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Outline

Linear stability condition for flowing plasma is difficult to derive theoretically, even
for ideal plasmas.

• Non-selfadjoint eigenvalue problem (⇔ shear flow)

• Singular differential equation (⇔ continuous spectrum)

• Variational methods give only sufficient conditions for stability
(e.g. Energy principle)

⇒
�



�
	It is hard to prove instability for a given equilibrium flow

(unless the rare analytical solution exists).

In this work, we attempt to improve the variational method so as to
give the necessary and sufficient condition for stability.

• Rayleigh equation (i.e., stability of parallel shear flow)

• Vlasov-Poisson equation

• Ideal MHD equation
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Energy principle (Rayleigh-Ritz variational method)

Linear perturbations of ideal fluid and plasma are governed by “Newton’s 2nd law
of motion” in terms of displacement field ξ. [Low 1958, Frieman & Rotenberg 1960]

For ideal MHD, ρ

(
∂

∂t
+U · ∇

)2

ξ =Fξ

In the absence of flow (U = 0), the necessary and sufficient condition for spectral
stability is that the potential energy δ2W = −

∫
ξ · Fξd3x is positive definite.

[Bernstein et al. 1958]

Energy principle : (Growth rate)2 = max
ξ

∫
ξ · Fξd3x∫
ρ|ξ|2d3x

• F is selfadjoint with respect to the norm
∫
ρ|ξ|2d3x.

• We can prove instability without solving
the equation of motion.

• Instability mechanism is intuitive.
Stable Unstable
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Difficulty of flow stability

However, the Energy principle is not valid in the presence of flow U .

ρ
∂2ξ

∂t2
+ 2ρU · ∇∂ξ

∂t
= Fξ − ρU · ∇(U · ∇ξ)

Coriolis force Centrifugal force

• The potential energy is positive definite ⇒ Stable
(only sufficient condition)

• Owing to the gyroscopic term, the equilibrium can be stable even when the
potential energy is negative.

Analogy: Precession of spinning top

This neutrally stable mode has negative
perturbation energy (which is destabilized
by dissipation).

⇒
:::::::::
Variational

:::::::
method

:::::::
cannot

::::::
obtain

:::
the

::::::::::
necessary

::::
and

::::::::
sufficient

:::::::::
condition!
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Difficulty of flow stability (continued)

Krein’s theory (1950): Instability of Hamiltonian system is cause by resonace be-
tween positive energy mode and negative energy mode.

Complex frequency plane

0

growing

damping

(Hamiltonian Hopf bifurcation)

• However, it is difficult to predict this instability unless the eigenvalue problem
is actually solved.

• Krein’s theory is not established for
:::::::::
continuous

:::::::::
spectrum.

+ We first consider the Rayleigh equation as the simplest problem of flow stability.
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Rayleigh equation ∼ Stability of inviscid parallel shear flow ∼

Basic flow U = U(x)ey, Distrubance ũ = ∇[ϕ(x)e−iωt+iky + c.c.]× ez, (ω ∈ C, k ∈ R)

(c− U)(ϕ′′ − k2ϕ) + U ′′ϕ = 0, ϕ(−L) = ϕ(L) = 0

If there exists an eigenvalue c = ω/k with Im c > 0, the flow is spectrally unstable.
• The most classical hydrodynamic stability

problem

• Non-selfadjoint eigenvalue problem with sin-
gularity (continuous spectrum)

• Stability boundary is sensitive to the velocity
profile U(x) and still nontrivial.

Kelvin-Helmholtz instability
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History

• 1880 Rayleigh
No inflection point (U ′′ ̸= 0) ⇒ Stable

• 1950 Fjørtoft
One inflection point xI and U ′′(U − UI) > 0 where UI = U(xI) ⇒ Stable

• 1964 Rosenbluth & Simon (Nyquist method)
In the limit k → 0,

1

U ′(U − UI)

∣∣∣∣L
−L

+

∫ L

−L

U ′′

U ′2(U − UI)
dx > 0 ⇔ Stable

• 1969 Arnold (variational method)
δ2E is poitive or negative definite ⇒ Stable

• 1999 Balmforth & Morrison (Nyquist method) ⋆

• 2003, 2005 Lin (justification of Tollmien’s heuristic method) ⋆

⋆ These methods need to solve the Rayleigh equation in some way, and the necessary and
sufficient condition is still ambiguous when there are multiple inflection points.

+
We will improve Arnold’s variational method and present the necessary
and sufficient stability condition for a class of shear flows.
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Arnold’s variational method

(Arnold 1969) The shear flow U is stable if the second variation of the energy,

δ2E =

∫ L

−L

(U · δ2u+ |δu|2)dx =

∫ L

−L

ξU ′′[Uξ −∆−1(U ′′ξ)]dx,

is either positive or negative definite, where ξ is the fluid displacement and ∆ϕ :=
ϕ′′ − k2ϕ.

Remarks

• Rayleigh equation has a continuous spectrum
c = ω/k ∈ {U(x) ∈ R ; x ∈ [−L,L]}.
(Case 1960)

• Sign of the energy of continuous spectrum
= Sign of UU ′′

(Balmforth & Morrison 2002, Hirota & Fukumoto 2008)

• Kelvin-Helmholtz instability occurs at a contact
point between positive- and negative-energy con-
tinuous spectra.

· · · Analogous to Krein’s theory

growing

damping

0
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Basic idea of our approach

Suppose that U(x) has only one inflection point x = xI .
In the inertial frame moving at the velocity UI = U(xI), the energy δ2E becomes

δ2EI =

∫ L

−L

ξU ′′[(U−UI)ξ −∆−1(U ′′ξ)]dx.

• If U ′′(U − UI) ≥ 0 for all x, the flow is stable (Fjørtoft 1950).

