama: PFR2011)  
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- Entropy balance equation for multi-species turbulent plasmas: 
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- Definitions: 

if the finite Debye length is considered, or this term is 0.  

for each modes of species “s”  

Gyrokinetic eqs. for multi-species cont.  

Entropy variable  

Field energy  

Turbulent particle and heat fluxes  

Nonlinear (triad) entropy transfer (Nakata PoP2012)  

Collisional dissipations
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- Time-evolution of ITG-TEM modes - Electron parallel transit vs.      -modes   
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High frequency (      ) modes via kinetic electrons ⌦H

- High frequency oscillations appear in the time 
evolution with kinetic electrons (solid lines) while         
     -modes are suppressed in the case with 
hybrid electrons(dashed lines).
⌦H

⌦H

⌦H

- In most cases, time-step is bounded 
by CFL for      -modes, which also 
depends the box size(ky(min)), rather 
than electron transit frequency.

⌦H
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- Transition toward ETG modes- ITG-TEM modes (also ETGs)
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- Since ETG modes are also unstable for the 
Cyclone base case parameters, ITG-TEM modes 
are connected to the ETG modes for             .   ky⇢ti > 1

- Hybrid electrons suppresses the contribution of 
low-k ETG modes for                .ky⇢ti > 0.6

electron diamag.

ion diamag.

Cyclone base case 
parameters with  

⌘i = 3.114

⌘e = 3.114

⌘e ! 0

R0/Ln = 2.22

(for pure-ITG)
Te/Ti = 1
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- R0/Ln & R0/LT scan for pure-TEM modes 
s = 1.07, 
q = 1.57, 
epsilon = 0.177, 
Te/Ti = 3, 
R/LTi = 0
 mi/me = 3600
line: GS2
diamond: GKW
○: GKV

Peeters et al (CPC2009)
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- TEM modes are caused by trapped particles 
so that the decrease of growth rate for                   
is not significant even in the hybrid case.      
- R0/Ln & R0/LT scan shows a threshold of the 
onset of pure-TEM at                                   .    

ky⇢ti > 0.6

The numbers in figure show the 
value of R0/Ln .

R0/Ln=2, R0/LTe =3.8
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778 G. Rewoldt et al. / Computer Physics Communications 177 (2007) 775–780

Fig. 2. Results for varying kθ ρi ∝ n at fixed R/LT i = R/LT e = 6.92, R/Ln = 2.22 (on reference surface), including trapped electron response.

Fig. 3. Results for varying kθ ρi ∝ n at fixed R/LT i = 2.22, R/LT e = 6.92, R/Ln = 2.22 (on reference surface), including trapped electron response.

Fig. 4. Results for varying R/LT i at fixed R/LT e = 6.92, R/Ln = 2.22 and kθ ρi = 0.335 (on reference surface), including trapped electron response.

5. Conclusions

The GT3D and GTC codes now include trapped-electron
effects, while the FULL code has included trapped-electron

effects since the beginning. Adding these effects introduces
a new unstable root, the TEM root, in addition to increas-
ing the growth rate of the previous root, the ITG root. For
the present parameters, these two roots remain separate, while
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Benchmark tests with the other codes    
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GKV GKV

GKV
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GKV

drift waves. First, we examine the growth rate of the modes
for the three cases !Fig. 4". As expected, the effect of the
inertial terms is small at low Mach numbers. The ITG mode
instability is stabilized by higher Mach numbers while the
TEM is enhanced. The enhancement of the TEM is due to
the enhanced mirror force which adds to the trapping condi-
tion independently of position in v! space, widening the
base of the trapping region. The increased phase space from
which the mode can tap energy results in the increased
growth rate. This can be clearly seen in the velocity space of
the perturbed electron distribution for the GKW-TEM case
!Fig. 3" which exactly matches the trapping condition of
Eq. !18".

For the more physically realistic equal temperature gra-
dients of the GA-STD case, the suppression of the ITG
branch and the enhancement of the TEM branch leads to a
transition threshold at around u=0.6 after which the TEM
becomes dominant over the ITG mode. At the transition, the
direction of mode propagation reverses, as shown in the re-
versal of the mode frequency !Fig. 5". From these results, it
is clear that the choice of R0=Raxis or R0=RLFS only becomes
important at high Mach numbers and is only of importance
for the TEM branch. Previous work has shown that ITG
mode stability #Fig. 5!a" of Ref. 33$ is less sensitive to den-
sity and density gradient variations than TEM stability,28,29

although the propagation frequencies of both show some
variation with R /Ln.

