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Outline

• Reproduction of Vlasov simulation in Cheng and

Knorr ’76 which is based on the splitting scheme.a

• Non-Maxwellian distribution function effects on

Landau damping. The kappa distribution function is

taken as an example.b

• Formation of high energy electron tails in the presence

of Langmuir soliton. c

aC.Z.Cheng and G. Knorr, J. Comput. Phys. 22, 330 (1976).
bD. Summers and R.M.Thorne, Phys. Fluids, B 3, 1835 (1991).
cG.J.Morales and Y.C.Lee, Phys. Rev. Lett. 33, 1534 (1974); High energy tail is formed but

the bulk electrons do not change.



Electrostatic Vlasov simulation is employed

• Let us consider 1d 1v phase space. A Vlasov-Poisson system normalized by

“λd and ωe ” reads

∂tf + v∂xf − E∂vf = 0

∂xE = 1−
∫

fdv

• To time advance Vlasov equ numerically, we employ splitting scheme.

f∗ (x, v) = fn (x− v∆t/2, v)

f∗∗ (x, v) = f∗ (x, v + E(x)∆t)

and finally,

fn+1 (x, v) = f∗∗ (x− v∆t/2, v)

which is equivalent to leap-frog in PIC simulation, possessing a symplectic (a

phase volume conserving) nature.a

aC.Z.Cheng and G.Knorr, J. Comput. Phys. 22, 330 (1976).



Splitting scheme is based on the method of
characteristics

• It is not a finite difference method.

We trace the distribution function along the characteristic curves.
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• In doing this, if the reference points along the characteristic curves

”x− v∆t” are exactly on the mesh points, the method is quite trivial.

→ In general, the reference points (⋄) are located in between mesh points.

→ Need an interpolation technique.a
aC.Z.Cheng and G.Knorr, J. Comput. Phys. 22, 330 (1976).



Preliminary studies with the kinetic model:
Free streaming case (E = 0)

• Vlasov becomes ∂tf + v∂xf = 0 , the analytical solution can be given by

fk(v, t) = fk(v, 0)e
−ikvt.a

• For example, if we take an initial condition fk(v, 0) = e−v2/2,

→ f(x, v, t) = (e−v2/2e−ikvt)eikx = e−v2/2eik(x−vt)
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• Simulation results (dots) match with the analytical solution (dashed).
aCase-Van-Kampen mode; D.R.Nicholson, Introduction to Plasma Theory (1983), p.120.
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Linear and non-linear Landau damping of
Cheng and Knorr ’76 are reproduced

• Electric field is dynamically evolved (solving Poisson self-consistently).

(Left) Linear damping (Middle) Non-linear (Right) Profile flattening.
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• Recurrence occurs (t = 2π/kx∆v ∼ 48) due to finite number of mesh points.

• Parameters: cut-off velocities vmax = 4.0vthe (linear) / vmax = 8.0vthe (nl),

and 0 ≤ x/λe ≤ 4π. For linear, ω = 1.41 and γ = −0.155 match with the

theory. Initial condition f(x, v, 0) = [1 +A cos (kx)]e−v2/2 with k = 0.5.



We employ Kappa distribution function

• A “κ distribution function” is given by (note the exponent “−κ− 1”)

fv (v) ∝
[

1 + (v2/2κ)
]

−κ−1

.
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• The modification is manifested as an increase in the damping rate and a

decrease in the real frequency.a As a reminder, Langmuir wave dispersion

relation (at γ ≫ ω ) is given by b

ω = ω2
e

[

1 + (3/2)k2λ2
e

]

+ i
(

πω3
e/2k

2
)

∂vf(v)|v=ωr/k

aInitial condition f(x, v, 0) = [1 +A cos (kx)]fκ(v) with k = 0.5.
bD.R.Nicholson, Introduction to Plasma Theory (1983), p.82.



Initial value simulation is compared with the analytical
dispersion relation using “Zκ(ξ)”

• Summersa employs a κ-function with the exponent “−κ”

fv (v) =
n0√
πve

√
κ√

2κ− 3

Γ(κ)

Γ(κ− 1/2)κ3/2

(

1 +
v2

2κ− 3

)

−κ

.