• If U ′′(U − UI) ≤ 0 for all x,

growing

damping

0

⇒
growing

damping

0

In this frame, the energy of the continuous spectrum is all negative.

⇒
:::
The

::::
flow

:::::
must

:::
be

::::::::
unstable

:::::::::::
if and only if

:::::::::
δ2EI > 0

::
for

::::::
some

::
ξ.
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Necessary and sufficient stability condition

Assumption:
1) U(x) is an analytic, bounded and strictly monotonic function on [−L,L].
2) if U ′′(xI) = 0 at x = xI , then U ′′′(xI) ̸= 0.

Theorem:
Denote the inflection points of U(x) by xIn, n = 1, 2, . . . , N , and define UIn = U(xIn).
The shear flow is spectrally stable if and only if the quadratic form,

Q = ν

∫ L

−L

ξ

N∏
n=1

[
(U − UIn)− U ′′∆−1]U ′′ξdx,

is not positive for all ξ ∈ L2, where either ν = 1 or ν = −1 is chosen such that

νU ′′
N∏

n=1

(U − UIn) ≤ 0 for all x.
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Namely,

max
ξ

Q

∥ξ∥2
> 0 ⇔ Unstable

• Q ≤ 0 for the continuous spectrum

Q > 0 for the discrete spectra

• Number of the positive signature of Q is
equal to number of the unstable modes.

• By extending the functional space L2 of ξ
to other Hilbert spaces, one can technically
remove the continuous spectrum.

• Unlike Rayleigh-Ritz method, the value
maxQ/∥ξ∥2 is not quantitatively related to
the growth rate.

0
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Numerical verification

For a given velocity profile U(x), we compare the results of two different numerical
codes;

Rayleigh equation Variational criterion maxQ/∥ξ∥2

non-selfadjoint selfadjoint

c1, c2, · · · ∈ C λ1 > λ2 > · · · ∈ R

ϕ(x) ∈ C ξ(x) ∈ R

Im cj > 0 ⇔ Unstable λ1 > 0 ⇔ Unstable

singular as Im c → +0 non-singular around λ = 0
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Example 1

U(x) = tanh(x), x ∈ [−∞,∞]
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Example 2 (Three inflection points)

U(x) = x+ 5x3 + 1.62 tanh[4(x− 0.5)], x ∈ [−1, 1]
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Example 3 (Five inflection points)

U(x) = x− 0.02 + sin[8(x− 0.02)]/16, x ∈ [−1, 1]
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Ideal MHD stability of gravitating plasma slab
Eigenvalue problem (for interchange instability){

ρ
[
(c− U)2 − U2

A

]
ξ′
}′ −

{
k2ρ

[
(c− U)2 − U2

A

]
+ ρ′g0

}
ξ = 0, ξ(−L) = ξ(L) = 0

where U(x) = k ·U(x)/k and UA(x) = k ·B(x)/k
√
ρµ0.

Theorem: Suppose that
1) there is only one resonant surface x = xs which satisfies UA(xs) = 0
2) |UA| > |U − Us| for all x, where Us = U(xs).

The equilibrium is spectrally stable if and only if

Q =

∫ L

−L

{
−ρ

[
U2
A − (U − Us)

2
] (

|ξ′|2 + k2|ξ|2
)
+ ρ′g0|ξ|2

}
dx,

is not positive for all ξ ∈ L2.

0

Shear flow U is always destabilizing.
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max
ξ

Q

∥ξ∥2
> 0 ⇔ Unstable

Remarks

• Q = −δ2W =
∫
ξ · [F − ρUs · ∇(Us · ∇)]ξd3x

• Q ≤ 0 for Alfvén continuous spectrum

Q > 0 for unstable eigenmodes

• Local stability at resonant surface x = xs is determined by the
::::::::
modified

:::::::
Suydam

::::::::
criterion (Bondeson et al. 1987)

1

4
<

ρ′g0
ρ(U ′2

A − U ′2)

∣∣∣∣
x=xs

⇒ Unstable
(

Infinite sequence of
unstable modes in
the vicinity of x = xs

)
• By adopting the L2-norm ∥ξ∥2 =

∫
|ξ|2dx, the Alfvén continuous spectrum is

removed from this variational problem.

For the static case (i.e., Newcomb equation), Tokuda & Watanabe (1997) proposed
the same idea and employed the weighted-norm ∥ξ∥2 =

∫
(x−xs)

2|ξ|2dx in MARG1D
and MARG2D codes.
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Example (global interchange instability triggered by shear flow)

Equilibrium (Suydam stable)

g0 = 0.2, k = 1.0
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λ1 = maxQ/∥ξ∥2 > 0 ⇔ Instability Im c > 0
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Stable interchange mode (or gravito-Alfvén wave) is Doppler-shifted by shear flow
and destabilized by Alfvén resonance.
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Summary

• For the stability of shear flow, we have shown that the variational method can
be further improved so as to give the necessary and sufficient condition.�

�
�
�max Q

∥ξ∥2 > 0 ⇔ Unstable

– Hydrodynamic stability of inviscid parallel shear flow (Rayleigh equation)
– Ideal MHD stability of gravitating plasma slab

• We can prove instability by finding some test function (virtual displacement)
that makes the quadratic form Q positive, which is analytically and numerically
feasible without knowing the rigorous solutions of the equation.

• The singularity at the stability boundary can be removed by choosing an ap-
propriate norm ∥ξ∥ for the functional space.

• We can determine the stability more
::::::::
efficiently

::::
and

::::::::::
accurately than directly

solving the non-selfadjoint and singular eigenvalue equation.

• This variational approach is expected to be applicable to other hydrodynamic
stability problems.


