

The 19th NEXT Workshop ROHM Plaza, Kyoto University Katsura Campus 2013-08-29

Linear Analysis of Energetic-Particle-Driven Low-Frequency Eigenmodes

A. Fukuyama

Department of Nuclear Engineering, Kyoto University, Kyoto, Japan

Outline

- Full wave approach of linear stability analysis
- Full wave code: TASK/WM

• Analysis of Alfvén eigenmodes

- TAE
- EPM
- TAE in rotating plasmas
- RSAE
- Progress in full wave analysis

• Summary

Full Wave Approach of Linear Stability Analysis

- Conventional analysis of global stability analysis
 - MHD Analysis (Ideal, Resistive)
 - Extended MHD Analysis (Hall, Multi-fluid)
 - MHD including Kinetic Effect (perturbative)
 - Eigen function from MHD analysis
 - Growth rate including kinetic effects
- Issues in MHD analysis
 - Propagation in vacuum
 - Strongly coupled with plasma model
- Full wave approach to global stability analysis
 - Boundary value problem of Maxwell's equation
 - Dielectric tensor describes plasma response
 - Physical damping mechanism

Damping Mechanism of Alfvén Eigenmodes

• MHD model

- Absorption near Alfvén resonance (Continuous spectrum damping)
- Perturbative treatment of kinetic Alfvén waves (Eigen function: MHD, Damping: Kinetic)
 - Radiative damping

(power propagating outward)

Landau damping

(Estimation of parallel wave electric field)

- Kinetic absorption mechanism
 - Electron Landau damping
 - Landau damping of energetic ions

Present Structure of Integrated Modeling Code TASK

• Integrated code for the analysis of toroidal plasmas

2D fixed-/free-boundary equibrium EQ 2D anisotropic pressure equilibrium EX 1D diffusive transport TR (standard data interface) (data interface utility) 1D dynamic transport TX 2D dynamic transport **T2** 1D kinetic transport (3D Fokker-Planck) FP Profile Database 3D ray/beam tracing WR International 3D full wave analysis (2D FFT+ 1D FEM) WM **Tokamak Profile** DB 3D full wave analysis (1D FFT+ 2D FEM) WF Ч Wave dispersion relation DP JT-60 Exp. Data BPSD FIT3D NBI analysis (birth, orbit, deposit) EG Gyrokinetic linear microinstability Simulation DB GNET Drift-Kinetic equation solver **KITES** 3D MHD equilibrium

Full wave code in TASK

• Features of full wave component: TASK/WM

- Boundary value problem of Maxwell's equation
- Various models of dielectric tensor: TASK/DP
- Magnetic surface coordinates from MHD Equilibrium Analysis
- Fourier mode expansion in poloidal and toroidal direction
- Finite difference method in radial direction
- Complex wave frequency to maximize the wave field.

• Other full wave components

- Using finite element method
- Coupling with Fokker-Planck analysis of f(v): TASK/FP
 - Generation of energetic particles

TASK/WM

- Magnetic surface coordinates: (ψ, θ, φ)
 - Non-orthogonal system (including 3D helical configuration)
- Maxwell's equation for stationary wave electric field *E*

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \,\omega \mu_0 \, \boldsymbol{j}_{\text{ext}}$$

- $\overleftarrow{\epsilon}$: Dielectric tensor with kinetic effects: $Z[(\omega - n\omega_c)/k_{\parallel}]$

- Fourier expansion in poloidal and toroidal directions
 - Exact parallel wave number: $k_{||}^{m,n} = (mB^{\theta} + nB^{\varphi})/B$
- **Destabilization by energetic ions** included in $\overleftarrow{\epsilon}$
 - Drift kinetic equation

$$\left[\frac{\partial}{\partial t} + v_{\parallel}\nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}}(v_{\parallel}E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E})\frac{\partial}{\partial\varepsilon}\right]f_{\alpha} = 0$$

- **Eigenvalue problem** for complex wave frequency
 - Maximize wave amplitude for finite excitation proportional to $n_{\rm e}$

Coordinates

Magnetic Surface Coordinates (Non-Orthogonal)