• A normalized dispersion relation is given by

ξZ∗

κ(ξ) + 1− 1

2κ
+

κ− 3/2

κ
k̄2 = 0

where ξ = x+ iy (x and y both real), and the modified dispersion function

Z∗

κ is given by (analogous to Fried and Conte 1961)

Z∗

κ (ξ) =
1√
π

Γ(κ)

Γ(κ− 1/2)κ3/2

∫

∞

−∞

(

1 + s2/κ
)

−κ−1

s− ξ
ds,

To find the root, we fix y values and solve the imaginary part of the

dispersion relation, Im [ξZ∗

κ(ξ)] = 0, to obtain x. When both x and y are

given, we solve the real part for k̄.
aD. Summers and R.M.Thorne, Phys. Fluids, B 3, 1835 (1991).



• Taking exactly the same form of Summers 91, Vlasov simulation is

conducted for κ = 2, κ = 3, and κ = 6.
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Initial value simulation results (dots) compare favorably with the analytical

results (dashed curves).b

bY.Chen, Y.Nishimura, and C.Z.Cheng “Kappa distribution function effects on Landau damp-

ing in electrostatic Vlasov simulation”, Terr. Atmos. Ocean. Sci. 24, 273 (2013).



Zakharov Eq. is revisited for Langmuir soliton studies

• Nonlinear Schrödinger equation is derived by V.E.Zakharov by a fluid

approach.a For low frequency E (envelope for the high frequency part)

i∂tE + ∂2
xE = nE

• Ion density equation in the presence of ponderomotive force

∂2
t n− ∂2

xn = ∂2
x|E2|

• By letting n = −|E|2, we obtain a nonlinear Schrödinger equation.

i∂tE + ∂2
xE + |E2|E = 0

• More general solution has the form of a soliton [here, E0
2 = 2K0

2
(

1− V 2
g

)

]

E(x, t) = E0 · sech [K0 (x− Vgt)] e
−i[K1x−(K1

2
−K0

2)t]

n(x, t) = −2K0
2 · sech2 [K0 (x− Vgt)] .

aV.E.Zakharov, Sov. Phys. JETP 35, 908 (1972). Now parameterized by K0 and K1 only.

We set K1 = 0 in this study.



Fokker-Planck solution demonstrates high energy tail

• Fokker-Planck equation is solved in the velocity spacea

∂tf(u) = ∂u [D (u,w) ∂uf(u)]

with D(u,w) = π(w/u)sech2(πw/2u).b
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• High energy tail formation. On the other hand, the bulk electrons do not

change since they participate in the formation of density cavities which are

required to support localized electric fields.
aG.J.Morales and Y.C.Lee, Phys. Rev. Lett. 33, 1534 (1974).
bRepresents the soliton shape of the electric field envelope of the configuration space.



In the Vlasov simulation we incorporate
Zakharov solutions as initial conditions

• As initial condition, we take E(x, t) = E0 · sech (K0x) and

ni(x, t) = −2K0
2 · sech2 (K0x).

a Inverting Poisson equation, ne = ni − ∂xE.

• Both the electrons and ions are time advanced. The initial fe and fi are

given by (ni,e)× (Maxwellian: e−v2/2v2

e,i) (or κ functions).
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aN.R.Pereira, R.N.Sudan, J. Denavit Phys. Fluids 20, 271 (1977). We start from stationary

soliton case by setting Vg = 0.



Formation of high energy tail in Vlasov simulation is
demonstrated

• (a) Maxwelllian and (b) κ = 2.0 distribution taken as initial conditions.
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• Parameters employed are nv = 256, nx = 128, cut-off velocity 12.0vthe and

12.0vthi and 0 ≤ x/λe ≤ 64π for (a). Followed up to 5000ωe
−1. Dashed line

for v−4. (b) For 1000ω−1
e , 16.0vthe and 16.0vthi for κ = 2. a

aC. H. Li, J. K. Chao, and C.Z.Cheng, Phys. Plasmas 2, 4195 (1995).