The wavenumber k!"s=0.304 studied is the most un-
stable part of the ITG mode spectrum at zero rotation !Fig.
6", but at shorter wavelengths the TEM is dominant. Identi-
fying which branch is dominant at a given wavenumber fol-
lows from the dispersion relation !Fig. 7". It is clear from
Fig. 7 that the TEM instability becomes dominant at ever
larger wavelengths with increasing rotation. Our results show
that the transition threshold is sensitive to the geometry,
length of field line resolved, and parallel velocity dissipation.

We next discuss further the suppression of the ITG
branch by examining the effect of each of the inertial terms
independently and in combination. We divide the rotational
effects into three as discussed in Sec II C. Simulations of the

GKW-ITG and GKW-TEM cases were performed with each of
the inertial terms artificially included or excluded !Fig. 8".

For the ITG mode, the results show that the trapping and
density redistribution in isolation destabilize the mode for
u#1. The Coriolis drift and the centrifugal drift both have a
stabilizing influence at very high Mach number, which to-
gether are sufficient to overcome the destabilizing effect of
the trapping terms to result in the net ITG mode stabilization
when all rotational terms are kept.

For the TEM, the effect of each of the individual terms is
qualitatively similar. The stabilizing influence of the centrifu-
gal drift is outweighed by the destabilization from the trap-
ping terms, with the result that the overall effect of all the
rotational terms is to destabilize the mode.

For both the ITG mode and TEM, the Coriolis terms
introduce an asymmetry in the parallel potential
eigenfunction,23 but the eigenfunction is not strongly modi-
fied by the centrifugal terms. Perturbed density eigenfunc-
tions are shown in Fig. 11, which for the bulk ions closely
follow the potential eigenfunction.
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102305-6 Casson et al. Phys. Plasmas 17, 102305 !2010"
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GKV

ITG-TEM
Casson et al (PoP2010)
GKW codes

- Similar results are obtained for 
the cases with hybrid model 
(GT3D&GTC)
Note that ETG roots are omitted in FULL 
results.       
- Good agreement for ITG-
TEM(-ETG) modes with kinetic 
electrons between GKV and 
GKW codes.
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- ITG-TEM-ETG(full-GK elec.) - ITG-TEM(Hybrid elec.) - ETG(with adiabatic ions)

ITG TEM ETG

Parallel mode structures in ITG-TEM-ETG modes    

- Trapped electrons broaden the mode-width in the parallel direction(with hybrid model)  
- But, passing electrons broaden more(with kinetic model), and this is associated with a contribution 
of long-wavelength modes of ETGs.   
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Parallel mode structures in TEM-ETG modes    
- TEM-ETG(full-GK elec.) - ETG(with adiabatic ions)- TEM(Hybrid elec.)

- Passing electrons still broaden the mode-width in the parallel direction, but it indicates 
almost ballooning type structures.  
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- For kinetic electrons (                           )N✓ = 6, 12, 24

- For hybrid electrons (                    )N✓ = 6, 12

2!=!s"k"" starts to become smaller than the ion Larmor
radius, and the ions average over the potential fluctuations
during one gyration, enforcing a Boltzmann response. The
electron component #e does not show the strong peaking
close to " # 0 due to the rapid phase mixing of the
electrons over short scales along the magnetic field.
(Both of these effects can of course be derived formally
from the gyrokinetic equations [9].) Apparently, the giant
tail is caused by the electron fluctuations.

To track down the large amplitude of the electron con-
tribution, we consider the drift-kinetic equation [10]

@the $ vk@khe $ %F0!v=ve"=v3
e&!i!'#$ @t#" # 0; (2)

for the nonadiabatic part,

he!v" ( fe!v" ) %F0!v=ve"=v3
e&e#=T0; (3)

of the fluctuations fe of the electron distribution function,
with i!' # )ik"%n00 $ T0

0!v2=v2
e ) 3"=2& representing the

background density and temperature gradient, and F0!$" (
exp!)$2=2"=!2!"3=2 being the background Maxwell-
distribution of the electrons.

Fourier transforming (2) along the fieldlines results in a
formal solution for the electron response to the ion fluctu-
ations,

he!v; kk" #
!' )!
!) kkvk

%F0!v=ve"=v3
e&#!kk": (4)

Integration of he over velocity space, applying the defi-
nitions (1) and (3), and transforming from the integration
variable v to ! ( v=ve yields

#e!kk" #
Z

he!v; kk"d3v

#
Z !' )!

!) kkve$k
F0!$"#!kk"d3!

