Simulation Study on the Linear Properties and Nonlinear Frequency Chirping of EGAM in LHD

Hao WANG¹, Yasushi TODO¹, Charlson C. KIM², and Masaki OSAKABE¹

¹National Institute for Fusion Science, Toki 509-5292, Japan ²FAR-TECH, Inc., San Diego, California 92121-1136, USA

> The 19th NEXT Workshop August 29th, 2013 Kyoto, Japan

- Introduction
- Nonlinear Frequency Chirping
- 3 Linear Properties
- **Summary and Future Work**

- Introduction
- **Nonlinear Frequency Chirping**
- **Summary and Future Work**

Geodesic acoustic mode (GAM) is a kind of electrostatic mode with n=0, and it is a finite frequency oscillatory zonal flow

- It can be driven by both plasma micro-turbulence, TAE mode^a, and energetic particles.
- In DIII-D, the energetic particle driven GAM (EGAM) causes neutron emission drops^b.

^aY. Todo, Nucl. Fusion, (2010) ^bR. Nazikian, *Phys. Rev. Lett.*, (2008)

Introduction of MEGA code¹

¹Y. Todo, *Phys. of Plasmas*, (2006)

- Nonlinear Frequency Chirping
- **Summary and Future Work**

EGAM experiments in LHD² and JET³

²T. IDO et al, Nucl. Fusion, (2011).

³H. L. Berk *et al*, *Nucl. Fusion*, (2006).

Analytical Form of Distribution Function

Velocity distribution f(v) is slowing down type.

$$f(v) = \frac{1}{v^3 + v_c^3} \tag{1}$$

where v is particle velocity and v_c is critical velocity.

Pitch angle \wedge distribution $g(\wedge)$ is Gaussian type.

$$g(\Lambda) = exp\left[-\left(\frac{\Lambda - \Lambda_{peak}}{\Delta \Lambda}\right)^{2}\right]$$
 (2)

where $\Lambda = \mu B_0/E$, μ is magnetic moment, B_0 is magnetic field strength at the magnetic axis, and E is the energy.

Charge exchange is not considered.

Simulation parameters

- The distribution f(v) is slowing down type.
- q profile is weak shear.
- Simulation parameters based on an LHD experiment⁴: $B_0 = 1.5T$, $n_e = 0.1 \times 10^{19}/m^3$, $T_e = 4 \text{keV}$, $\beta_0 = 7.2 \times 10^{-4}$, α profiles.

⁴T. IDO et al., in 23rd IAEA Fusion Energy Conference, Daejon, 2010

Nonlinear frequency chirping

MEGA Simulation

H. Wang, Y. Todo, and C. C. Kim, Phys. Rev. Lett. (2013)

- The figures: δf distribution at t = 0.54 ms, t = 0.80 ms, and t = 1.25 ms.
- Hole-clump pairs are created along the $\mu = constant$ curves in the nonlinear phase.
- Particle transit frequency: $f_{tr} = \sqrt{1 \Lambda} v / (2\pi q R_0)$.
- q = 2.0 is a constant in the present f_{tr} calculation.
- The transit frequencies of the holes and clumps shift with the mode frequency chirping.

δ f v.s. transit frequency f_{tr} along $\mu = 15 \text{ keV/T}$

- The peak and bottom values are marked with straight lines.
- From time=0.51ms to 0.92ms, the f_{tr} of clump decreases and the f_{tr} of holes increases.

Mode frequency and f_{tr} of the hole and clump

- The green dots represent the f_{tr} of the hole.
- The cyan squares represent the f_{tr} of the clump.
- The transit frequencies of the hole and the clump are in good agreement with the mode frequencies.

- BLACK: particles in the holes.
- GREEN: particles in the clumps.
- The f_{tr} of these particles are consistent with mode frequency.
- This indicates the particles in the holes and clumps are kept resonant with the EGAM.

Linear Properties

- **Nonlinear Frequency Chirping**
- 3 Linear Properties
- **Summary and Future Work**

Two kinds of EGAMs in LHD with similar experimental parameters

- The conventional EGAM (left) frequency is proportional to the square root of plasma temperature.⁵
- The new kind of EGAM (right) frequency is independent of plasma temperature.⁶
- The experimental parameters are similar: $B_0 = 1.5T$, n_e is $1.0 \times 10^{18}/m^3$ and $0.8 \times 10^{18}/m^3$, E_{NBI} is 170 keV and 180 keV.

⁵T. Ido et al., in *23rd IAEA Fusion Energy Conference, Daejon, 2010*

⁶M. Osakabe, discussion in NIFS.

