19th NEXT Workshop 29 – 30Aug.2013, Katsura campus, Kyoto Univ.

Overview of Experimental Research on Energetic-Particle-Driven Modes in 2D and 3D Plasmas

K. Toi

NIFS, Professor Emeritus

Outline

> Motivation and Objectives

Basis of Experiments on EP Driven Instabilities

Recent topics

Summary and Future Prospect

Motivation and Objectives

Significances of Researches on Energetic Particle-MHD Wave Interactions

Self sustainment of D-T burning plasma

 $_{1}D^{2} + _{1}T^{3} \rightarrow _{2}He^{4} (\alpha: 3.5 \text{ MeV}) + _{0}n^{1}(\text{neutron: 14.1 MeV})$

→ Demonstration in ITER(~2026)

DT burning plasma: bulk plasma(~10-20 keV) + minority energetic ions

(0. 2-3.5 MeV) in ITER (n_{hot} << n_{bulk})

Self-organized plasma with less external control nobs

Fusion energy gain $Q=P_{fusion}/P_{heat}=5P_{\alpha}/P_{heat}$ Alpha heating fraction $f_{\alpha}=P_{\alpha}/(P_{\alpha}+P_{heat})$ =Q/(Q+5) Q=1 $f_{\alpha}=17 \%$ Q=5 $f_{\alpha}=50\%$ Q=10 $f_{\alpha}=67 \%$ (ITER) Parameter ranges in experiments on Tokamaks : JET, JT-60U, TFTR, DIII-D, AUG, C-Mod, KSTAR, EAST, HL-IIA ...) Spherical tori (NSTX, MAST) Helical/Stellarators (LHD, CHS, W7-AS, W7-X) ITER $T_{i,e} = 0.2 - 20 \text{ keV}, \quad B=0.1 - 10 \text{ T}$ $q=1 - 10; 1 < R/a < 8, \quad E_f = 0.05 - 1 \text{ MeV},$ $\upsilon_{Ti} << \upsilon_f \sim \upsilon_A << \upsilon_{Te}, \quad \beta_f \lesssim \beta_{bulk}$

DT Burning Plasmas in Tokamak and Stellarator/Helical Reactors

L.P. Ku et al., Fusion Sci. Technol. (2008)

Basis of Experiments on EP Driven Instabilities

Fast Ion Orbits in 2D Plasma (Ideal Tokamak)

- > Adiabatic invariants of guiding center motion : E , μ_B
- in 2D axisymmetric tori: P_φ=m_jRv_φ e_jψ
 E-(n/ω)P_φ is also conserved
 => ΔE=(n/ω)ΔP_φ
 Change in E leads to the change of ψ
 => Particle transport across magnetic surfaces

Alpha particle orbit in TFTR at Bt=5T and Ip=2.5MA Zweben: NF NF (2000)

3D perturbation in actual tokamak plasma(=> 2D plasma+3D perturbations)
(a) Finite number of TF coils & feritic steels => Edge magnetic ripple (toroidicity in 2D plasma=> not 3D effect => passing/trapped orbits)
(a) Resonant magnetic perturbations for ELM control
(a) 3D deformation of plasma by large scale helical instabilities such as RWM and snake

Particle Orbits in Stellarator/Helical Devices with large N

In 3D plamas (non-axisymmetric tori): P_{φ} is not an adiabatic invariant.

- For specific 3D configurations having the following characters
 - 1. Small $\iota/2\pi$ per the toroidal field period :

$$\frac{\iota/2\pi}{N} \ll 1$$

2. Field variation due to toroidicity is smaller than that due to helical ripple: $\frac{\varepsilon_t}{\varepsilon_h} \frac{\iota/2\pi}{N} \ll 1$

=> For passing particles with small λ, P_{φ} is nearly conserved.

Typical particle orbits for various pitchangle in LHD configuration

Guiding center orbits on LHD

Passing particles (λ =54 deg.)

Transition particles (λ =65 deg.)