We obtain island separatrix equation in the phase space

• Given the electric field of the form sin (kx− ωt), the equation of motion

reads

dx/dt = v

dv/dt = Ēk sin (kx− ωt)

• By going to the moving frame [letting X = x− (ω/k)t and V = v − ω/k],

dX/dt = V

dV/dt = Ēk sin (kX).

For the corresponding Hamiltonian H = V 2/2− (Ē0/k) cos (kX), we obtain

the separatrix equation V = ±2
√

Ēk/k cos (kX/2) for each Fourier mode.

• Extracting Ek values from the numerical Vlasov simulation, we can identify

the separatrix widths and locations

v = ω/k ± 2
√

Ēk/k cos (kX/2),

and can apply the island overlapping criterion.



Chains of islands in velocity space is shown

• The electric field profiles are expanded in Fourier series. (a) Mawellian case

at t = 0 (black) and t = 5000 (red). (b) κ = 2 case at t = 0 (black) and

t = 125 (red).
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• While the island overlapping is seen (Chirikov’s criterion as a reminder) at

t = 0, the islands at v/vthe ≥ 2.0 are intact at the later phase. Remind that

the damping rate is large with an existing high energy tail (κ distribution).



Summary and discussions

• A 1d-1v Vlasov-Poisson simulation to study Langmuir wave dynamics is

developed employing the splitting scheme.a

• Non-Maxwellian (κ function) employed. The modification is manifested as

an increase in the Landau damping rate. The analyses by the modified

plasma dispersion function is reproduced.b

• The formation of high energy electron tails by Langmuir soliton is

demonstrated.c On the other hand, κ functions are not evolved by the

solitions.

• Origin of kappa like distribution.d For the high energy tail to get heated

effectively, nonlinear waves must be playing an important role.

aC.Z.Cheng and G.Knorr, J. Comput. Phys. 22, 330 (1976).
bSummers, D. and R.M.Thorne, 1991: Phys. Fluids, B 3, 1835-1847.
cAdvantage of Vlasov simulation over PIC in investigating high energy tail dynamics.
dV.M.Vasyliun, J. Geophys. Res. 73, 2839 (1968).



Particle-in-cell simulation is employed

• Vlasov simulation and Particle-in-Cell simulation of Langmuir solitions.

• A linear Landau damping of Langmuir wave is compared between Vlasov

and PIC.
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• The number of grids are 64 within a simulation domain of 0 ≤ x ≤ 4π. Took

standard case from previous Vlasov (black curves). Numbers of particles per

cell are 1000 and 10000.



δf method is based on the method of characteristics

• Since δf/f0 ∼ δn/n0, this method reduces the unfavorable artificial collision.

• The linearized Vlasov equation is given by

˙δf = −v∂xf0 − (qE/m)∂vf0.

We now introduce weight function w = δf/g (g is a numerically loaded

distribution function).

• The marker particles are time advanced bya

ẋ = v

v̇ = qE/m.

• On top, the weight equation is solved along the marker particles

ẇ = −v
∂xf0
g

− (qE/m)
∂vf0
g

.

aM.Kotschenreuther, Bull. Am. Phys. Soc. 34, 2107 (1988). Y. Nishimura and C.Z.Cheng,

J. Plasma Fusion Research 9, 541 (2010).



Langmuir soliton simulation by particle-in-cell is
initiated

• The number of grids are 128 with a simulation domain of 0 ≤ x ≤ 64π.
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• From a numerical point of view, the Vlasov simulation in lower dimension

has advantages over PIC simulation for investigating subtle effects such as a

slight deviation of the equilibrium distribution function at the high energy

tail.



Propagation of Langmuir soliton is regulated by ion
wave-particle interaction

• Langmuir soliton propagates satably but is subject to Landau damping as

the temperature ratio Ti/Te approaches unity.
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• (a) Ion density cavity (b) electron density cavity, and (c) the electric field.