- Minor radius direction: Poloidal Magnetic Flux ψ
- Poloidal direction: θ
- Toroidal direction: φ
- Co-variant expression of E

$$\boldsymbol{E} = E_1 \boldsymbol{e}^1 + E_2 \boldsymbol{e}^2 + E_3 \boldsymbol{e}^3$$

where contra-variant basis

$$e^1 = \nabla \psi, \qquad e^2 = \nabla \theta, \qquad e^3 = \nabla \varphi$$

• J: Jacobian $J = \frac{1}{e^1 \cdot e^2 \times e^3} = \frac{1}{\nabla \psi \cdot \nabla \theta \times \nabla \varphi}$

• g: Metric tensor $g_{ij} = e_i \cdot e_j$, where co-variant basis $e_i \equiv \partial r / \partial x_i$

Wave Equation

 Maxwell's equation for stationary wave electric field E (angular frequency ω, light velocity c)

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\mathrm{ext}}$$

- − ['] → ['] : Dielectric tensor : plasma response
 Cyclotron damping, Landau damping
- j_{ext} : Antenna Current
- Wave equation in non-orthogonal coordinates (radial components)

$$(\nabla \times \nabla \times E)^{1} = \frac{1}{J} \left[\frac{\partial}{\partial x^{2}} \left\{ \frac{g_{31}}{J} \left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}} \right) + \frac{g_{32}}{J} \left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}} \right) + \frac{g_{33}}{J} \left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}} \right) \right\}$$
$$-\frac{\partial}{\partial x^{3}} \left\{ \frac{g_{21}}{J} \left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}} \right) + \frac{g_{22}}{J} \left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}} \right) + \frac{g_{23}}{J} \left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}} \right) \right\} \right]$$
$$\left[(x^{1}, x^{2}, x^{3}) = (\psi, \theta, \varphi)$$

- Similar expression for poloidal and toroidal components

Response of Plasmas

- Usually the dielectric tensor $\overleftarrow{\epsilon}$ is calculated in Cartesian coordinates with static magnetic field along the *z* axis.
- Local normalized orthogonal coordinates

$$\hat{\boldsymbol{e}}_{s} = \frac{\boldsymbol{\nabla}\psi}{|\boldsymbol{\nabla}\psi|}, \quad \hat{\boldsymbol{e}}_{b} = \hat{\boldsymbol{e}}_{h} \times \hat{\boldsymbol{e}}_{\psi}, \quad \hat{\boldsymbol{e}}_{h} = \frac{\boldsymbol{B}_{0}}{|\boldsymbol{B}_{0}|}$$

• Variable Transformation: $\overleftrightarrow{\mu}$

$$\begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix} = \overleftrightarrow{\mu} \cdot \begin{pmatrix} E_s \\ E_b \\ E_h \end{pmatrix}$$

$$\begin{split} \overleftrightarrow{\mu} &\equiv \begin{pmatrix} \frac{1}{\sqrt{g^{11}}} & \frac{d}{\sqrt{Jg^{11}}} & c_2g_{12} + c_3g_{13} \\ 0 & c_3J\sqrt{g^{11}} & c_2g_{22} + c_3g_{23} \\ 0 & -c_2J\sqrt{g^{11}} & c_2g_{22} + c_3g_{23} \\ \end{pmatrix} \qquad \begin{array}{c} c_2 &= B^{\theta}/B, \quad c_2 &= B^{\phi}/B \\ d &= c_2(g_{23}g_{12} - g_{22}g_{31}) + c_3(g_{33}g_{12} - g_{32}g_{31}) \\ g^{11} &= (g_{22}g_{33} - g_{23}g_{32})/J^2 \end{split}$$

• Dielectric tensor in non-orthogonal coordinates:

$$\overleftrightarrow{\epsilon} = \overleftrightarrow{\mu} \cdot \overleftrightarrow{\epsilon}_{sbh} \cdot \overleftrightarrow{\mu}^{-1}$$

- Fourier expansion in poloidal and toroidal directions
- Spatial variation of wave electric field, medium and the L.H.S. of Maxwell's equation

$$E(\psi, \theta, \varphi) = \sum_{mn} E_{mn}(\psi)e^{i(m\theta + n\varphi)}$$
$$G(\psi, \theta, \varphi) = \sum_{lk} G_{lk}(\psi)e^{i(l\theta + kN_p\varphi)}$$
$$J(\nabla \times \nabla \times E) = G(\psi, \theta, \varphi)E(\psi, \theta, \varphi) = \sum_{m'n'} [J(\nabla \times \nabla \times E)]_{m'n'}e^{i(m'\theta + n'\varphi)}$$

