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Outline

Linear stability condition for flowing plasma is difficult to derive theoretically, even
for ideal plasmas.
e Non-selfadjoint eigenvalue problem (< shear flow)
e Singular differential equation (< continuous spectrum)

e Variational methods give only sufficient conditions for stability
(e.g. Energy principle)

It is hard to prove instability for a given equilibrium flow
(unless the rare analytical solution exists).

In this work, we attempt to improve the variational method so as to
give the necessary and sufficient condition for stability.

e | Rayleigh equation | (i.e., stability of parallel shear flow)

e | Vlasov-Poisson equation

e | Ideal MHD equation
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Energy principle (Rayleigh-Ritz variational method)

Linear perturbations of ideal fluid and plasma are governed by “Newton’s 2nd law
of motion” in terms of displacement field &. [Low 1958, Frieman & Rotenberg 1960]

2
For ideal MHD, (% LU- v) ¢ =F¢

In the absence of flow (U = 0), the necessary and sufficient condition for spectral
stability is that the potential energy 6°W = — [ & - F&€d?x is positive definite.
[Bernstein et al. 1958]

i [E&- Féd3x
e [plePda

Energy principle :  (Growth rate)” =

e F is selfadjoint with respect to the norm [ p|¢|?d3z.

e We can prove instability without solving
the equation of motion.

¢ Instability mechanism is intuitive.

Unstable
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Difficulty of flow stability

However, the Energy principle is not valid in the presence of flow U .

0°¢ 0¢
2 99l - V==F¢t — U -V(U -V
P op + 2p o §—p ( §)
Coriolis force Centrifugal force

e The potential energy is positive definite = Stable
(only sufficient condition)

e Owing to the gyroscopic term, the equilibrium can be stable even when the
potential energy is negative.

Analogy: Precession of spinning top

Precession

This neutrally stable mode has negative
perturbation energy (which is destabilized
by dissipation). )

= Variational method cannot obtain the necessary and sufficient condition!
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Difficulty of flow stability (continued)

Krein’s theory (1950): Instability of Hamiltonian system is cause by resonace be-
tween positive energy mode and negative energy mode.

Complex frequency plane

Imwa
growing
? ? Rew
® .In o 0 O .I‘ *o—>
damping

(Hamiltonian Hopf bifurcation)

e However, it is difficult to predict this instability unless the eigenvalue problem
is actually solved.

e Krein’s theory is not established for continuous spectrum.

= We first consider the Rayleigh equation as the simplest problem of flow stability.
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Rayleigh equation ~ stability of inviscid parallel shear flow ~

Basic flow U = U(x)e,, Distrubance @ = V[¢(z)e ¥ +c.c] x e,, (w € C, k €R)
(c=U)(¢" —K¢)+U"¢=0,  ¢(-L)=¢(L)=0

If there exists an eigenvalue ¢ = w/k with Im ¢ > 0, the flow is spectrally unstable.

e The most classical hydrodynamic stability
problem L

A

/
S U(z)

e Non-selfadjoint eigenvalue problem with sin-
gularity (continuous spectrum) e
e Stability boundary is sensitive to the velocity L

profile U (x) and still nontrivial.

Kelvin-Helmholtz instability
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History

e 1880 Rayleigh
No inflection point (U" # 0) = Stable

e 1950 Fjgrtoft
One inflection point x; and U"” (U — Ur) > 0 where U; = U(xz;) = Stable

e 1964 Rosenbluth & Simon (Nyquist method)
In the limit £ — O,

1 L L U//
d 0 < Stable
0w —un|_, +/L 00—

e 1969 Arnold (variational method)
6°E is poitive or negative definite = Stable

e 1999 Balmforth & Morrison (Nyquist method) =
e 2003, 2005 Lin (justification of Tollmien’s heuristic method) *

* These methods need to solve the Rayleigh equation in some way, and the necessary and
sufficient condition is still ambiguous when there are multiple inflection points.

We will improve Arnold’s variational method and present the necessary
and sufficient stability condition for a class of shear flows.
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Arnold’s variational method

(Arnold 1969) The shear flow U is stable if the second variation of the energy,
L L B
0*FE = / (U - 8%u + |du|?)dz = / U UE — A~HU"E)dx,
— L —L

is either positive or negative definite, where ¢ is the fluid displacement and A¢ :=

¢// . kQQb.

Remarks
X

e Rayleigh equation has a continuous spectrum L L)
c=w/ke{U(x) eR; ze|[-L,L|}. T o
(Case 1960) Ty /

e Sign of the energy of continuous spectrum 7 > 0
= Sign of UU" —L
(Balmforth & Morrison 2002, Hirota & Fukumoto 2008)

I N rowin

e Kelvin-Helmholtz instability occurs at a contact e ¥g ;
point between positive- and negative-energy con- ; i Ree
tinuous spectra. daming

.-+ Analogous to Krein’s theory
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Basic idea of our approach

Suppose that U(z) has only one inflection point x = z;.
In the inertial frame moving at the velocity U; = U(z;), the energy 6°FE becomes

L —
§°Er = /_ i cU"[(U-UpDE - AHU"E)]d.

o IfU"(U — Uy) > 0forall z, the flow is stable (Fjartoft 1950).
o IfU"(U—-Ur) <0 forall z,

z U() : Yy U

~)Qf” <0 U’ <0
Iy Xr

U"” >0 U” >0
—L ; —L

Ime growing Imec
% +growirg

0
i Rec 0 Rec
damping

damping

In this frame, the energy of the continuous spectrum is all negative.