Helical-ripple trapped particles $(\lambda=75 \text{ deg.})$

AEs in Monotonic and Reversed Magnetic Shear Plasmas in 2D & 3D Plasmas

Shear Alfven Spectral Gaps in 2D Torus

Cylindrical plasma: shear Alfven continua $\omega = k_{1/U_A}$

Tokamak plasma : Coupling of m and m±1 continua

 $k_{I/m} \mathcal{U}_A = -k_{I/m+1} \mathcal{U}_A \qquad \Longrightarrow \mathsf{TAE gap}$

TAE gap frequency: $f_{TAE} = \frac{U_A}{4\pi Rq^*}$ where $q^* = \frac{2m+1}{2n}$ $(1/n_e^{0.5}$ -dependence) n=1 **Coupling of m and m+2** 200 continua => EAE gap $f_{EAE} \sim 2 f_{TAE}$ _ເທ(a.u.) 100 q(r) **Note: No or inverse density** dependence in GAE or **m=**: **RSAE** *frequency* 0.4 0.6 0.8 $f = (k_{//} \upsilon_A) \min_{\text{min or max}} / (2\pi)$ 0.2 r/a depends on q profile evoltion 11

q(r)

2

Typical Example of TAEs in Tokamak Plasmas

2 types of TAEs in a tokamak plasma with monotonic q(r)-profile (positive shear)

- (a) Global type TAE (G-TAE) with multi-m Fourier components
- (b) Core-localized TAE (C-TAE) with two dominant m components, in low shear plasma core region even parity C-TAE(ballooning), odd-parity C-TAE(anti-ballooning)

12

RSAE in RS Plasmas on JT-60U

GAE: just below shear Alfven continua or above the continua (NGAE) **RSAE:** just below or above the continua in a RS plasma **GAE and RSAE composed by a single dominant Fourier mode**

JT-60U (calculated by TASK/WM code) Shear Alfven spectra in the cases of q_{min}=2.8 and 2.5 of JT-60U RS plasma

q_{min}=2.8: RSAE with one dominant Fourier mode q_{min}=2.5: TAE with multi-Fourier modes

Fukuyama et al., 6th IAEA TM on Energetic Particles in Magnetic Confinement Systems, Naka, 1999.
M. Takechi et al., PoP (2005)

OUES

Shear Alfven Gaps in 3D Plasma

Fourier spectra of equilibrium field strength $(|B|/B_o)$ and geometrical structure (metric tensor of magnetic coordinates) |B| expressed by Boozer magnetic coordinates(ψ , θ , φ)

$$B/B_o = 1 + \sum_{\mu,\nu} \varepsilon^{\mu,\nu}(\psi) \cos(\mu\theta - \nu N\phi)$$

Coupling of counter propagating shear Alfven waves

 $\Rightarrow \operatorname{Gap} \quad k_{//m,n} \mathcal{U}_{A} = -k_{//m+\mu,n+\nu N} \mathcal{U}_{A}$

 $(\mu=1, \nu=0) \rightarrow \text{TAE gap},$ $(\mu=2, \nu=1) \rightarrow \text{HAE}_{21} \text{ gap} \quad f_{HAE} \sim Nf_{TAE} \text{ (wide gap)}$

|B| contour at r/a=0.5 on LHD

Toroidal mode coupling takes place in a 3D toroidal plasma with toroidal period number N.

Toroidal mode coupling of n and n' modes on the condition of n' \pm n=kN where k=0, 1, 2,

Number of the mode family

= 1 + N/2 (C. Schwab, PFB5(1993))

Weak toroidal mode coupling in 3D configuration with large N such as LHD => Essential for HAE gap formation => Weak effects on TAE (~2D plasmas)

n' modes that can couple with n=1 mode in various 3D tori

> D.A. Spong et al., 21the IAEA FEC, Geneva, 2008, paper No. TH-3/4.₁₅

Typical Example of Helicity-Induced AE(HAE) in an LHD (3D) Plasma

Observation of HAEs in LHD weak toroidal mode coupling, essential for HAE gap formation

The AE spectra are calculated including toroidal mode coupling with n=2, 8,12, ..., 48 and 52 modes (included 919 Fourier modes)

S. Yamamoto et al., PRL (2003)

Density fluctuations of HAE are observed in the HAE gap near the plasma edge. K. Toi et al., PPCF (2010)

Resonant Wave-Particle Interactions

Energy exchange rate
$$dW/dt$$
:

$$\frac{dW}{dt} \approx e Z_h \mathbf{v}_d \cdot \mathbf{E}_\perp$$

$$\frac{dW}{dt} \sim \sum_{m,n,\mu,\nu} C^{\mu,\nu} \exp[-i\omega t + i(m+\mu)\omega_\theta t - i(n+\nu N)\omega_\varphi t]$$