Coupling between various modes (N_h : Rotation number of helical coil in φ)

Mode Number	Toroidal Direcition	Poloidal Direction
Wave electric field E	n	т
Medium G	$kN_{ m h}$	l
$J(\mathbf{\nabla} imes \mathbf{\nabla} imes \mathbf{E})$	<i>n'</i>	<i>m</i> ′
Relations	$n' = n + kN_{\rm h}$	m' = m + l

Parallel Wave Number

• **Dielectric tensor** $\overleftarrow{\epsilon}(\psi, \theta, \varphi, k_{\parallel}^{m''n''})$ depends on parallel wave number $k_{\parallel}^{m'',n''}$ through the **plasma dispersion function** $Z[(\omega - N\omega_{cs})/k_{\parallel}^{m''n''}v_{Ts}]$

$$k_{\parallel}^{m'',n''} = -i\hat{\boldsymbol{e}}_h \cdot \boldsymbol{\nabla} = -i\hat{\boldsymbol{e}}_h \cdot (\boldsymbol{\nabla}\theta \frac{\partial}{\partial\theta} + \boldsymbol{\nabla}\varphi \frac{\partial}{\partial\varphi})$$

$$= -i\hat{\boldsymbol{e}}_h \cdot (\boldsymbol{e}^2 \frac{\partial}{\partial \theta} + \boldsymbol{e}^3 \frac{\partial}{\partial \varphi}) = m^{\prime\prime} \frac{B^{\theta}}{|B|} + n^{\prime\prime} \frac{B^{\varphi}}{|B|}$$

• Fourier components of electric displacement

$$(J \overleftrightarrow{\epsilon} \cdot E)^{i} = J \overleftrightarrow{g}^{-1} \cdot \overleftrightarrow{\mu} \cdot \overleftrightarrow{\epsilon}_{sbh} \cdot \overleftrightarrow{\mu}^{-1} \cdot E_{i}$$

$$m' \qquad \ell_{3} \qquad \ell_{2} \qquad \ell_{1} \qquad m$$

$$n' \qquad k_{3} \qquad k_{2} \qquad k_{1} \qquad n$$

therefore

$$m'' = m + \ell_1 + \frac{1}{2}\ell_2 \qquad n'' = n + k_1 + \frac{1}{2}k_2$$
$$m' = m + \ell_1 + \ell_2 + \ell_2 \qquad n' = n + k_1 + k_2 + k_3$$

Destabilization by Energetic Ion

• Drift kinetic equation

$$\left[\frac{\partial}{\partial t} + v_{\parallel}\nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}}(v_{\parallel}E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E})\frac{\partial}{\partial\varepsilon}\right]f_{\alpha} = 0$$

where

$$\varepsilon = \frac{1}{2}m_{\alpha}v^{2}, \quad \mathbf{v}_{\rm E} = \frac{\mathbf{E} \times \mathbf{B}}{B^{2}}, \quad \mathbf{v}_{\rm d} = v_{\rm d}\sin\theta\hat{\mathbf{r}} + v_{\rm d}\cos\theta\hat{\theta},$$
$$v_{\rm d} = \frac{m_{\alpha}}{e_{\alpha}BR} \cdot \frac{v_{\perp}^{2}}{v_{\perp}^{2} + v_{\parallel}^{2}}$$

• Linear response

- Velocity integral of perturbed distribution function
- Poloidal mode coupling due to magnetic drift motion

• Anti-Hermite part of electric susceptibility tensor

$$\overleftrightarrow{\chi}_{mm'} = \begin{pmatrix} 1 & -i & 0 \\ -i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P_{m-1,m-2} \delta_{m',m-2} + \begin{pmatrix} 0 & 0 & Q_{m-1,m-1} \\ 0 & 0 & -i Q_{m-1,m-1} \\ Q_{m,m-1} & -i Q_{m,m-1} & 0 \end{pmatrix} \delta_{m',m-1}$$

$$+ \begin{pmatrix} (P_{m-1,m} + P_{m+1,m}) & i(P_{m-1,m} - P_{m+1,m}) & 0\\ -i(P_{m-1,m} - P_{m+1,m}) & (P_{m-1,m} + P_{m+1,m}) & 0\\ 0 & 0 & R_{m-1,m-1} \end{pmatrix} \delta_{m',m}$$

$$+ \begin{pmatrix} 0 & 0 & Q_{m+1,m+1} \\ 0 & 0 & i Q_{m+1,m+1} \\ Q_{m,m+1} & i Q_{m,m+1} & 0 \end{pmatrix} \delta_{m',m+1} + \begin{pmatrix} 1 & i & 0 \\ i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P_{m+1,m+2} \delta_{m',m+2}$$