= The flow must be unstable if and only if 62 E; > 0 for some €.
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Necessary and sufficient stability condition

Assumption:

1) U(x) is an analytic, bounded and strictly monotonic function on [—L, L].
2)ifU"(xz;) =0atxz =z, then U (x) # 0.

Theorem:
Denote the inflection points of U(x) by 1., n = 1,2,..., N, and define Uy, = U(x1n).
The shear flow is specitrally stable if and only if the quadratic form,

L N
Q = y/ 1] [U = Ur) —U"AT U"¢da,
L n=1

is not positive for all ¢ € L?, where either v = 1 or v = —1 is chosen such that

N
vU" 1[(U = Un) <0 forall z.
n=1
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Namely,
Q
max —-— >0 <« Unstable
¢ Il
e () < 0 for the continuous spectrum
(Q > 0 for the discrete spectra ['”f U(x)
e Number of the positive signature of (Q is 1o 7U" >0
equal to number of the unstable modes. X i —
I1
e By extending the functional space L? of ¢ r vt
to other Hilbert spaces, one can technically U Ur
remove the continuous spectrum. Imcy
P3
e Unlike Rayleigh-Ritz method, the value 0 I 1 Rec

max Q/[|£]|? is not quantitatively related to
the growth rate.



Numerical verification

12/20

For a given velocity profile U(x), we compare the results of two different numerical

codes:

Rayleigh equation

Variational criterion max Q/||¢]|?

non-selfadjoint
c1,Co, - €C
o(x) € C
Imec; > 0 < Unstable

singular as Imc¢ — +0

selfadjoint

AM >N >---€R
E(x) eR

A1 > 0 < Unstable

non-singular around A = 0
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Example 1

Im C o4 as k decreases 5\1 = maXQ/f ’€|2d:6
oL ] A =maxQ/ [ |U"¢2d

0
Rec
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Example 2 (Three inflection points)

U(z) =z + 52° + 1.62tanh[4(x — 0.5)], € [-1,1]

0.02 ¢

0.01 ¢

Ime o

-0.01

-0.02

Rec
0.02 - H
Imcgy | ] l as k decreases
0 ] ol ks 0k
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Example 3 (Five inflection points)

U(x) =z —0.02 +sin[8(x — 0.02)] /16, =z € [—1,1]

0.2 | - 0.2 f
A 0
| as k decreases Rec 005

Im C
0.1} | :0.4 !

&\ 1% O 05 1 15 2 25 3 35 4

05 1 L

0
Rec
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ldeal MHD stability of gravitating plasma slab
Eigenvalue problem (for interchange instability)
{pl(c=U-UZ €Y = {Kp[(c—U)* —Ui] +p'g}£=0, &(-L)=¢L)=0

where U(z) = k-U(z)/kand Ua(x) = k - B(x)/k\/ppo.

Theorem: Suppose that
1) there is only one resonant surface x = x, which satisfies Us(zs) = 0
2) [Ua| > |U — Ug| for all z, where U; = U(x,).

The equilibrium is spectrally stable if and only if

L
Q- /_ Ap [V = U = U] (€7 + K1) + plonlel*} da,

is not positive for all £ € L2.

T v '90 Shear flow U is always destabilizing.

Us
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>0 <« Unstable

max

Q
& lIgl?
Remarks
e Q=-0W=[€& [F—-pU, V(U,-V)Edz
e () < 0 for Alfvén continuous spectrum

2 > 0 for unstable eigenmodes

e Local stability at resonant surface * = x, is determined by the modified
Suydam criterion (Bondeson et al. 1987)

0’ g0 Infinite sequence of
< = Unstable unstable modes in

1
4 P(UE —U") the vicinity of z = x4

e By adopting the L?-norm ||£||? = [ |¢|*dz, the Alfvén continuous spectrum is
removed from this variational problem.

For the static case (i.e., Newcomb equation), Tokuda & Watanabe (1997) proposed
the same idea and employed the weighted-norm ||¢||* = [(z — z5)?|¢|*dz in MARG1D
and MARG2D codes.



Example (global interchange instability triggered by shear flow)

Equilibrium (Suydam stable)
go — 0.2, k=1.0
1P
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A1 = max Q/[|£||? > 0 < Instability ITmc > 0
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Alfven continuous spectra /k
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Stable interchange mode (or gravito-Alfvén wave) is Doppler-shifted by shear flow
and destabilized by Alfvén resonance.
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Summary

e For the stability of shear flow, we have shown that the variational method can
be further improved so as to give the necessary and sufficient condition.

(max ﬁ >0 < Unstable}

— Hydrodynamic stability of inviscid parallel shear flow (Rayleigh equation)
— Ideal MHD stability of gravitating plasma slab
e We can prove instability by finding some test function (virtual displacement)

that makes the quadratic form @ positive, which is analytically and numerically
feasible without knowing the rigorous solutions of the equation.

e The singularity at the stability boundary can be removed by choosing an ap-
propriate norm ||&|| for the functional space.

e We can determine the stability more efficiently and accurately than directly
solving the non-selfadjoint and singular eigenvalue equation.

e This variational approach is expected to be applicable to other hydrodynamic
stability problems.