Resonance condition for efficient energy exchange between wave and partcles:

$$\omega - (m + \mu)_{\omega_{\theta}} + (n + \nu N)_{\omega_{\varphi}} = 0$$

For large aspect ratio tokamak, $\mu=\pm l, \nu=0$

$$\frac{U_{II}}{U_A} = \frac{l}{\pm 2 - l} \qquad l = 1 \rightarrow \text{TAE} \rightarrow |v_{II}/v_{AI}| = 1, 1/3$$
$$l = 2 \rightarrow \text{EAE} \rightarrow |v_{II}/v_{AI}| = 1/2$$

Linear Growth Rate of EP Drive Modes

Adiabatic invariants in 2D plasmas: E, μ and P_{φ} → $E - (n / \omega) P_{\omega}$ is conserved → AE growth rate by EPs: $\gamma_{\alpha} \propto \frac{\partial f_{\alpha o}}{\partial E} = \frac{\lambda \partial f_{\alpha o}}{E \partial \lambda} = \frac{n \partial f_{\alpha o}}{\omega \partial P_{\varphi}}$ Destabilization of $n \neq 0$ AE modes by the 3rd term (due to spatial non-uniformity of EP density) Destabilization of n=0 mode (EP driven GAM, n=0 GAE) by gradients for E and λ in velocity space (Velocity space instabilities)

In 3D plasmas, P_{ϕ} is conserved for passing EPs with small λ => This idea is applicable for passing EPs on LHD

....

Various Fluctuations Induced by EP Driven Modes

Magnetic fluctuations perpendicular to B by shear Alfven eigenmodes: b

Incompressible waves: $\nabla \cdot \boldsymbol{\xi} = \boldsymbol{0}$

Various fluctuations by AEs: Fluctuations of magnetic, density, electron temperature, plasma potential, lost ion flux, and so on

Plasma fluctuation diagnostics: Magnetic probes (b_r, b_θ, b_ϕ) Millimeter wave reflectometer, ECE /ECE imaging (ECEI), Beam emission spectroscopy (BES), Lost ion probe/fast ion loss detector, Heavy ion beam probe (HIBP),

Ideal MHD plasma

 $\mathbf{b} = \nabla \times (\boldsymbol{\xi} \times \mathbf{B})$ $\frac{\delta \rho}{\rho} = -\nabla \cdot \boldsymbol{\xi} - \frac{\boldsymbol{\xi} \cdot \nabla \rho}{\rho}$ $\frac{\delta p}{p} = -\gamma \nabla \cdot \boldsymbol{\xi} - \frac{\boldsymbol{\xi} \cdot \nabla p}{p}$ $\frac{\delta n_e}{n_e} = -\nabla \cdot \boldsymbol{\xi} - \frac{\boldsymbol{\xi} \cdot \nabla n_e}{n_e}$

$$n_{e} \qquad n_{e}$$

$$\frac{\delta T_{e}}{T_{e}} = -(\gamma - 1)\nabla \cdot \xi - \frac{\xi \cdot \nabla T_{e}}{T_{e}}$$

For shear Alfven waves: $\nabla \cdot \xi = 0$ However, toroidal effect leads to

$$\nabla \cdot \boldsymbol{\xi} \approx -\frac{2}{R} (\boldsymbol{\xi} \cdot \mathbf{R}) \neq 0$$

Even for a flat profile, $\delta n_e \neq 0$ and $\delta T_e \neq 0$ ¹⁹

correction of sheared toroidal rotation in NSTX

M. Podesta et al., PoP (2010)

Doppler effect on AE frequencies is important for large *n***AEs in** tokamaks and ST plasmas heated by tangential NBI.

In LHD, only low *n* AEs are excited on the condition of low toroidal rotation speed < 30 km/s, where $R \sim 3.6$ m-3.9m.

=> Doppler effect can be neglected, because $f_{Doppler} \sim n$ (kHz).

1.0

Some Recent Topics

1D Structure of RSAE Measured by ECE

M.A. Van Zeeland et al., PRL(2006).

22

Characteristic Sweeping of RSAE Frequency (Alfven Cascade)

Upward sweeping of RSAE frequency during q_{min} decrease in time

EP effects are important for upward frequency sweeping.

RSAEs are more clearly detected by interferometer than magnetic probe because of internal mode.