• In the case of Maxwellian velocity distribution

$$P_{m,m'} = i \frac{\omega_{p\alpha}^2}{2\omega^2} \left(1 - \frac{\omega_{*\alpha m'}}{\omega}\right) \frac{\rho_{\alpha}^2}{R^2} \sqrt{\pi} x_m \left(\frac{1}{2} + x_m^2 + x_m^4\right) e^{-x_m^2}$$
$$Q_{m,m'} = i \frac{\omega_{p\alpha}^2}{2\omega^2} \left(1 - \frac{\omega_{*\alpha m'}}{\omega}\right) \frac{\rho_{\alpha}}{R} \sqrt{\pi} 2x_m^2 \left(\frac{1}{2} + x_m^2\right) e^{-x_m^2}$$
$$R_{m,m'} = i \frac{\omega_{p\alpha}^2}{2\omega^2} \left(1 - \frac{\omega_{*\alpha m'}}{\omega}\right) \sqrt{\pi} 4x_m^3 e^{-x_m^2}$$

$$x_m = \omega/|k_{\parallel m}|v_{T\alpha}, \qquad \rho_{\alpha} = v_{T\alpha}/\omega_{c\alpha}, \qquad v_{T\alpha} = \sqrt{2T_{\alpha}/m_{\alpha}}$$

Boundary Conditions

- Calculation region surrounded by **perfectly conducting wall** (Vacuum region exists between plasma surface and wall)
- Boundary condition on the conducting wall: Tangential components of *E* vanishes.
 - Co-variant expression ($\boldsymbol{E} = E_1 \nabla \psi + E_2 \nabla \theta + E_3 \nabla \varphi$): $E_2 = 0, E_3 = 0$
- Boundary condition on the magnetic axis ($\psi = 0$): Finiteness of the wave magnetic field and the induced charge density

$$\begin{cases} m = 0 & \frac{\partial E_{\varphi}^{0n}}{\partial \psi} = 0 \\ m \neq 0 & E_{\varphi}^{mn} = 0 \end{cases}$$

Co-variant component E_{θ}^{mn} always vanishes on the axis.

Typical TAE with Positive Magnetic Shear

• Configuration

$$- q(\rho) = q_0 + (q_a - q_0)\rho^2, q_0 = 1, q_a = 2$$

Flat Density Profile

Contour of $|E|^2$ in Complex Frequency Space

Alfvén Frequency

Eigen function

Energetic Particle Mode (EPM)

- Energetic ions can excite EPM with frequency below the TAE frequency gap.
- With β of energetic ions about 0.5%, ω_A and contour of wave amplitude

• Eigenmode structure

Parameter Dependence of Mode Structure

 $n_{\rm F0} = 0 \times 10^{17} \, {\rm m}^{-3}, T_{\rm B} = 0.5 \, {\rm MeV}$

 $n_{\rm F0} = 1 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$

 $n_{\rm F0} = 3 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$

 $n_{\rm F0} = 1 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 1 \,\mathrm{MeV}$

Effect of Toroidal Plasma Rotation

Dispersion Relation including Toroidal Rotation

Dispersion relation

$$\left(k_{\parallel m}^{2} - \frac{(\omega - k_{\parallel m}u)^{2}}{v_{A}^{2}}\right)\left(k_{\parallel m+1}^{2} - \frac{(\omega - k_{\parallel m+1}u)^{2}}{v_{A}^{2}}\right) - \epsilon^{2}\frac{(\omega - k_{\parallel m}u)^{2}(\omega - k_{\parallel m+1}u)^{2}}{v_{A}^{4}} = 0$$