( R!kkve"#!kk"; (5)

with the then defined integral response kernel R!kkve".
With (1), this results in a closed system for the electron
perturbation #e,

#e!kk" # R!kkve"%#e!kk" $#i!kk"&: (6)

Following the customary procedure, assuming near-
adiabaticity of the electrons, #e * #i, Eq. (6) is solved
by expanding

#e!kk" # #e1 $#e2 $ + + + ; (7)

where the individual terms are computed by iterative ap-
plication of the electron response formula in Eq. (5) to the
# perturbations, i.e., #e;n$1 # R!kkve"#e;n, #e1 #
R!kkve"#i. The justification for this is that, assuming a
typical parallel wave number kk;0 , 1=!qR" for the mode,
due to Eqs. (4) and (5), R!kkve" - % ( !=!kk;0ve" -
!!!!!!!!!!!!!!

me=mi

p

- 1=60. Each term in the series is expected to
be smaller than the previous one by a factor %.

Knowing #e, #i, the quasilinear particle flux can be
computed by ! # Re!hn'vri" # Re!hn'ik"#i" #
)2k" Im!h#'

e#ii", where vr is the radial E. B velocity,
and hi the flux surface average.

With the rather low %, according to Eq. (4) resonant
contributions to ! can come only from rather slow elec-
trons. For a sufficiently large electron temperature gra-
dient, these electrons have a reversed radial phase space
density gradient, whose turbulent erosion leads to the in-
ward particle flux of the ion mixing mode [1,3].

However, this computation is neglecting the small-kk
Fourier components of #, which are conspicuous from
the appearance of the giant tails in the first place, and for
which R!kkve" may be appreciable (kkve & 1), as seen in a
plot of the analytically computed R!kkve" for cases (a)
and (d) in Fig. 3. One may still hope that, even if for certain
kk the series (7) does not properly converge, the affected
parallel wave numbers are unimportant for the quasilinear
particle transport. But this can be disproved by formally
computing the quasilinear particle flux due to the individ-
ual terms in (7),

!n # )2k" Im
Z

#e;n#'
i dkk

# )2k" Im
Z

R!kkve"nj#i!kk"j2dkk

# )2k"
ve

Im
Z

R!k0"n
"
"
"
"
"
"
"
"
#i

#k0

ve

$""
"
"
"
"
"
"

2
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Since, for large k0, R!k0"n # O!1=k0n", for n / 2 contribu-
tions from k0 & 1 with R!k0" # O!1" dominate in the in-
tegral. Hence, in the interesting limit % ! 0, ve ! 1 one
can approximate j#ij2!k0=ve" , j#ij2!0", and obtain !n #
O!1=ve"k"j#i!0"j2 # O!%"k"j#i!0"j2, which is indepen-
dent of the expansion order n. In other words, due to the
tail, the overall effect of the #e;n on the passing electrons
does not decrease with n and each contribution is of the
same order as that of #e;0. Transforming back to configu-
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FIG. 2. Top: Re%#!""& of the linear mode structures along a
fieldline versus the poloidal angle ", bottom: electron and ion
component Re!#e=i" case (a). The reference case (a) is normal-
ized to #!" # 0" # 1, the other cases are normalized to (a)
according to the tail amplitudes.
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Mode-elongation in parallel direction     

- 4 poloidal turns are enough for ITG-TEM modes with hybrid electrons, but more than 24 
poloidal turns are required to fully resolve the eigenmode with kinetic electrons!     
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- Collisional stabilization and the effect on mode structures in ITG-TEM/TEM modes 
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Collisional effects on ITG-TEM/TEM modes    

- The influence of collisional effects on mode structures is weak. 
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Summary     
- A conventional single-species model on GKV code is extended to multi-species 
one, and then the code-verification is confirmed by benchmark tests with ITG-
TEM-ETG linear stability analyses.     

 - The extended version enables us to treat any number of particle species with a 
MPI-parallelization, to switch kinetic electron responses and hybrid model, and to 
switch self-consistent interactions and the passive limit for impurity ions.

- Good agreements have been confirmed for the ITG-TEM-ETG modes with 
kinetic/hybrid electrons among various (local/global/eigenvalue) codes. 

- In the ITG-TEM, passing electrons significantly broaden the mode-width in the 
parallel direction while the trapped ones do not so much. 

- Quasilinear analyses including impurity ions. 
- TEM turbulence simulations including a convergence check for               and      .

Future works     
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