Dispersion relation of RSAE:

$$\boldsymbol{\omega}^{2} - \frac{\boldsymbol{\upsilon}_{A}^{2}}{R^{2}} \left(n - m \frac{\boldsymbol{\iota}}{2\pi} \right)^{2} - \left[\boldsymbol{\omega}_{GAM}^{2} + \boldsymbol{\omega}_{\nabla P + \nabla F}^{2} \right] = 0$$

RSAEs in a Reversed Shear Plasma on LHD

Frequency Sweeping in RSAEs

• Eigenmode equation for RSAE *localized at* r=r_o (zero shear surface):

$$\frac{\partial}{\partial x}(S+x^2)\frac{\partial}{\partial x}U_m + (Q-S-x^2)U_m = 0$$
$$x = \frac{m(r-r_o)}{r_o}$$

$$Q = Q_{hot} + Q_{tor} + Q_{press} + Q_{dens} > \frac{1}{4}$$

H.L Berk et al., PRL 2001.
F. Zonca et al., PoP 2002.
B.N. Breizman et al., PoP 2003.
G.Y. Fu & H.L. Berk, PoP 2006.
S.V. Konovalov, PoP 2004.

$$-k_{mo} = (m - nq_{o}) / q_{o}, \ \omega_{o} = \pm \frac{V_{A}}{R_{o}} |-k_{mo}|,$$

$$< j_{//h} > \approx eV_{//h} < n_{//h} >$$

Dominant terms in tokamaks and LHD

$$Q_{hot} \approx q_{o}(-k_{mo}) \frac{q_{o}}{r_{o}^{2}} \frac{\omega_{ch}}{\omega_{o}} \left[1 \pm \frac{V_{\prime\prime h}}{V_{A}} \frac{(-k_{mo})}{|-k_{mo}|} \right]_{r=r_{o}} \left(-\frac{r_{o}}{\rho_{i}} \frac{d\langle \rho_{h} \rangle}{dr} \right)_{r=r}$$

$$Q_{press} = \frac{mq_{o}}{(-k_{mo})} \frac{q_{o}}{r_{o}^{2}} \left[\frac{4\Delta' \overline{\omega}^{2} \alpha - \alpha^{2}/2q_{o}^{2}}{1 - 4k_{mo}^{2}q_{o}^{2}} + \frac{\overline{\kappa}_{r} \alpha}{q_{o}^{2}} \right]$$

K. Toi et al. PRL(2010)

Tokamak: Q>1/4 in upward sweeping=> existence of RSAE Q<1/4 in downward sweeping => no existence of RSAE (rarely observed => "quasi-mode"?) LHD: Q>1/4 by Q_{hot} in downward sweeping and by Q_{press} in upward sweeping => Downward to upward sweeping sequentially

26

Low Frequency Alfven Eigenmodes in AUG

Weakly driven beta induced AEs (BAEs) during a sawtooth cycle. n=5 BAE frequency predicted by the kinetic BAE/GAM dispersion relation evaluated at q=1 BAE accumulation point. It is confirmed by a linear gyro-kinetic code LIGKA.

The frequency and its evolution is consistent with experiments.

=> MHD spectroscopy

Ph. Lauber et al., PPCF (2009)

EP Driven Geodesic Acoustic Mode in Tokamas

EP driven GAM: n=0 mode destabilized by EPs (GAM: N. Winsor, PF(1968)) GAM induced by drift waves => localized mode and electrostatic GAM destabilized by EPs => global modes and partially electromagnetic

In ICRF heated JET plasma: continuous excitation by $\frac{\partial f}{\partial \lambda} \neq 0$ (H.L.Berk et al., NF(2006)) In ctr-NBI heated DIII-D: bursts by $\frac{\partial f}{\partial \lambda} \neq 0$ and/or $\frac{\partial f}{\partial E} > 0$ (R. Nazikian et al., PRL(2008))

EWM/ Off-Axis Fishbone Instabilities in Tokamaks

EWM/ Off axis-fishbones excited by trapped EPs at q=2 in JT-60U and DIII-D Destabilization above ideal beta limit Very large magnetic perturbations of ~ 1G This mode triggers RWM and sometimes ELMs. G. Matsunaga et al., PRL (2009) M. Okabayashi et al., PoP (2011) G. Matsunaga et al., 24th IAEA FEC, San Diego, 2012.