- Parallel wave number $@k_{\parallel m} = \frac{1}{R} \left(n + \frac{m}{q} \right)$
- Alfvén resonance condition without toroidal effect

$$\omega^2 = k_{\parallel m}^2 (u \pm v_A)^2, \qquad \omega^2 = k_{\parallel m+1}^2 (u \pm v_A)^2$$

• Condition for frequency gap

$$k_{||m} (u - v_A) = k_{||m+1}(u + v_A)$$

• Safety factor at TAE gap: q

$$q = -\frac{m+1/2}{n} - \frac{1}{2n}\frac{u}{v_{\rm A}}$$

• **TAE gap frequency** ω : parabolic with respect to u

$$\omega = \frac{v_{\rm A}}{2qR} \left(1 - \frac{u^2}{v_{\rm A}^2} \right)$$

Effect of Rotation on n = 1 mode

n = 1 **Eigenmode for JT-60U parameters**

Dependence of eigen frequency and damping rate on

Rotation Velocity

Velocity Gradient

Effect of Rotation on n = 7 mode

- Ref. M. Saigusa et al., Nucl. Fusion **37** (1997) 1559.
- n = 7, $m = -17 \sim -3$, f = 223 kHz Good agreement with Nova-K

• Rotation velocity dependence: Stabilizing for co rotation (Contradict with exp.)

Influence of poloidal mode range : n = 7 mode

• n = 7, $m = -21 \sim -7$, f = 238 kHzFDestabilizing for co-rotation (agree with exp.)

AE in the Reversed Magnetic Shear Configuration (JT-60U)

• Takechi et al. IAEA 2002 (Lyon) EX/W-6

Observed frequency calculated frequency

First observation of RSAE by TASK/WM

• Analysis of AE in RS Configuration at TCM on EP in 1997.

IAEA Technical Committee Meeting on Alpha-Particles in Fusion Research September 8–11, 1997 JET, Abington, UK

Kinetic Analysis of TAE in Tokamaks and Helical Devices

A. Fukuyama and T. Tohnai

Faculty of Engineering, Okayama University, Okayan

Fig.4: Radial profile of q (a), resonance frequency (b) and eigen function (c) in the case of negative shear; q(0) = 3, $q_{\min} = 2$, q(a) = 5 and n = 1.

Fig.5: q_{\min} dependence of the eigen frequency; real part (a) and imaginary part (b)

Analysis of AE in Reversed Shear Configuration

q

 q_a

 q_0

q_{min}

q_{\min} Dependence of Eigenmode Frequency

RSAE (reversed-shear-induced Alfvén eigenmode) for $\ell + \frac{1}{2} < q_{\min} < \ell + 1$

q_{min} Dependence of Radial Structure of Alfvén resonance

Eigenmode Structure (n = 1)

-

Excitation by Energetic Particles ($q_{\min} = 2.6$ **)**

Variety of numerical schemes

module	system	scheme
WM	torus	toroidal & poloidal: FFT, radial: FDM
WMF	torus	toroidal & poloidal: FFT, radial: FEM
WF2D	torus	toroidal: FFT, poloidal and radial: FEM
WF3D	Cartesian	<i>x</i> , <i>y</i> , <i>z</i> : FEM

- Merit of FEM: Flexibility of mesh, sparse matrix, localized analysis

• Extension of dielectric tensor

- Uniform, kinetic, Maxwellian, Fourier expansion
- Nonuniform, gyro kinetic, Maxwellian, Fourier expansion
- Nonuniform, kinetic, Maxwellian, Integral form
- Uniform, kinetic, arbitrary f(v), Fourier expansion
- Nonuniform, gyro kinetic, arbitrary f(v), Fourier expansion
- Coupling with Fokker-Planck analysis of f(v)

Momentum Distribution Functions

• Radial diffusion proportional to $E^{-1/2}$ reduces energetic ions in the outer region.

Summary

- Full wave approach of linear stability analysis is powerful for systematic analysis of various kinds of global eigenmodes.
 - Alfvén eigenmodes
 - Resistive wall mode, internal kink mode, ···
- Kinetic effects of energetic particles and bulk species can be included in the dielectric tensor, though non-uniformity and gyrokinetic effects may complicate the derivation.
- A variety of Alfvén eigenmodes have been analyzed by TASK/WM and the results were compared with other codes and experimental observations.
- Large scale computer will enable us to carry out systematic parameter survey in more realistic plasma models for future reactors..