Analytical form of distribution function

Velocity distribution f(v) is slowing down with charge exchange.

$$f(v) = Ce^{-I(v)} \tag{3}$$

$$I = \int_0^V \frac{3u^2 - u^2 \tau_s / \tau_{cx}(u)}{u^3 + v_o^3} du$$
 (4)

where C is integration constant, τ_s is slowing down time, τ_{cx} is charge exchange time.

Pitch angle \wedge distribution $g(\wedge)$ is Gaussian type.

It is same as that in the last section.

- For the curves w/ charge exchange, $\tau_{cx}/\tau_{s}\approx 10^{11}$.
- The distribution in these 2 cases are almost same.
- The frequency in these 2 cases are same, and growth rate is close to each other.

Simulation parameters

- Various τ_{cx} values are applied to the present work.
- The case with $\tau_{cx}(v_{NBI}) = 0.8s$ is most commonly used. This value is inferred from the experiment, and it is about 10% of slowing down time.
- The other simulation parameters (q, density, T, E_{NBI} , B_0 , etc) are same as that in the last section.

The relation between frequency and temperature

- EGAM frequency is proportional to \sqrt{T} for the case w/o charge exchange.
- EGAM frequency with higher T is independent of T for the case w/ charge exchange.
- EGAM frequency with lower T is similar for both cases w/ and w/o charge exchange.
- $\beta_h = 0.3\%$.

Frequency and growth rate versus $au_{CX}(v_{NBI})$

- The distribution is flatter for longer $\tau_{cx}(v_{NBI})$.
- Frequency decreases with $\tau_{cx}(v_{NBI})$ increases.
- Growth rate increases with $\tau_{cx}(v_{NBI})$ increases.
- $\beta_h = 0.3\%$, and T = 4keV.

- Frequency decreases with ΔΛ increases.
- $\tau_{cx}(v_{NBI}) = 0.8s$ and $\beta_h = 0.3\%$.
- This tendency is stronger than the previous result w/o charge exchange.7

⁷H. Wang and Y. Todo, *Phys. Plasmas* (2013)

Linear Properties

- The poloidal mode number for v_{θ} , density, δB_r and δB_{θ} is 0, 1, 2 and 2, respectively.
- $\tau_{cx}(v_{NBI}) = 0.8s$, $\beta_h = 0.3\%$, T = 4keV and $\Delta \Lambda = 0.2$.
- It is similar with the previous result w/o charge exchange.⁸

⁸H. Wang and Y. Todo, *Phys. Plasmas* (2013)

EGAM is global

MEGA Simulation

EGAM w/o charge exchange:

- The EGAM frequency is spatially constant: global mode.
- It is consistent with theoretical prediction ^a and experimental observation^b.

The results of EGAM w/ charge exchange is similar.

^aG. Y. Fu: Phys. Rev. Lett. (2008)

^bR. Nazikian: *Phys. Rev. Lett.* (2008)

Frequency spectrum

- For the red and green curves, frequency is proportional to the \sqrt{T} . The modes are stable in these 2 cases.
- For the other curves, frequency is independent of temperature.
- $\tau_{cx}(v_{NBI}) = 0.8s$, $\beta_h = 0.3\%$ and $\Delta \Lambda = 0.2$.

- **Nonlinear Frequency Chirping**
- **Summary and Future Work**

Summary: Nonlinear frequency chirping ⁹

- Nonlinear frequency chirping takes place with hole-clump pairs created in the energetic particle distribution function along $\mu=constant$ curves.
- The transit frequencies of holes and clumps are in good agreement with the mode frequency indicating the particles in the holes and clumps are kept resonant with the EGAM.
- The hole-clump pairs structure is investigated in a more realistic system than the previous work.

⁹H. Wang, Y. Todo, and C. C. Kim, *Phys. Rev. Lett.* (2013)

Summary: Linear properties

New EGAM (w/ charge exchange)

- Frequency is independent of \sqrt{T} .
- Frequency decreases and γ increases with $\tau_{cx}(v_{NBI})$ increases.

Conventional EGAM (w/o charge exchange)

Frequency is proportional to \sqrt{T} .^a.

^aH. Wang and Y. Todo, *Phys. Plasmas* (2013)

Both (w/ and w/o charge exchange)

- Frequency is spatially constant.
- Frequency decreases with mode distribution width $\Delta\Lambda$ increases.
- The poloidal mode number of v_{θ} , density and δB is 0, 1 and 2.

- Clarify the properties of new EGAM.
 - Dependence on Λ_{peak} (relation of EGAM frequency and EP transit frequency).
 - Condition for the transition between new and conventional EGAMs.
- Reproduce EGAM with the frequency observed in the LHD experiment.