Off-Axis Fishbone Instabilities on LHD

Resistive interchange mode destabilized by helical-ripple trapped EPs at q=1 on LHD => similar to off-axis fishbones in tokamaks Initial frequency ~ Precession poloidal drift frequency of initial beam energy (E=40 keV) Strong drop of toroidal flow velocity at q=1 surface X.D. Du et al., JPS meeting, March 2013, Kansai-gakuin Univ.

Nonlinear Evolution of AEs (1)

Kinetic instability near threshold (bump-on-tail instability model)

Berk-Breizman model: H.L. Berk et al., PRL (1996) Relaxation process to create unstable f(v)Quasi-linear v-space diffusion (ICRF) Krook collision: $v_{eff}(f-f_o)$ => (1)steady-state, (2)periodic, (3)chaotic, (4)explosive(burst) Good agreement with JET data

Lilley model: M.K. Lilley et al., et al., PRL (2009) Electron drag (NBI) => Only " explosive(burst)" is possible Good agreement with MAST & JET

Nonlinear Evolution of AEs (2)

Pitchfork splitting with the same *n* (JET) A. Fasoli et al., PRL(1998)

Chaotic regime (JET) R.F. Heeter et al., PRL(2000)

Good agreement with B-B Model

Pitch fork splitting and steady state regime on LHD in an el. drag dominant case Contradiction to Lilley's theory **Energetic Ion Transport from Core to Edge by TAE & RSAE**

Radial profile of confined energetic ions Are obtained by FIDA (fast ion-fast ion charge exchange recombination)

Large deficit of EPs in the plasma central region by RSAE and TAE, compared with that on no AEs (Redistribution of EPs)

W.W. Heidbrink et al., PRL (2007)

Rax=3.6m, Bt=-0.5T (very low field)=> Large orbit deviation of 170 keV beams TAE peak at r/a~2/3 (f close to the upper bound of the gap)

Convective and Diffusive Losses by AEs on AUG

Fast ion loss detector (FILD) just inside LCFS

Spectrogram of FILD signal: Coherent fluctuations by RSAE & TAE (Resonant interaction between EPs and AEs)

Waveform of FILD signal Incoherent base plus coherent fluctuations Coherent loss (Γ_{coh}): convective loss($\propto b_{TAE}$)

Incoherent loss (Γ_{incoh} **) : diffusive loss (** $\propto b_{TAE}^{2}$ **)**

M. Garcia Munoz et al., PRL(2010)

In LHD, convective and diffusive losses of EPs by TAE bursts are also observed. K. Ogawa et al., NF (2013) 37

Summary and Future Prospect

Summary and Future Prospect

- 1. Good agreement between experiments and MHD theories with kinetic effects for various Alfveneigenmodes (frequency, spatial mode structure, ...) TAEs, RSAEs/GAEs, HAEs, BAEs,
- 2. Progress in AE stability analysis

Measurements of low *n* TAE damping rate in JET and C-Mod => Good agreement with theories (ITPA) Under investigation on damping rate of mid *n* (=10-20) TAEs in JET

Code bench mark test of TAE growth rate in ITPA EP-TG (Less information of EP distribution function in experiments)

3. Intensive Studies of nonlinear AE studies Rapid frequency chirping, spectrum splitting, chaotic spectra => Phase space information may be extracted from nonlinear behaviors of AEs.

Summary and Future Prospect

- 4. Loss and redistribution of energetic ions by EP driven modes in tokamak and helical/stellarators
- 5. Possibility of radial transport of well-slowed down energetic ions $(E=5-10T_e)$ by micro-turbulence
- 6. Favorable aspect of energetic ion driven modes

 (1) MHD spectroscopy by linear characters of EP driven modes
 => Precise information of q-profile
 => Applicability to DEMO

 (2) Stability control of EP-driven modes through *Phase Space Engineering*NBI or ICRF +externally applied MPs
 NBI + ICRF
 - (3) Favorable effects of EP driven modes on bulk plasma confinement Bulk confinement improvement by flow shear generation Slowing down of toroidal current penetration => configuration sustainement of RS configuration K. L. Wong et al., PRL (2004) Transient confinement improvement (K. Toi et al., PPCF (2010))

MHD Spectroscopy Using EP Driven Global Instabilities

K. Toi et al., PPCF 2010.

MHD stability(**"Phase space engineering"**) Change of P_h(r) ? Plasma shielding effect?

A. Bortolon et al., PRL 2013.

Sawtooth control by tuned ion heatings through phase space engineering on JET (J.P. Graves et al., Nature Com. (2013))